f_f algorithms

Article

Computational Test for Conditional Independence

Christian B. H. Thorjussen %*{), Kristian Hovde Liland 2(”, Ingrid Mage !

check for
updates

Citation: Thorjussen, C.B.H.; Liland,
K.H.; Mage, I.; Solberg, L.E.
Computational Test for Conditional
Independence. Algorithms 2024, 17,
323. https://doi.org/10.3390/
al17080323

Academic Editor: Tatsuya Akutsu

Received: 27 June 2024
Revised: 18 July 2024

Accepted: 20 July 2024
Published: 24 July 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Lars Erik Solberg 1

Nofima AS, Osloveien 1, 1431 As, Norway; ingrid.mage@nofima.no (I.M.);
lars.erik.solberg@nofima.no (L.E.S.)

Faculty of Science and Technology, Norwegian University of Life Science, 1432 As, Norway;
kristian.liland@nmbu.no

* Correspondence: christian.thorjussen@nofima.no

Abstract: Conditional Independence (CI) testing is fundamental in statistical analysis. For example,
CI testing helps validate causal graphs or longitudinal data analysis with repeated measures in causal
inference. CI testing is difficult, especially when testing involves categorical variables conditioned on
a mixture of continuous and categorical variables. Current parametric and non-parametric testing
methods are designed for continuous variables and can quickly fall short in the categorical case. This
paper presents a computational approach for CI testing suited for categorical data types, which we
call computational conditional independence (CCI) testing. The test procedure is based on permuta-
tion and combines machine learning prediction algorithms and Monte Carlo cross-validation. We
evaluated the approach through simulation studies and assessed the performance against alternative
methods: the generalized covariance measure test, the kernel conditional independence test, and
testing with multinomial regression. We find that the computational approach to testing has utility
over the alternative methods, achieving better control over type I error rates. We hope this work can
expand the toolkit for CI testing for practitioners and researchers.

Keywords: conditional independence; computational hypothesis testing; categorical variables; graphical

models; causal inference

1. Introduction

Robust conditional independence (CI) testing in statistics is an arduous challenge. The
no-free-lunch theorem for CI testing, as stated in [1], postulates that no single statistical
test or algorithm is universally superior for detecting CI between variables of all types
in all situations. Nevertheless, CI testing is a pivotal task in applied statistical research.
For instance, in the domain of causal inference, a causal graph, which can form the basis
of a causal estimator, can be validated through testing a set of implied marginal indepen-
dence and CI statements [2,3]. In bioinformatics and genomics, CI aids in understanding
genetic linkage and is vital in distinguishing between genetic and environmental factors,
essential for tasks like mapping disease traits [4,5]. Because of its importance, considerable
work [1,6-11] has been dedicated to creating tests for CI, especially for continuous cases.
However, due to the no-free-lunch theorem, the performance of different testing methods
can vary substantially depending on the underlying data-generating structure.

Consequently, it is necessary to develop and explore multiple testing methods for CI
testing tailored for various data characteristics and types, adopting both asymptotic and
computational approaches. Due to the flexibility of regression and classification algorithms
in machine learning (ML), state-of-the-art prediction modeling offers a promising starting
point for testing CI [1]. This article proposes and examines a computational method based
on ML classification (and regression) for testing CI in this context. While the approach
applies to various data types, we will focus on CI testing involving cases with a mixture of
categorical and continuous variables in the CI statement. To our knowledge, no suitable
testing method currently exists for such cases.

Algorithms 2024, 17, 323. https:/ /doi.org/10.3390/a17080323

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17080323
https://doi.org/10.3390/a17080323
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0005-5006-6491
https://orcid.org/0000-0001-6468-9423
https://orcid.org/0000-0003-0364-0225
https://orcid.org/0000-0003-0246-8064
https://doi.org/10.3390/a17080323
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17080323?type=check_update&version=1

Algorithms 2024, 17, 323

2 0f 22

Conditional Independence Testing

A common notation of CI between random variables Y and X given Z is
YL XZeX1Y|Z, (1)

where Z can be extended to a set of variables Z. One can also express CI using probability
distributions; p(Y | X,Z) = p(Y | Z) where p(Z) > 0,0or p(X,Y | Z) = p(X | Z)p(Y | Z),
which is to say that given that we know Z = z neither X nor Y carries information about
each other’s distribution [12].

When Y and X are continuous and the conditioning set Z contains a mixture of variable
types, numerous testing methods for CI exist. The two state-of-the-art and readily available
methods are the kernel-based test (KCI test) from [6] and the generalized covariance mea-
sure (GCM test) [1]. The KClI test is based on the foundational idea that the uncorrelatedness
between functions in kernel Hilbert spaces can characterize statistical independence and CI.
The test uses kernel matrices associated with the variables to construct a test statistic based
on these matrices. As it stands, the test is designed for continuous data. However, since
the KCI test uses a kernel function, it can potentially be modified to account for other data
types by changing the function. The GCM test is based on the fact that the standardized
covariance between residuals from the two generic regressions y = h(z) and x = g(z)
follows, under the null hypothesis and given relatively mild assumptions, an asymptotic
standard normal distribution. Although the GCM test statistic is designed for continuous
data types, it also handles binary data well.

When dealing with purely categorical variables within the CI statement, i.e., categorical
variables with more than two categories, the literature on testing methods is somewhat
scarcer. In cases where Y, X, and Z in Equation (1) are all categorical or of discrete types,
the conditional)(2 test, also known as the Cochran-Mantel-Haenszel test, is a well-known
and reliable test. The x? test requires sufficiently many observations in each conditioned
category to function optimally [13] (pp. 231-232). Testing based on mutual information is
also a common choice for testing CI with only discrete data [14]. However, in CI statements
where either X or Y or both are categorical and Z consists of continuous variables, or
a mix of continuous variables and other types, there are, to our knowledge, no reliable
testing methods available. For example, it is suggested to employ multinomial regression
or abstain from testing altogether [2]. Testing CI with a parametric model is problematic as
it relies on specifying the correct, or close to correct, functional form.

To create a CI testing framework for categorical variables, we suggest using ML clas-
sification algorithms in combination with permutation and Monte Carlo cross-validation
(MCCYV) to create a null distribution. One utilizes the same ML classification model without
permutation with one train-test split to obtain the test statistic and p-value. As an extension
to this, one can also create a test statistic distribution with MCCV and assess a distribution
of p-values, which is a helpful extension in cases where testing is done with a limited
sample size. The organization of our article is as follows: Section 2 details our proposed
testing procedure, Section 3 presents the simulation study exploring key aspects such as
type I error rates and power under difficult testing conditions. In Section 4, we present
an illustrative example of the testing procedure, and test results of multiple simulations
over a range of multivariate distributions. A general discussion follows in Section 5, and
concluding remarks in Section 6.

2. Computational Testing with Categorical Variables

Our proposed computational procedure for testing CI, which we call the computational
conditional independence test (CCI test), is, in principle, quite flexible. Still, we focus on
the case where the aim is to test CI between two categorical variables.

Let Y and X represent categorical variables withj =1...Jand k = 1... K categories,
respectively. Under the null hypothesis of CJ, a classification model for Y, P(Y =k | X, Z),

Algorithms 2024, 17, 323

30f22

should perform equivalently to a model using a permuted X* instead of X. Hence, we
posit the null and alternative hypotheses as follows

Ho :M(P(Y =k | X*,Z)) = M(P(Y =k | X,Z))

S MP(X=]|Y,2)=MPX=j|Y,2)),)
Hy :M(P(Y =k | X*,2)) # M(P(Y =k | X, Z))
& M(Pr(X=j|Y"2)) #MPr(X=jl|Y,2)), (3)

where M denotes a suitable performance metric whose distribution is (usually) unknown. A
performance metric, is a quantified evaluation of an ML model’s performance; how effective
an ML model is on a given task. The type of performance metric in ML depends on the
problem being solved (classification, regression, clustering). Within a specific problem,
different metrics assess various aspects of an ML model [15]. The CCI test approximates
the distributions of M() under Hy and H; by computing over many Monte Carlo samples.

2.1. Establishing a Null Distribution by MCCV

A fundamental challenge in statistical testing lies in controlling the significance level,
defined as the false positive rate or type I error rate. We manage this error rate by estimating
an empirical null distribution of metric scores using Monte Carlo Cross-Validation (MCCV)
in combination with permutation. Generally, statistical testing based on permutation is a
robust alternative when fundamental assumptions of parametric and nonparametric tests
are violated [16]. MCCYV is a resampling technique typically used to assess ML models’
performance by randomly partitioning data into training and testing sets. For each iteration,
MCCV randomly selects a subset of data for training, and the remaining observations serve
as the test (validation) set.

The first step in setting up a test is to choose between a classification model for Y
or for X. Tree-based models, which are robust against overfitting when predicting new
data, are probably the best choice. However, we will discuss this further in Section 2.3.
For now, let us assume that we have a robust classification model for Y and therefore
M(P(Y =k | X*,Z)) = M(P(Y = k| X,Z)) is the null hypothesis.

Now we can estimate the empirical null distribution(s). For each MCCYV iteration,
we first permute X into X*, then randomly split the data into a training set of size pN
and a testing set of size (1 — p)N. We then train a classification model for Y using X*
and the conditioning set Z with the training set data. We then calculate the classification
performance metric using the testing set. After many iterations, this approach theoretically
derives the empirical distribution of metric scores under the null being true.

2.2. Calculating p-Values

Once the null distribution is established, we generate a test statistic from a single
estimation of the classification model for Y using the original, unpermuted X. Again, we
split the data into a random training and testing set, estimate the classification model using
the training data, and calculate the performance metric using the testing data. Under the
null hypothesis, the metric score calculated using the unpermuted X should be a random
draw from the empirical null distribution.

Conversely, if the alternative hypothesis is true, including the unpermuted X should
enhance classification performance, thereby facilitating the p-value calculation based on
the test statistic’s relative position within the null distribution. The (one-sided test) p-value
(e.g., using log loss as the performance metric) is given by

Null < test statistic) + 1
p=E)+l @
n+1

where) (Null < test statistic) represents the count of instances in the null distribution that
are less than or equal to the test statistic, and 7 is the total number of observations in the null

Algorithms 2024, 17, 323

4 0f 22

distribution. Note that the direction of < in Equation (4) depends on which metric score is
used. If, for instance, we use Kappa scores, where a higher value means a better-performing
model, we would have to change < to >. The “+1” in the numerator and the denominator
is a correction factor that prevents a p-value of 0 and makes the p-value somewhat more
conservative. A p-value of 0 is good to avoid since it implies absolute certainty.

Testing CI by classification modeling for an accurate p-value calculation demands a
large sample. When the sample size is small, the statistical power is often low. With an
insufficient sample size, minor yet meaningful improvements in performance by including
the original X rather than the permuted X* may not be detected from a single train-test split
of the unpermuted data. Therefore, when testing CI with a relatively small sample, one
should not rely on one p-value but instead perform multiple train-test splits and examine
the resulting distribution of p-values, providing additional robustness to the analysis.
According to the probability integral transform theorem, if a random variable T is drawn
from a known cdf Fr(t), as with a test statistic under the null hypothesis, the transformed
variable P = Fr(T) follows a uniform(0,1) distribution [17] (pp. 54-55). This means that
CClI test p-values should be approximately uniformly distributed under the null hypothesis.

By calculating and plotting several p-values in Quantile-Quantile (QQ) plots, one
can visually assess if the empirical p-values approximately follow the distribution against
their theoretical counterparts. It is important to emphasize that evaluating the distribution
of p-values is not a test per se, and one cannot and should not test statistically if the
empirical distribution of p-values follows a theoretical uniform distribution, for instance,
by a Kolmogorov-Smirnov test [18]. Firstly, such tests assume an underlying continuous
distribution, which is not the case. Secondly, these tests are susceptible to sample size,
where a large sample size almost guarantees a low p-value, and the “sample size” can be
manipulated by the number of MCCYV iterations. Thirdly, the Kolmogorov-Smirnov and
other similar tests test against uniformity, which is, in this case, incorrect.

2.3. Choice of Classification Model and Performance Metric

The computational method described above assumes that modeling the classification
probabilities P(Y = k| X, Z) or P(X = j|Y, Z) allows us to extract all relevant information
from the conditioned variables. Significantly, the method relies on the robustness of the
classification model in generalizing from the training data to the testing data. Although
an optimal classification model cannot be guaranteed, modern off-the-shelf tree-based
ML algorithms such as XGBoost https:/ /xgboost.readthedocs.io/en/stable/ (eXtreme
Gradient Boosting) [19] have demonstrated remarkable performance in predicting class
categories and robustness against overfitting training data. Other alternatives are random
forest [20] or other gradient boosting frameworks such as LightGBM [21] or CatBoost [22].

Since different metrics evaluate various aspects of a classification model’s performance,
choosing a performance metric carries implications in CCI testing. The metrics we use
in this article are log loss and Kappa scores; these are well-known, continuous, and have
somewhat different qualities. Kappa scores are better when comparing the same model
across different datasets, especially when categories are unbalanced. Log loss offers greater
precision than Kappa scores by accounting for the certainty of class predictions, which is
relevant. We have yet to determine which metrics best suit the task; we will attempt to
shed some light on this question in Section 3. Note that performance metrics are different
from loss functions, which are necessarily differentiable. However, loss functions (such as
log loss) can also be used as performance metrics.

3. Simulation Setup

The simulation study aims to evaluate the performance of CCI testing and compare it
against some “established” methods. We also aim to assess and compare the two perfor-
mance metrics: log loss and Kappa scores.

The basic simulation setup is that we draw data from seven different multivariate
distributions with four variables {Z;, Z,, X, Y'}. The dependencies between the variables

https://xgboost.readthedocs.io/en/stable/

Algorithms 2024, 17, 323

50f22

are as shown in the directed acyclic graph depicted in Figure 1, which implies the CI
statement Y 1L X|Zy,Z, < X 1 Y|Z;, Z;. All multivariate distributions involve non-linear
relations between Z; and Z,, made such that testing CI is not trivial. In all simulations, Z;
and Z, are continuous variables, either normally or uniformly distributed, while both X
and Y are categorical. A short non-technical description of the data-generating functions
follows, and pseudocodes of the functions are found in Appendix B.

(=)
—O

Figure 1. Simulations are based on a common structural framework. Z; and Z, are continuous
variables of distinct types, whereas X and Y are categorical variables.

Interaction: interactions between Z; and Z;. Z; and Z, are standard normal, and
X and Y are set deterministically by a series of if statements which assign values from 0
to 3, depending on the quadrant in which the coordinate (Z;, Z5) falls into, creating an
interaction between Z; and Z,.

ExpLog: Exponential and logarithmic distributions. Z; and Z; are standard normal.
X is influenced by the exponentiation of the sum of Z; and Z;, where the categories of
X change as the sum exceeds certain thresholds. The categorization of Y is based on the
logarithm of the absolute value of Z; plus one, added to Z;, passing specific thresholds.
The simulation imitates the modeling of exponential and logarithmic growth.

PolyData: Z; and Z, are standard normal. The categorization of X is based on different
polynomial combinations of Z; and Z;. The categorization of Y similarly involves higher-
degree polynomials of Z; and Z,.

TrigData: Z; is uniform(—7, 77), while Z; is standard normal. X is created based on
adding sin(Z;) and cos(Zy), and the categorization of Y is based on subtracting sin(Z;) and
cos(Zy). The simulation imitates the modeling of cyclic phenomena.

Non-Linear: A non-linear and trigonometric simulation testing if CI testing methods
are robust against complex real-world data patterns involving periods or cycles such as in
time-series analysis.

ComplexCategorization: A simulation that emulates data scenarios where multiple
factors and their interactions influence outcomes.

Multinomial: This simulation is based on multinomial regression equations, with
non-linear effects from Z; and Z,. This simulation aims to generate a data set where the
influence of Z; is relatively weak and, therefore, harder to test Y L X|Z,.

In all testing scenarios, we employ the XGBoost classification model from the R
package xgboost [23], using default parameter settings with two exceptions: the learning
rate is set to 7 = 0.1, and the number of boosting trees is set at ntrees = 120. The train-
test split ratio in MCCV is set to 0.825, meaning for each iteration, a random portion of
82.5% of the data is utilized as training data. Additionally, we use the createDataPartition
function from the caret package [24] to balance the class distributions within the splits.
As "feature” variables in the XGBoost classification model we include Z; and Z, and their
transformations: squared and cubed.

We also test the conditional independence statements with the GCM test, the KCI
test, and multinomial regression. The GCM test, conducted via the R package Generalised-
CovarianceMeasure [25], uses default settings. The KCI test, implemented through the
R package CondIndTests [26], has its Gaussian Process hyperparameter routine disabled
to reduce computation time. Note that the KCI test demands extensive computational
resources with increasing sample sizes. Multinomial regression analyses are performed

Algorithms 2024, 17, 323

6 of 22

using the nnet package [27], incorporating Z;, Z,, and their squared and cubed terms
as predictors.

We ran our simulations over three sample sizes (500, 800, and 2000) and simulated
100 datasets from the multivariate distributions for each size. For each dataset, we tested
Y AL X | Z3,Z; to assess the type I error rate. We tested Y UL X | Z, to assess power, noting
that type Il error is equal to 1 — power. For all tests, we set the significant level at 5%, which
means that if we test a true null hypothesis, about 5% of tests should be refuted.

4. Results
4.1. Illustrative Example

Before we present the simulation results, we will illustrate the testing procedure using
a specific simulated example. Our dataset comprises 800 simulated observations drawn
from the interaction multivariate distribution. We hypothesize that the null hypothesis—
M(P(Y =k | X*,Z1,Zy)) = M(P(Y =k | X,Z1,Z;))—will not be rejected by the test.

For each MCCYV iteration, we start by permuting X into X* and then train the clas-
sification model P(y|x*,z1,2,) using 82.5% of the data, and the performance metrics log
loss and Kappa score were calculated on the remaining data. We performed 1000 iterations
to create the null distributions of log loss and Kappa scores shown in Figure 2. Next, we
swap the permuted X* with the unpermuted X. Perform one instance of a train-test split to
estimate P(y|x,z1,22), and again, the log loss and Kappa score are extracted by predicting
using the testing data. The resulting one-sided p-values are 0.34 (log loss) and 0.36 (Kappa
score), and the null hypothesis is not rejected.

Tl M -
[1
1 1
1 1
1 1
0.1 0.2 0.3 0.85 0.90 0.95 1.00
Log loss Kappa score

Figure 2. The empirical null distributions of log loss and Kappa scores estimated by MCCV. The
dashed lines are the test statistics resulting in p-values of 0.34 and 0.36, respectively.

To show that we have control over type I error in this case, we can estimate the
corresponding test statistic distributions and overlay the null distributions, which is shown
in Figure 3. The distributions almost perfectly overlay each other, and if we then calculate a
p-value for every test statistic, we get that the distribution of p-values follows a uniform(0,1)
distribution, as shown in Figure 4. Since the p-values are uniformly distributed, we control
the type I error rate under a true null, and 5% of the p-values are less than 0.05.

Further, to illustrate how the test works in the opposite case, we remove Z; from the
test, which gives the null hypothesis M(P(Y | X*,Z;)) = M(P(Y | X,Z;))—which we
hypothesize will be rejected by the test. The new null distributions and test statistic distri-
butions are given in Figure 5—the two distributions have almost zero overlap. A random
test statistic yields p-values of 0.000099 for both log loss and Kappa score. (Since p-values
are calculated from an empirical distribution, 0.000099 is the lowest p-value possible).

Algorithms 2024, 17, 323 7 of 22

il N

0.1 0.2 0.3 0.85 0.90 0.95 1.00
Log loss Kappa score

Figure 3. The empirical null distributions overlayed by “test” distributions.

Log Loss Kappa Scores
1.00-
0.8- 0.75-
k)
o
g 0.50-
©
& 0.4-
0.25-
0.0- 0.00-
000 025 050 075 1.00 000 025 050 075 1.00

Theoretical Theoretical

Figure 4. QQ plots of p-values from log loss and Kappa scores comparing the empirical distribution

(black dots) with the theoretical uniform(0,1) (red line).

sl A i1

0.75 1.00 1.25 1.50 0.2 0.4
Log loss Kappa score

Figure 5. Null (white) and test (gray) empirical Monte Carlo distributions when the null hypothesis

is incorrect; the two distributions diverge.

Algorithms 2024, 17, 323

8 of 22

4.2. Testing with One p-Value

In the heat and overlay plots in Figure 6a, we see the type I error rate for 100 tests for
each sample size using the seven proposed simulations. The computational testing procedure
exhibits fairly good type I error across different data-generating functions, especially if one
were to compare against alternative methods, shown in the heat plots in Figure 6b,c. Data
simulated from the TrigData seems like the simulation scenario where it is most difficult to
control the error rate. Overall, Kappa scores seem more stable in type I error control.

Log Loss Kappa Scores

Data generating function

oo 500 800 2000 500 800 2000
Sample size Sample size

Multinominal reg.

Data generating function

500 800 2000 500 800 2000
Sample size Sample size

Data generating function

o 500 800 2000
Sample size

(0)
Figure 6. Type I error rates for different testing methods. A bluish color means the error rate is low
and should ideally be around 0.05; purple, orange, yellow, and red indicate a high type I error rate.
The CCI test exhibits the best type I error control across simulation scenarios. (a) CCI testing using
log loss (left) and Kappa scores (right). (b) Multinominal regression and GCM. (c) KCL

Algorithms 2024, 17, 323

9 of 22

In Figure 7a, we see the estimated power of the computational testing procedure. The
power is calculated as the proportion of p-values less than 0.05 when testing Y 1L X|Z,. The
power increases with the sample size, and using log loss seems to give more power than
Kappa scores. The possibility for low power with small samples emphasizes that computa-
tional testing is a “large” sample method due to its reliance on ML classification methodology.

Log Loss Kappa Scores

Data generating function

500 800 2000 500 800 2000
Sample size Sample size

(a)
Multinominal Reg. GCM

Data generating function

0°‘°Q 500 800 2000 500 800 2000
Sample size Sample size

(b)

Data generating function

500 800 2000
Sample size

(o)
Figure 7. Heatmaps of power (null: Y L X|Z;). More red means higher power, and a power of 1.00,
means a false null hypothesis is always rejected. The CCI test demands a relatively large sample size
to reject a false null consistently, using only one p-value. Ideally, a test needs to achieve at least 80%
power. (a) Power over simulation scenarios for CCI test using log loss (left) and Kappa scores (right).
(b) Multinominal regression and GCM. (c) KCI.

Algorithms 2024, 17, 323

10 of 22

The other methods, multinominal regression, GCM test (Figure 7b), and KCI test
(Figure 7c), have high power, but testing CI with categorical variables with these methods
can be very misleading as the type I error rate can be as high as 100%.

In Figure 8a,b, we have averaged the type I error and power over all simulations,
which leads us to conclude that the proposed computational testing is a viable alternative
to existing methods.

o
@
Z

o
@
8

Type | Error (Log Scale)
o
\

Kappa Score g
09 Loss™
——

o
o
&
*

E

800 2000 500 800 2000
Sample Size Sample Size

@) (b)
Figure 8. Means of type I error and power over all simulation scenarios and testing methods. (a) Type
I error means for all simulation scenarios the CCI test is represented with the blue and green line (log
loss and Kappa scores). Logarithmic Y-scale. (b) Testing power over all simulation scenarios, which
are all increasing with sample size. Note that the Y-scale goes from 0.5 to 1.

4.3. Assessing with p-Value Distribution

To assess how CCI can analyze CI statements by calculating a distribution of p-values
instead of relying on one p-value, we generated data from the three simulation scenarios,
Multinomial, TrigData, and NonLinearData, where a false Cl is the most challenging to test.
For each simulation scenario, we generated 20 datasets, each containing 500 observations
for testing both the true null of M(P(Y =k | X*,Z1,23)) = M(P(Y =k | X,Z1,Z3)), and
an erroneous null, M(P(Y =k | X*,Z,)) = M(P(Y =k | X,Z3)). For each dataset (i.e.,
60 datasets), we estimated 500 p-values by estimating an empirical null distribution and
the corresponding distribution of test statistics.

In Figure 9, the 500 p-value points for each test are color-coded. Each QQ plot has
20 lines of color-code dots, one for each dataset. When testing a true null, we obtain the
plots in Figure 9a,c,e. There is a close alignment with the theoretical uniform distribution,
which suggests good adherence to the null hypothesis. Some degree of variability, as in
minor deviations from the diagonal, is acceptable. Kappa scores seem to have somewhat
less idiosyncratic variation.

The QQ plots, depicted in Figure 9b,d,f, show the distribution of p-values for testing
Y L X|Z,. The points, especially using Kappa scores as the underlying metric, have a
notable deviation compared to their theoretical counterparts. This deviation suggests a
systematic tendency towards lower p-values than those expected under the null hypothesis,
indicating a likely violation of the null, the desired outcome. One can note that when
assessing the QQ plots, one should evaluate the difference between the points and the line
based on vertical distance [28].

Kappa scores provide better testing performance using QQ plots. With Kappa scores,
p-values seem more stable around the diagonal line when testing a true null and more
deviate from it when testing a false null.

In addition to providing a testing framework in small samples, using QQ plots has
some other benefits. QQ plots can reveal patterns that can indicate fundamental errors,
for instance, if the p-values tend to be high, meaning that the points would bend up-
wards to the left; such a pattern can indicate the non-independence of samples or highly
correlated features.

Algorithms 2024, 17, 323

11 of 22

Log loss

1.00

Sample Quantiles
o o
P u
o (4]

o
o
a

0.00

0.00 025 050 0.75

Theoretical Quantiles

Log loss
1.00

Sample Quantiles
o o
@ 5
o (9]

o
o
a

0.00

0.00 025 050 0.75

Theoretical Quantiles

Log loss

Sample Quantiles
&

<
o
a

0.00

0.00

025 050 0.75
Theoretical Quantiles

1.00

1.00

Log loss Kappa scores

Kappa scores

1.00 1.00

0.75

o
9
3

0.50

Sample Quantiles
E

0.25

o
N
o

0.00
0.00 025 050 0.75

Theoretical Quantiles

1.00 0.00 025 050 0.75

Theoretical Quantiles

0.00 025 050 0.75 1.00

Theoretical Quantiles

1.00

@) (b)

Kappa scores Log loss Kappa scores

1.00 1.00

o
N
(&)

0.75

0.50

Sample Quantiles
g

o
)
@

0.25

025 050 075
Theoretical Quantiles

025 050 075
Theoretical Quantiles

025 050 0.75 1.00

Theoretical Quantiles

0.00 1.00 0.00 1.00 0.00

(0) (d)

Kappa scores Log loss Kappa scores

1.00

0.75

0.50

Sample Quantiles
E

0.25

<
N
a

0.00

0.25
Theoretical Quantiles

025 050 0.75 050 0.75 1.00

Theoretical Quantiles

0.00 1.00 0.00

0.25
Theoretical Quantiles

1.00 050 075 1.00 0.00

(e) ()

Figure 9. QQ plots: These plots visualize the distribution of p-values testing with the CCI test
compared to the theoretical counterpart of a uniform(0,1) distribution. The different colors in each plot
represent separate datasets within the simulation. (a) Multinomial Simulation, True Null Scenario:
500 p-values testing Y 1L X|Z;,Z,. (b) Multinomial Simulation, False Null Scenario: 500 p-values
testing Y 1L X|Z;. (c) TrigData Simulation, True Null Scenario: 500 p-values testing Y 1L X|Z1, Z,.
(d) TrigData Simulation, False Null Scenario: 500 p-values testing Y L X|Z,. (e) NonLinearData
Simulation, True Null Scenario: 500 p-values testing Y 1L X|Z;, Z,. (f) NonLinearData Simulation,
False Null Scenario: 500 p-values testing Y I X|Z;.

5. Discussion

When testing CI with categorical variables, we can expect that CCI outperforms
the continuous testing methods GCM and KCI since, in these cases, the fundamental
assumptions of GCM and KCI are violated. Although the basic assumptions of multinomial
regression are not violated when used to test CI, any parametric method is restrictive as the

Algorithms 2024, 17, 323

12 of 22

functional form needs to be defined. As the simulation results show, the better performance
of CCl is not due to superiority in rejecting false hypotheses but due to both better control
of type I error and increasing power as the sample size increases.

Given Y 1L X|Z, it should not matter if Y or X is the dependent variable in the classi-
fication algorithm in CCI. A criterion for choosing Y or X is if some variable in Z is highly
correlated with either Y or X. Then, choose the one with the highest correlation as the de-
pendent variable to reduce the correlation among the features in the classification model.
In practical settings, we recommend running a single case to see if there are any estimation
problems by choosing Y or X as the dependent variable. Furthermore, to ensure optimal re-
sults, we recommend tuning the hyperparameters of the classification model using a separate
dataset not involved in the final testing. This practice can potentially improve the performance
and reliability of the test results. Given that CCI testing relies on ML techniques, familiarity
with these methodologies is recommended for practitioners employing the CCI test.

5.1. Assumptions and Limitations

There are two key implicit assumptions in the CCI testing procedure using XGBoost.
Firstly, the XGBoost classification modeling must be able to unravel potentially complex
relationships between the variables. Secondly, the XGBoost classification algorithm must
generalize well to unseen data. Of course, there is no way to ensure this, but a few steps can
increase the likelihood of good performance. Include transformation of the original features;
we include squared and cubed terms in our example, but a richer set is possible. As mentioned
above; if sufficient data is available, setting aside a portion for tuning the model before testing
can enhance its ability to utilize all information effectively when testing for CL.

The computational method is inherently more computationally intensive than most
other CI testing methods, except KCI testing with a large sample size. For instance, with
2000 observations from the Interaction simulation, creating a null distribution with 1000 it-
erations on a standard laptop with 8 GB RAM and a 1.60 GHz processor using a single core
required approximately 13 min. For larger datasets, especially those exceeding 10,000 ob-
servations, employing methods such as subsampling may help mitigate computational
demands. Furthermore, optimizing computation time will also depend on settings in
the XGBoost classification model; hence, adopting specific strategies informed by expert
knowledge is recommended for efficiency improvements in practical applications.

No matter how many simulation examples are applied, computational methods can
only be shown to work for the specific datasets and scenarios provided. We have attempted
to provide a range of difficult testing scenarios to show that computational testing is viable
in cases where one needs to establish CI between categorical variables, even when the
underlying data structure is complex. However, computational methods are usually less
efficient and less generalizable compared to asymptotic methods.

5.2. Strengths

In computational statistics, permutation is a well-known tool for breaking any ob-
served association between variables and forms the basis of many tests. Testing CI by
permutation is an intuitive and versatile concept that, in principle, can be applied to any
ClI testing situation involving various data types. CCI is flexible and demands few as-
sumptions about the nature of the data, only that the observations are independent. As
shown through simulations, CCI can handle complex relationships between variables and
is, in principle, scalable as you can expand the condition set Z “indefinitely”, making it
applicable to many settings.

Using an off-the-shelf classification method offers transparency in any specific test.
Practitioners can further analyze test results by studying the classification model itself;
for example, looking at feature contributions can give insights into the nature of any CI
statement. In combination, using QQ plots can give practitioners deeper insights into the
behavior of the data under the null hypothesis.

Algorithms 2024, 17, 323

13 of 22

5.3. Further Research

There are several possibilities for further exploration in computational testing of CI
and testing CI in general. For instance, although our simulation examples are highly
non-linear, they are also low dimensional; the number of observations is much larger than
the number of variables. Exploring computational CI in high-dimensional settings, where
the number of variables may approach or exceed the number of observations, is perhaps
a natural next step. Another avenue of research is to replace the performance metrics log
loss and Kappa scores and instead use conditional mutual information criteria or Shapley
values to create the null distribution. Additionally, exploring the capabilities of the CCI test
under circumstances where observations are not independent would be valuable.

Another avenue for further exploration is a more robust assessment of QQ plots, for
instance, by a lineup test introduced by [29]. The lineup test concept consists of embedding
a plot that contains the actual data effect among several plots of randomized data or noise
and seeing if people can identify the plot with actual data.

Further research should also explore the exponential distribution in the context of CCI
testing. Specifically, it should investigate how the exponential distribution’s maximum
entropy property influences testing performance.

6. Conclusions

This paper has demonstrated a practical application of CI testing, employing a compu-
tational approach that leverages permutation, the XGBoost classification algorithm, and
MCCV. The proposed method fills a gap in the empirical validation of CI with categorical
variables, enhancing CI testing for practitioners in real-world scenarios.

While advantageous for testing CI with categorical data, CCI has limitations. First
and foremost, it requires a relatively large sample to achieve sufficient power, it demands
a somewhat working knowledge of classification modeling, and it is computationally
demanding, especially with a large feature set.

Author Contributions: Conceptualization, C.B.H.T., IM., KH.L. and L.E.S.; methodology, C.B.H.T,,
IM., KH.L. and LES,; software, C.B.H.T. and K.H.L,; validation, C.B.H.T.; formal analysis, C.B.H.T.;
data curation, LM. and C.B.H.T.; writing—original draft preparation, C.B.H.T.; writing—review and
editing, C.B.H.T., IM., KH.L. and L.E.S,; visualization, C.B.H.T.; supervision, LM., KH.L. and L.E.S.;
project administration, LM. and K.H.L.; funding acquisition, LM. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by “Stiftelsen for Landbrukets Neeringsmiddelforskning” (SLNF),
The Research Council of Norway, through the projects SFI Digital Food Quality (project number
309259), and by the Norwegian Agricultural Food Research Foundation through the project Precision
Food Production (project number 314111).

Data Availability Statement: R scripts used in this manuscript are available at the GitHub repository
https:/ /github.com/ChristianBHT /CI_article (accessed on 16 July 2024).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

CI Conditional Independence

GCM test Generalized Covariance Measure test

KCI test Kernel Conditional Independence test

CCI test Computational Conditional Independence test
MCCV Monte Carlo cross-validation

QQ Quantile-Quantile

XGBoost Extreme Gradient Boost

https://github.com/ChristianBHT/CI_article

Algorithms 2024, 17, 323

14 of 22

Appendix A. Testing with Continous Data

Although we focus on testing with categorical variables in this article, CCI can also
be used with various data types. In Appendix A, we assess the performance of the CCI
test by comparing to the GCM test, when Y, X, Z;, and Z; are all continuous variables.
Again we use the dependency structure depicted in Figure 1 and generate data from five
multivariate distributions. Below are descriptions of various multivariate functions that
generate simulated datasets:

* Normal Data Function:

Generates a dataset where both Z; and Z, are drawn from standard normal distribu-
tions. The variables X and Y are also normally distributed, influenced by the sum of
Z1 and Z,, showcasing a simple additive model.

¢ Nonlinear Normal Data Function: Creates data with Z; and Z, as normal variables,
while X includes a nonlinear transformation involving the exponential of the product
Z1 X Zp, with normal noise added. Y is formed by the product Z; x Z; with additional
normal noise.

* Uniform Noise Data Function: This function produces a dataset where Z; and Z,
are normally distributed, but X and Y are derived from a linear combination of Z;
and Z, plus a term involving their product, with uniform noise added to introduce
non-normal error distribution and test model robustness against such noise.

e Exponential Noise Data: Similar to the uniform noise mode, it replaces the uniform
noise with exponential noise with a rate parameter a2 = 1. This function is useful for
examining the impact of skewed, heavy-tailed noise on statistical inferences.

* Poisson Noise Function: Generates data where Z; and Z; are normally distributed,
but X and Y include Poisson-distributed noise influenced by the product of Z; and Z,.

e Sinusoidal Data: This function creates data where Z; and Z; are normal, but X and Y
involve sinusoidal transformations modulated by an exponential decay function based
on the sum of Z; and Z;. The sinusoidal component depends on linear combinations
of Z1 and Z,.

For each simulated distribution and test method, we perform 100 tests under both a
true null and a false null hypothesis. We calculate the type I error rate by looking at the
number of significant results at a significant level « = 0.05. The power of the test under
each simulated multivariate distribution is estimated by the number of rejected tests under
a false null. The performance metrics for computation testing are Root Mean Square Error
and Mean Absolute Error (MAE).

In Figure Al, we see type I error rates; for these simulation examples, CCI testing is more
conservative than GCM (Figure Alb). The GCM test exhibits a relatively high type I error in
scenarios involving the Nonlinear, Normal, and Exponential Noise distributions. This high error
rate is likely due to GCM's reliance on the even distribution of residuals around the regression
line, making it susceptible to outliers, which these generating functions can produce. Assessing
the power of the CClI testing, we see that with a sample of 2000, CCI testing can consistently
reject a false null; GCM has a superior rejection rate with lower sample sizes.

Algorithms 2024, 17, 323 15 of 22

RMSE MAE

Data generating function

500 800 2000 500 800 2000
Sample size Sample size

@)
GCM

Data generating function

o 500 800 2000
Sample size

(b)
Figure Al. Type I error rates: Rejection rates testing a true null Y L X|Z;, Z,. A bluish color means
the error rate is low and should ideally be around 0.05; purple, orange, yellow, and red indicate a high
type I error rate. The CCI test performs better in many scenarios, as GCM relies on the assumption of
“well behaved” residuals. (a) CCI. (b) GCM.

Algorithms 2024, 17, 323 16 of 22

RMSE MAE

c
o
©
C
=]
(o))
£
[
[0
c
[0)
()]
ol
©
a
0\{&
&° 500 800 2000 500 800 2000
2 Sample size Sample size
c
il
©
c
2
(o]
£
s
[
c
(4]
()]
ol
©
a
@
*Qo(\"’“ 500 800 2000
© Sample size
(b)

Figure A2. Power: Rejection rates testing the false null Y 1L X|Z;. More red means higher power.
The results of the CCI test are given in Figure Ala using the performance metrics RMSE and MAE.
At sample size 500, CCI testing has low power. The GCM shows high power in almost all scenarios.
(a) CCL (b) GCM.

In conclusion, we see that CCI testing is a viable testing method in continuous cases
and can compete with the GCM test, given a sufficient sample size.

Appendix B. Pseudocode for Multivariate Distributions Generating Functions for
Categorical Data

The R version 4.3.2 functions created to generate data are presented in pseudo-code to
convey the procedural steps in generating datasets.

Algorithms 2024, 17, 323

17 of 22

Algorithm A1 Interaction Data (Interaction)

1: Z1 < Draw N samples from N'(0,1)
2: Zp < Draw N samples from N (0,1)
3: fori <+ 1to N do

4 if Z1[i] < 0 and Z,[i] < 0 then

5: X[l] 0

6: else if Z1[i] < 0 and Z;[i] > 0 then
7: X[i] +1

8: else if Z;[i] >= 0 and Z;[i] < 0 then
9: X[l] —2

10: else

11: X[i]+ 3

12: end if

13:

14 if Z4[i] < 04 Z;[i] < —1 then

15: Y[i] 0

16: else if Z1[i] < 0+ Z[i] < 0 then
17: Y[i] + 1

18: elseif Z;[i] <0+ Zy[i] < 1then
19: Y[i] 2
20: else
21: Y[i] + 3
22: end if
23: end for

24: return {Z1,7,,X,Y}

Algorithm A2 Exponent and Logarithmic Data (ExpLog)

1: Z1 < Draw N samples from N(0,1)
2: Zp + Draw N samples from N (0, 1)
3: fori <~ 1tondo

4. Compute tempX < exp(Z1[i]) + Z2[i]
5: if tempX > 1 then

6: X[l] 3

7: else if tempX > 0 then

8: X[l] —2

9: else if tempX > —1 then
10: X[i] +1

11: else

12: X[i] <0

13: end if

14: Compute tempY <« log(|Z1[i]| + 1) + Z2]i]
15: if tempY > 0.5 then

16: Y[i] <3

17: else if tempY > 0 then

18: Y[i] + 2

19: else if tempY > —0.5 then
20: Y[i] <1
21 else
22: Y[i] 0
23: end if
24: end for

25: return {Z1,7,, X, Y}

Algorithms 2024, 17, 323 18 of 22

Algorithm A3 Polynomial Data (PolyData)

1: Initialize number of samples N

2: Zy < Draw N samples from N (0,1)
3: Zp < Draw N samples from N (0, 1)
4: fori <+ 1to N do

5. if Z1[i]* + Z5[i]? > 2 then

6: X[i] 3

7. elseif Z;[i]* + Z5[i] > 0.5 then
8: X[l] —2

9: else if Z,[i] + Z»[i]*> > 0 then
10: X[i] +1

11: else

12: X[i]+0

13: end if

14 if Z1[i]> + Zo[i] > 1 then

15: Y[i] + 3

16: elseif Z1[i]? + Z,[i]> > 0 then
17: Y[i] + 2

18 elseif Zi[i] + Z,[i]> > —1 then
19: Y[i] 1

20: else

21: Y[i] <0

22: end if

23: end for

24: return {Z1,7,, X, Y}

Algorithm A4 Trigonometric Data (TrigData)

