Vis enkel innførsel

dc.contributor.authorLa Salvia, Marco
dc.contributor.authorTorti, Emanuele
dc.contributor.authorLeon, Raquel
dc.contributor.authorFabelo, Himar
dc.contributor.authorOrtega, Samuel
dc.contributor.authorBalea-Fernandez, Francisco
dc.contributor.authorMartinez-Vega, Beatriz
dc.contributor.authorCastaño, Irene
dc.contributor.authorAlmeida, Pablo
dc.contributor.authorCarretero, Gregorio
dc.contributor.authorHernandez, Javier A.
dc.contributor.authorCallico, Gustavo M.
dc.contributor.authorLeporati, Francesco
dc.date.accessioned2023-01-25T09:02:33Z
dc.date.available2023-01-25T09:02:33Z
dc.date.created2022-11-24T12:33:57Z
dc.date.issued2022
dc.identifier.citationSensors. 2022, 22 (19), .
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/11250/3046113
dc.description.abstractCancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints.
dc.language.isoeng
dc.titleNeural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images
dc.title.alternativeNeural Networks-Based On-Site Dermatologic Diagnosis through Hyperspectral Epidermal Images
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionpublishedVersion
dc.source.pagenumber0
dc.source.volume22
dc.source.journalSensors
dc.source.issue19
dc.identifier.doi10.3390/s22197139
dc.identifier.cristin2080022
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel