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Diagnosing the cage of covariance to increase understanding and 
robustness of spectroscopic calibration models 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Methods for diagnosing the cage of 
covariance. 

• Testing if covariance structure reduces 
robustness in spectroscopic models. 

• Spectroscopic model sensitivity to 
interfering analytes.  

A B S T R A C T   

When vibrational spectroscopy is used for quantification purposes, multivariate analysis is often used to extract information from covariances between the spectra 
and any given reference values. In complex samples, there is a high risk that the constituents covary with each other. In such scenarios many methods may confuse 
the analytes and use signal from several analytes, rather than just the analyte of interest. While this allows the method to use more signal, and thus have a better 
effective signal-to-noise ratio, it also makes them less robust to changes to the chemical composition in the samples. This effect has been termed the cage of 
covariance. In order to avoid cage of covariance to affect predictive performances, it is highly important to have simple diagnostic tools to analyze and review this 
effect. Therefore, in the present paper, a systematic overview of tools for diagnosing and quantifying the cage of covariance in spectroscopic calibration models is 
provided. A collection of previously published methods with some expansions is provided, as well as two completely new tools: covariance ratio and virtual spiking. 
Practical applications of the tools on three different datasets are also shown.   

1. Introduction 

Vibrational spectroscopy techniques, i.e., Raman-, infrared- and near 
infrared spectroscopy, are used for analysis of major and minor con
stituents in many types of samples. Their advantages include fast and 
non-destructive analysis, limited need for sample preparation, and low 
instrumentation costs, and thereby making them very useful for 

industrial and large-scale use. These spectroscopic techniques are based 
on the vibrational energies of functional groups of an analyte and how 
light interacts with these groups. This leads to the main disadvantage of 
vibrational spectroscopy: signals from different analytes overlap. The 
signal overlap is solved by mathematical and statistical analysis 
methods, i.e., multivariate analysis. When vibrational spectroscopy is 
used for quantification purposes, multivariate analysis is often used to 
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extract information from covariances between the spectra and any given 
reference values. In complex samples, there is a high risk that the con
stituents covary with each other. For instance, in fish muscle samples, 
one will usually see that the main fatty acids of the muscle covary with 
the overall fat contents of the same muscle samples. The result might be 
that spectral calibrations are based on signals that are sensitive to other 
analytes than the analyte of interest (e.g., total fat content instead of a 
fatty acid), since they also provide covarying signals. This challenge has 
earned it’s own term, namely cage of covariance[1–4]. If the spectral 
calibration relies on signals from other constituents, and the covariances 
between sample constituents change, the spectral calibration will fail for 
new samples. The calibration will predict all samples as if they had the 
same covariances as the training set. The aim of this article is to illustrate 
and diagnose the cage of covariance. 

On a historical note, several authors have observed that the problem 
of blindness to cage of covariance issues has spread with the tendency in 
vibrational spectroscopy applications to predict an increasing number of 
properties from the same spectral observations[5,6]. For instance, 
vibrational spectra from different fatty acids are usually very similar, 
which is a problem when the aim is to distinguish between them, but an 
advantage if bulk properties are considered, such as fat content. The 
cage of covariance is likely to occur when signals from other properties 
of the samples than the analyte of interest are stronger than signals from 
the analyte of interest. Eskildsen et al. created an artificial example 
using NIR spectra of aqueous solutions of riboflavin and fructose with 
very high covariance[3]. Due to this covariance, fructose could be 
indirectly modelled even using spectral regions where there is no signal 
from fructose. Similar effects can also occur when the signal from the 
analyte of interest has strong overlap with interferences, making it un
reliable compared to other covarying signals, or when there is large 
overlap between signals from the analyte of interest and a covarying 
property. 

In scenarios where new samples will have the same covariance as in a 
calibration set, the cage of covariance is no problem. This can even 
provide a benefit since the signals from the covarying analytes will also 
contribute to the model performance[7]. In scenarios where new sample 
are expected to have different covariance than the calibration set, e.g. a 
breeding program aimed at changing the composition of milk or any 
given edible tissue, the cage of covariance can be highly detrimental. In 
such a scenario, the deviating samples would be predicted as if they were 
normal. This prevents the calibration from being used for screening or 
analysis. To avoid such problems, the cage of covariance should be 
diagnosed, to determine how big impact it has, what causes it, and how 
much of a problem it will be. 

Eskildsen et al. recently proposed a projection-based method to di
agnose whether indirect covariance structures dominate a calibration 
model. However, in practical and applied vibrational spectroscopy there 
is also a need for simple visualization tools that can provide information 
on the presence of cage of covariance. One example is the covariance 
plot[8], which is a heatmap of all the pairwise correlations between all 
the reference variables in a dataset, thus allowing a quick overview of 
the direct covariances. A second diagnostic tool is analyzing the co
variances by Principal Component Analysis (PCA)[2,3,6], thus also 
providing information on potential indirect covariances in a data set. A 
third tool was used by Rinnan[9], basically building low-covarying 
subsets of a dataset to indicate dependency of indirect relationships. 
While not used as a diagnostic tool, Sandor[10] spiked the samples of 
the calibration set in such a way as to reduce the correlation between 
references. Rinnan[9] commented on this approach by mentioning the 
potential pitfall the addition of constituents may have by inducing ef
fects not normally present. 

