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Abstract
Biofluorescence in echinoderms is largely unexplored, and even though the green sea urchin
Strongylocentrotus droebachiensis is a well-studied species, the presence and/or function of
fluorescence remains very poorly understood.Hyperspectral imagingwas conducted on adult sea
urchins (N= 380)while fluorospectrometric analysis was conducted on sea urchin coelomic fluid
(N= 30). Fluorescence was documented in both the spines and coelomicfluid of S. droebachiensis.
Intact spines exhibited a low intensity green emission (∼550–600 nm), while broken spines averaged a
high emission peak in the green spectrum (∼580 nm). Sea urchins produce a red exudate with a
pronounced emission peak (∼680 nm)with a shoulder peak (∼730 nm). The sampled coelomicfluid
exhibited high variability, with amajority exhibiting a low-level green fluorescence while pronounced
emission peaks (N= 5)were found in the red spectrum (∼680 nm). The complex fluorescence
produced by S. droebachiensiswarrants further investigation on its applicability formonitoringwelfare
of sea urchins in aquaculture facilities.

1. Introduction

Marine organisms produce biofluorescence through
the uptake of photons from the spectrally restricted
(blue-shifted) environment and emit a lower, less
energetic wavelength light via fluorochromes present
in their bodies [1]. Several families of invertebrates
have been documented producing biofluorescence,
with the two-step production of light in hydrozoan
medusa Aequorea Victoria perhaps the most well-
known. The chemiluminescent protein aequorin
emits blue light (470 nm) in response to calcium ion
bonding, which is subsequently reemitted by the
Green Fluorescent Protein (GFP) as a green fluores-
cence (508 nm) [2–4]. Biofluorescence in echinoderms
is largely unexplored and even though Strongylocen-
trotus droebachiensis is a well-studied species, the
presence and/or function of fluorescence remains
very poorly understood.

The green sea urchin S. droebachiensis is a com-
mercially valued echinoid within the circumpolar

northern hemisphere [5]. The biomass of S. droe-
bachiensis along the Norwegian coastline is estimated
to be 80 billion individual animals/56,000 tons [6].
The poor quality of roe from wild caught urchins in
Norway means there is a need for development of
echinoculture methods in aquaculture facilities that
can enhance the roe quantity and quality and ensure
consistent quality for market consumption. An
important limiting factor in echinoculture is the lack
of background data and associated diagnostic techni-
ques for monitoring their health and welfare. Clinical
disease in sea urchins is poorly understood [7–9].
Echinoderms such as S. droebachiensis are susceptible
to acute and chronic infections by microbial patho-
gens and parasitic nematodes [10]. In the northwest
Atlantic, periodic mass mortalities caused by Para-
moeba invadens can have impact on populations
[10, 11]. Disease outbreaks and mass mortalities
amongst wild echinoids are increasing over the last few
decades [9, 12, 13]. In addition, there is very limited
literature on how stress is manifested in sea urchin
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physiology and how such stress could be measured
accurately within echinoderms. As aquaculture opera-
tions such as capture and captive holding are known to
expose organisms to both acute and chronic stress
[14], biological functions such as somatic growth and
maintenance [15], reproduction [16], and immune
response [17] typically suffer as the organisms’ phy-
siology reallocate resources to stress adaptation. Suc-
cessfully monitoring sea urchin health and welfare is
vital for future aquaculture activities as sea urchins are
prone to sudden mortality events in aquaculture. Our
study aims to evaluate biofluorescence in S. droe-
bachiensis within a controlled setting and whether
such fluorescence can be considered a dynamic pro-
cess that can be monitored through hyperspectral or
fluorospectroscopy technology as a non-invasive
means of measuring the physiological status of
S. droebachiensis

2.Materials andmethods

Green sea urchins were collected in Kvalsund, Nor-
way, (69° 45′ 16.5312′ N, 19° 2′ 2.0904′ E) between
10–12/2022 (figure 1). Urchins were collected by free
divers in net bags and placed in a seawater filled
container (1,000 liters) within minutes of being
removed from seawater for transport to the NOFIMA
laboratory facilities (Tromsø, Norway). A total of 380
urchins were scanned on arrival at the facility. Of those
animals, a random sample of 30 sea urchins were
sampled for coelomic fluid forfluorospectroscopy.

For sampling, the sea urchins were randomly
assigned a numbered square on a Styrofoam lid for
scanning on a conveyor belt set at 44 mm s−1 to yield
an along track resolution equal to twice the across trac
resolution. The conveyor belt was illuminated by the
G5 XR30 Pro Radion LED lighting (Ecotech Marine
Bethlehem, PA USA) in royal blue (∼445 nm). Hyper-
spectral imaging was taken with the HySpex VNIR-
1800 hyperspectral camera (Norsk Elektro Optikk AS,
Oslo, Norway), with a spectral range from 400 to
1000 nm, a spectral resolution of 5.5 nm, and 1800
spatial pixels. The camera was mounted 1 m above the
conveyor belt, resulting in a field of view of 300 mm.
The spatial resolution across the track was 0.17 mm,
with 1800 pixels across the conveyor belt. The images
were spatially binned in the across track direction to
yield square pixels with a resolution of 0.34 mm.

Red, green, and blue (RGB) photographs for illus-
trative purposes were taken using a digital single lens
reflex (DSLR) camera (D5100, Nikon, USA/Nikon
AF-S 60 mm f/2.8 G IF-ED Micro lens) and a yellow
barrier filter (Tiffen 62DY15 62 mm Deep Yellow 12
Filter). A 20-liter photographic aquarium constructed
of optic white glass with amoveable black acrylic back-
ground was used to take RGB photographs of sea
urchinswithin seawater.

Coelomic fluid (2 ml)was extracted from the peri-
stomal membrane of sea urchins using a 26-gauge
hypodermic needle attached to a sterile syringe (BD
microlance, Eysins, Switzerland). Each syringe was
pre-loaded with 0.5 ml of pre-chilled citrate/EDTA
anticoagulant based on a formula for crustaceans [18])

Figure 1.Green sea urchins Strongylocentrotus droebachiensiswere collected fromKvalsund region ofNorthernNorway.
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[0.45 M NaCl, 0.1 M glucose, 30 mM sodium citrate,
26 mM citric acid, 10 mM EDTA; pH 5.4]. Syringes
containing coelomic fluid were placed on crushed ice
prior to analysis. A Duetta fluorescence and absor-
bance spectrometer (HORIBA Scientific, Kyoto,
Japan) was used to analyze hemolymph samples
placed within a 3.5 ml fluorescence quartz cuvette
(Science Outlet Inc., Weifang, China). The recorded
fluorescence emissions were analyzed within the EZ
Spec Software (HORIBA Scientific, Kyoto, Japan). The
excitation wavelengths from 250 to 350 nm were
recorded and emission wavelengths from 400 to
800 nmwith a 0.5 nm spectral resolution.

Raw data files collected with hyperspectral scan-
ning were radiometrically calibrated with HySpex Rad
v2.5 (Norsk ElektroOptikk, AS, Oslo, Norway) to pro-
duce radiance values in units of Wm sr nm .2 1 1- - - The
radiometrically calibrated data was uploaded for ana-
lysis in Breeze hyperspectral imaging software (Pre-
diktera, Umeå, Sweden) and each sea urchin was
cropped out into a separate image. A 33× 33 grid was
then applied, and each square in the grid was treated as
a sampling point to distinguish different spectral fea-
tures in the sea urchins in a Principal Component
Analysis (PCA)plot.

3. Results

Fluorescence was documented in both the spines and
coelomic fluid of S. droebachiensis (figure 2). Intact
spines exhibited a low intensity green emission
(∼550–600 nm), while broken spines averaged a high
emission peak in the green spectrum (∼580 nm).
Green sea urchins also produce a red exudate with a
pronounced emission peak (∼680 nm)with a shoulder
peak (∼730 nm). A PCA plot of the standard normal

variate (SNV) transformed mean spectra (figure 3)
shows clusters of samples based on their similarity;
strong clustering was detected within the strong green
fluorescence from broken spines, the weakly green
fluorescence from intact spines, and the strong red
fluorescence from exudate.

The sampled coelomic fluid exhibited high varia-
bility, with a majority exhibiting a low-level green
fluorescence while pronounced emission peaks
(N = 5) were found in the red spectrum (∼680 nm)
(figure 4(a)). The variability within the coelomic fluid
can even be observed with the naked eye during sam-
pling (figure 4(b)). Photographs taken for illustrative
purposes that depict fluorescence being produced by
sea urchins can be observedwithinfigure 5.

4.Discussion

S. droebachiensis produces a complex set of fluores-
cence within its anatomy, including a red exudate in
likely response to external factors (i.e., handling). How
this biofluorescence functions within the physiology
of the animal is unknown. However, the documenta-
tion of fluorescence within the larvae of other echinoid
species gives credence to the fact that fluorescence
plays a larger role within echinoderms. Intense fluor-
escence in the larval urchin Clypeaster japonicus with
unpublished data claiming weaker fluorescence emis-
sion in the larval stage of Hemicentrotus pulcherrimus,
Anthocidaris crassispina and Pseudocentrotus depressus
[19]. This same study notes the spines and epidermis
of adult C. japonicus producing a fluorescence emis-
sion without providing the associated data. To the best
of our knowledge, our study is the first to document
multiple states of both external and internal fluores-
cencewithin an echinoderm species.

Figure 2.Results of external hyperspectral analysis of green sea urchins (N= 380). Intact spines exhibited a broad low green emission
(∼550–600 nm) (a), while broken spines averaged a dominant peak in the green spectrum (∼580 nm) (b). A pronounced peak
(∼680 nm) (c)with a shoulder peak (∼730 nm) (d)was documented in a red exudate produced by urchins.
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The variation in the coelomicfluidflorescence docu-
mented during sampling is not surprising. The coelomic
fluid, the echinoderm equivalent of blood, contains a
dense population of immune cells known as coelomo-
cytes [20]. These coelomocytes move about freely in all
coelomic spaces, including the perivisceral coelomic cav-
ities and the water-vascular system [20–22]. Physiologi-
cal studies have investigated fluorescence in S.
droebachienensis coelomocytes. A study conducted on
immune cells known as red spherule cells (RSCs) docu-
mented strong, multi-color autofluorescence that is dis-
tinct from other coelomocytes. The original orange
fluorescence in these RSCs is replaced by green fluores-
cence after a maximum excitation intensity (5–30min)

[23]. Considered as a primary immune cell in sea urch-
ins, RSC concentrations in coelomic fluid escalate with
stressful conditions such as bacterial invasions [23, 24],
migrating towards wounds or infections [23, 25–27].
Having migrated to these zones, the RSCs undergo a
degranulation process that releases bactericidal sub-
stances [23, 28]. As the RSCs are comprised of spherical
red pigmented granules [23, 29], it may be possible that
the sampled coelomic fluids (N= 5)with a pronounced
red spectrum (∼680 nm) emission and the red exudate
released by S. droebachiensis during this project is com-
posedof degranulatedRSCs.

The open water vascular system present in the
green sea urchin may indicate the physio-pathological

Figure 3.PCAplot of SNV-transformedmean spectra from a 33× 33 grid over each sea urchin image. 1: strong green fluorescence
frombroken spines, 2: weakly green fluorescence from intact spines, 3–5: background pixels. 6: strong red fluorescence from exudate.
The t(2) and t(3) are the second and third principal components of the spectra. The color bar represents the point density, where each
point is a square in the grid placed over images.

Figure 4. Fluorospectrometric scans at 420 nmexcitation lighting (a) of coelomic fluid taken fromwild collected sea urchins (N= 30).
The sampled coelomic fluid exhibited high variability, with amajority exhibiting a low-level green fluorescencewhile pronounced
emission peaks (N= 5)were found in the red spectrum (∼680 nm). The variability within the coelomic fluid can even be observed
with the naked eye during sampling (b).
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state of the sea urchin as it is in continuous contact
with internal cells and tissues [20, 30]. As this open
water vascular system circulates within the extremities
of S. droebachiensis such as the spines and epidermis,
the external and internal fluorescence detected during
this study may reflect the physio-pathological state of
the urchin. Welfare standards used to date for sea
urchins are heavily dependent on behavior [9]. Using
behavior for measuring individual well-being is diffi-
cult to assess quantitatively since it varies from time
and with subject [31, 32]. Biofluorescence produced
by S. droebachiensis has been documented in this study
to vary in emission intensity and wavelength within
the coelomic fluid and external anatomy (unbroken
spines, broken spines), as well as the production of
exudate through either fluorospectroscopy or hyper-
spectral imaging technology. The next step with this
research is to understand how this physiological fluor-
escence in S. droebachiensis responds to long-term
captive conditions in aquaculture as well as how acute
stressors that can be experienced in aquaculture con-
ditions such as abrupt temperature changes or out of
water shipping impacts the species’ physiological
fluorescence. As sea urchins do not exhibit externally

visible signs of stress prior to permanent physiological
impact(s), developing technology with this baseline
data to monitor physiological changes will allow hus-
bandry techniques to be developed that mayminimize
both acute and chronic stress within echinoderms in
the aquaculture industry. The complex fluorescence
documented in S. droebachiensis warrants further
investigation on its applicability for monitoring the
welfare of S. droebachiensiswhen in aquaculture.
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