1: Initialize number of samples N

2: Z1 + Draw N samples from N (0,1)
3: Z « Draw N samples from N (0, 1)
4: fori <~ 1ton do

5 if sin(Z;[i]) + cos(Z[i]) > 1 then
6 X[i] <3
7: else if sin(Z1[i]) + cos(Z,[i]) > 0 then
8: X[i] 2
9: else if sin(Z4[i]) > —1 then
10: X[i] +1
11 else
12: X[i]+0
13: end if
14: if cos(Z1[i]) — sin(Z[i]) > 1 then
15: Y[i] + 3
16: else if cos(Z1[i]) — sin(Z,[i]) > 0 then
17: Y[i] <2
18: elseif cos(Z;[i]) > —1 then
19: Y[i] + 1
20: else
21: Y[i] <0
22: end if
23: end for

24: return {Z1,7,,X,Y}

Algorithms 2024, 17, 323

19 of 22

Algorithm A5 Nonlinear Data (Nonlinear)

1: Initialize number of samples N
2: 71 < runif(N, —1,1)

3: Zp + runif(N, —1,1)

4: fori <~ 1to N do

5 if sin(Z;[i] x) + Z;[i] > 1 then

6 X[i] <3

7: else if sin(Z1[i] x 71) + Z,[i] > 0.5 then
8 X[i] + 2

9: else if sin(Z1[i] X) + Z,[i] > 0 then
10: X[i] +1

11: else

12: X[i] <0

13: end if

14: if cos(Z[i] x) 4+ Z,[i] > 1 then

15: Y[i] < 3

16: elseif cos(Z[i] x) + Z,[i] > 0.5 then
17: Y[i] <2

18: else if cos(Z1[i] x 1) + Z,[i] > 0 then
19: Y[i] + 1

20: else

21: Y[i] <0

22: end if

23: end for

24: return {Z1,7,,X,Y}

Algorithm A6 Complex Categorization (ComplexCategorization)

1: Initialize number of samples N
2: Z1 + Draw N samples from N (0,1)
3: Zp < Draw N samples from N (0,1)

4: fori < 1to N do

5. if Z1[i] > 0 and Z,[i] > O then

6: X[l] ~—3

7. elseif Zi[i] > 0 and Z,[i] < 0 then
8: X[l] —2

9: else if Z1[i] < 0and Z;[i] > 0 then
10: X[i] +1

11: else

12: X[i] <0

13: end if

14: if Z1[i] + Z,[i] > 1 then

15: Y[i] < 3

16: elseif Zi[i] + Z,[i] > 0 then

17: Y[i] <2

18: elseif Zy[i] + Z;[i] > —1 then

19: Y[i] + 1
20: else
21: Y[i] <0
22: end if
23: end for

24: return {Z1,7,,X,Y}

Algorithms 2024, 17, 323

20 of 22

Al

gorithm A7 Multinomial (Multinominal)

—
=

11:
12:
13:
14:
15:
16:
17:
18:
19:

20

21:
22:
23:

24:

25:
26:
27:
28:
29:
30:
31:

32
33

R AL

: Initialize number of samples N

: Initialize { +— 1.5

Z1 <+ Draw N samples from N'(0,1)

Z; + Draw N samples from N (0,1)

: random < Draw N samples from /(0,1)
: fori<1to N do

xbyli] <= Zo[i] = { x Z4
xp1li] < L

1+exp(xby [E})b-i-l[e}](%f)(xbz [
. explx 1
xpali] < 1+exp(xbﬁi])iexp(xbz [i])

if random([i] < xp;i] then
X[i] « “C”
else if random[i] < xp;[i] + xp2[i] then
X[i] + “A”
else
X[i] + “B”
end if
end for
random?2 <— Draw N samples from ¢/ (0, 1)
: fori < 1to N do
ybi[i] <= & x Z4[i] x Z,]i]
ybai] = exp(Z2]i]) + ¢ x Zy[i]
yPl & et rep

. exp(ybi[i])
]/Pz[l] A 1+exp(ybﬁi}y)-il-exp(ybz[i])

if random?2[i] < yp1[i] then
Y[i] + “X”

else if random?2[i] < yp1[i] + yp2[i] then
Y[i] « “Y”

else
Y[i] < “Z”

end if

: end for

: return {Z1, 725, X, Y}

xby[i] < Za[i] + C % Zu]i] % Za[i] + ¢ x Z4]i]

Appendix C. Pseudocode for Multivariate Distributions Generating Functions for
Continuous Data

Pseudo code for R functions generating data from multivariate continuous distributions.

Algorithm A8 Normal Data

: Initialize number of samples N

Z1 <+ Draw N samples from N'(0,1)

Zp + Draw N samples from N (0,1)

X < Draw N samples from NV (Z; + Z;,1)
: Y < Draw N samples from N (Z; + Z,,1)
. return {Z1,7,, X, Y}

Algorithms 2024, 17, 323 21 of 22

Algorithm A9 Nonlinear Normal Data

Initialize number of samples N

Z1 + Draw N samples from N (0,1)

Zp + Draw N samples from N (0,1)

X < Compute exp(Z; x Zp) and add normal noise
Y < Compute Z; x Z; and add normal noise
return {Zy,7,,X,Y}

AN

Algorithm A10 Uniform Noise Data

1: Initialize number of samples N

2: Zy,Z3 < Draw N samples from N(0,1)

3: X < Compute Z1 + Z» + Z1 X Z; and add uniform noise
4

5

: Y « Compute Z; + Z; + Z1 X Zp and add uniform noise
: return {Z1, 725, X, Y}

Algorithm A11 Exponential Noise Data

Initialize number of samples N and rate parameter rate_param
Zy,Z3 < Draw N samples from N (0,1)

X < Compute Z; + Z + Z1 X Zp and add exponential noise
Y < Compute Z; + Z + Z; X Zp and add exponential noise
return {Z,,7Z;,X,Y}

Algorithm A12 Poisson Noise Data

Initialize number of samples N

Z1,Zy + Draw N samples from N (0,1)

X + Compute Z; x Z; and add poisson noise with A =1
Y < Compute Z; X Z; and add poisson noise with A =1
return {er Zz, X, Y}

Algorithm A13 Sinusoidal Data

1: Initialize number of samples N and coefficient a = 1
2: Zy,Z3 < Draw N samples from N(0,1)
3 Z+— 2721+ 72,
4: X + Compute exp(—Z2/2) x sin(a x (2Z; +0.1Z,)) and add noise
5: Y < Compute exp(—Z2/2) x sin(a x (2Z + 0.1Z;)) and add noise
6: return {Z1,7,, X, Y}
References
1. Shah, R.D,; Peters, J. The Hardness of Conditional Independence Testing and the Generalised Covariance Measure. Ann. Stat.
2018, 48, 1514-1538. [CrossRef]
2. Ankan, A.; Wortel, LM.N.; Textor, J. Testing Graphical Causal Models Using the R Package “dagitty”. Curr. Protoc. 2021, 1, e45.
[CrossRef] [PubMed]
3. Pearl, J.; Glymour, M.; Jewell, N.P. Causal Inference in Statistics—A Primer; Wiley: Hoboken, NJ, USA, 2016.
4. Chu, T; Glymour, C.; Scheines, R.; Spirtes, P. A statistical problem for inference to regulatory structure from associations of gene
expression measurements with microarrays. Bioinformatics 2003, 19, 1147-1152. [CrossRef] [PubMed]
5. VanderWeele, TJ.; Ko, Y.A.; Mukherjee, B. Environmental Confounding in Gene-Environment Interaction Studies. Am. .
Epidemiol. 2013, 178, 144-152. [CrossRef] [PubMed]
6. Zhang, K, Peters,].; Janzing, D.; Schélkopf, B. Kernel-based Conditional Independence Test and Application in Causal Discovery.
arXiv 2012, arXiv:1202.3775. [CrossRef]
7. Runge,]. Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information. arXiv 2017,
arXiv:1709.01447. [CrossRef]
8. Taoufik, B.; Rombouts, J.V.; Taamouti, A. Nonparametric Copula-Based Test for Conditional Independence with Applications to

Granger Causality. |. Bus. Econ. Stat. 2012, 30, 275-287.

http://doi.org/10.1214/19-AOS1857
http://dx.doi.org/10.1002/cpz1.45
http://www.ncbi.nlm.nih.gov/pubmed/33592130
http://dx.doi.org/10.1093/bioinformatics/btg011
http://www.ncbi.nlm.nih.gov/pubmed/12801876
http://dx.doi.org/10.1093/aje/kws439
http://www.ncbi.nlm.nih.gov/pubmed/23821317
https://doi.org/10.48550/arXiv.1202.3775
https://doi.org/10.48550/arXiv.1709.01447

Algorithms 2024, 17, 323 22 of 22

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

Petersen, L.; Hansen, N.R. Testing Conditional Independence via Quantile Regression Based Partial Copulas. J. Mach. Learn. Res.
2021, 22, 3280-3326.

Su, L.; Spindler, M. Nonparametric Testing for Asymmetric Information. J. Bus. Econ. Stat. 2013, 31, 208-225. [CrossRef]

Fan, J.; Feng, Y; Xia, L. A projection-based conditional dependence measure with applications to high-dimensional undirected
graphical models. |. Econom. 2020, 218, 119-139. [CrossRef]

Dawid, A.P. Conditional Independence in Statistical Theory. J. R. Stat. Soc. B 1979, 41, 1-31. [CrossRef]

Agresti, A. Categorical Data Analysis; John Wiley and Sons: Hoboken, NJ, USA, 2002.

Scutari, M.; Strimmer, K. Introduction to Graphical Modelling; Springer: New York, NY, USA, 2010.

Baja, A. Performance Metrics in Machine Learning [Complete Guide]. 2023. Available online: https://neptune.ai/blog/
performance-metrics-in-machine-learning-complete-guide (accessed on 16 July 2024).

Collingridge, D.S. A Primer on Quantitized Data Analysis and Permutation Testing. J. Mix. Methods Res. 2013, 7, 81-97. [CrossRef]
Casella, G.; Berger, R.L. Statistical Inference; Cengage: Boston, MA, USA, 2002.

Massey, F.J. The Kolmogorov-Smirnov Test for Goodness of Fit. J. Am. Stat. Assoc. 1951, 46, 68-78. [CrossRef]

Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD "16), San Francisco, CA, USA, 13-17 August 2016; pp. 785-794.
[CrossRef]

Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition,
Montreal, QC, Canada, 14-16 August 1995; Volume 1, pp. 278-282.

Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision
tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146-3154.

Dorogush, A.V,; Ershov, V.; Gulin, A. CatBoost: Gradient boosting with categorical features support. arXiv 2018, arXiv:1810.11363.
[CrossRef]

Chen, T.; He, T.; Benesty, M.; Khotilovich, V.; Tang, Y.; Cho, H.; Chen, K.; Mitchell, R.; Cano, I.; Zhou, T.; et al. XGBoost: Extreme
Gradient Boosting; R Package Version 1.7.6.1; 2023. Available online: https:/ /CRAN.R-project.org/package=xgboost (accessed on
19 July 2024). [CrossRef]

Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 2008, 28, 1-26. [CrossRef]

Peters, J.; Shah, R.D. GeneralisedCovarianceMeasure: Test for Conditional Independence Based on the Generalized Covariance Measure
(GCM); R Package Version 0.2.0; 2022. Available online: https://CRAN.R-project.org/package=GeneralisedCovarianceMeasure
(accessed on 19 July 2024). [CrossRef]

Heinze-Deml, C.; Peters, J.; Meinshausen, N. Invariant Causal Prediction for Nonlinear Models. arXiv 2017, arXiv:1706.08576.
[CrossRef]

Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; ISBN 0-387-95457-0.
Loy, A.; Follett, L.; Hofmann, H. Variations of Q-Q Plots—The Power of our Eyes! arXiv 2015, arXiv:1503.02098. [CrossRef]
Buja, A.; Cook, D.; Hofmann, H.; Lawrence, M.; Lee, E.K.; Swayne, D.F.; Wickham, H. Statistical inference for exploratory data
analysis and model diagnostics. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2009, 367, 4361-4383. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/07350015.2012.755127
http://dx.doi.org/10.1016/j.jeconom.2019.12.016
http://dx.doi.org/10.1111/j.2517-6161.1979.tb01052.x
https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide
https://neptune.ai/blog/performance-metrics-in-machine-learning-complete-guide
http://dx.doi.org/10.1177/1558689812454457
http://dx.doi.org/10.1080/01621459.1951.10500769
http://dx.doi.org/10.1145/2939672.2939785
https://doi.org/10.48550/arXiv.1810.11363
https://CRAN.R-project.org/package=xgboost
http://dx.doi.org/10.32614/CRAN.package.xgboost
http://dx.doi.org/10.18637/jss.v028.i05
https://CRAN.R-project.org/package=GeneralisedCovarianceMeasure
http://dx.doi.org/10.32614/CRAN.package.GeneralisedCovarianceMeasure
https://doi.org/10.48550/arXiv.1706.08576
https://doi.org/10.48550/arXiv.1503.02098
http://dx.doi.org/10.1098/rsta.2009.0120

	Introduction
	Computational Testing with Categorical Variables
	Establishing a Null Distribution by MCCV
	Calculating p-Values
	Choice of Classification Model and Performance Metric

	Simulation Setup
	Results
	Illustrative Example
	Testing with One p-Value
	Assessing with p-Value Distribution

	Discussion
	Assumptions and Limitations
	Strengths
	Further Research

	Conclusions
	Testing with Continous Data
	Pseudocode for Multivariate Distributions Generating Functions for Categorical Data
	Pseudocode for Multivariate Distributions Generating Functions for Continuous Data
	References