The aim of the present paper is to give a systematic overview of tools 
for diagnosing and quantifying the cage of covariance in spectroscopic 
calibration models. We present a collection of previously published 
methods, with some expansions, as well as two completely new tools: 
covariance ratio and virtual spiking. We also show practical applications of 

the tools on three different datasets. 

2. Materials and methods 

2.1. Datasets 

Beef dataset: Twenty-four whole beef striploins (longissimus lum
borum) were sampled from the production line in a Norwegian 
slaughterhouse. They were selected to give a large span in fat content. 
Surface fat and connective tissue were trimmed away according to 
standard procedures. The loins were vacuum packed and stored at 4 ◦C 
for 2 weeks before they were shipped to our lab at Nofima for mea
surements. Two 2 cm thick slices (steaks) were cut from each loin, one 
from each end of the muscle to give differences in fat content. 

NIR spectra were collected from steaks immediately after cutting, 
and a total of 48 steaks were measured. The NIR system used was a 
QVision500 (TOMRA Sorting Solutions, Leuven, Belgium), an industrial 
hyperspectral imaging scanner designed for in-line measurement of fat 
in meat on conveyor belts. The instrument is based on interactance 
measurements in which the light is transmitted into the meat and then 
back scattered to the surface. The optical sampling depth in the beef is 
approximately 10 mm. The steaks were scanned on a moving conveyor 
belt, and each NIR measurement took about 0.1 sec. The scanner was 
placed 30 cm above the conveyor belt so there was no physical contact 
between samples and the instrument. The scanner collected hyper
spectral images of 15 wavelengths between 760 and 1047 nm with a 
spectral resolution of approximately 20 nm. The imaging capability was 
used mainly to obtain one average spectrum from each sample. Seg
menting the sample from the conveyor belt in the images was done with 
a simple thresholding criterium since the spectral signature of beef was 
very different from the belt. 

After NIR measurements, the steaks were homogenized, and the 
concentrations of fat and iron were determined by low field NMR[11] 
and inductively coupled plasma mass spectrometry (BS EN ISO 
17294–2:2016), respectively. 

Emulsion dataset: The emulsion dataset was obtained from a pre
viously published study[12]. In short, the emulsion system was 
composed of 70 different mixtures of a defatted whey protein concen
trate, water, and five different oils, namely refined olive oil, refined 
coconut oil, soy oil, cod-liver oil enriched with polyunsaturated omega-3 
fatty acids, and salmon oil. To span the variation of main constituents 
and fatty acid composition, two different mixture designs were com
bined. A main constituent mixture design was made by choosing 19 
points of a three-component simplex lattice design, spanning a range of 
fat, protein, and water contents that are commonly found in fish and 
meat. Seventy different mixtures of the five pure oils were made ac
cording to a five-component full simplex lattice design. In every one of 
the nineteen main constituent design points, three or four of the oil 
mixtures were placed. These points were chosen to ensure both that: 1) 
the fatty acid composition was varied sufficiently in every design point; 
and 2) that there was no correlation between the main constituents and 
the fatty acid composition. The fatty acid composition of every oil 
mixture was calculated from the fatty acid composition of the five pure 
oils derived from GC analysis. 

Near-infrared spectra of the emulsions were collected in the spectral 
range of 400–2500 nm (32 scans) using a FOSS NIRSystems 6500 
scanning spectrophotometer (Foss NIRSystems Inc., Silver Spring, MD). 
Immediately after homogenization the emulsions were poured into a 
standard 10 mm quartz liquid cuvette (Foss NIRSystems Inc., Silver 
Spring, MD) and measured in the elevator module of the NIR instrument. 
The internal ceramic standard of the instrument was used as a reference. 
All samples were randomized, and two replicate spectra were measured 
for each emulsion. The replicates were measured on two successive days, 
each replication experiment following the same sample preparation 
routine. 

Salmon dataset: The salmon dataset was based on 618 samples of 
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salmon and corresponding Raman spectra used in a genetics study[13]. 
Samples were taken from homogenized salmon filets, and Raman 
spectra were obtained with a Kaiser RamanRXN2™ Multi-channel 
Raman analyzer (Kaiser Optical Systems, Inc., Ann Arbor, MI, USA). 
The spectral acquisition was set to 15 x 4 s, and three replicate mea
surements were made for each sample. The replicate measurements 
were preprocessed with EMSC using a sixth order polynomial[14]. The 
average of the replicate spectra of each sample was used for the further 
analysis with Partial Least Squares regression (PLS). Total fat content 
were extracted from salmon filets samples according to the method 
described by Folch et al[15]. The fatty acid composition was determined 
using the method described by Mason and Waller[16], using a GC-FID 
(gas chromatography – flame ionization detector). 

2.2. Data analysis and diagnostic tools 

All multivariate data analysis, i.e. PLS regression and PCA, including 
data handling covering all diagnostic tools, were performed in MATLAB 
Release 2021a (The MathWorks, Inc, Natick, MA, USA). 

Correlations heatmap: The cage of covariance has previously been 
illustrated by heatmaps of correlations or coefficients of determination 
(R2) between all pairs of response variables[2,8]. These heatmaps 
typically show predictions above and references below the diagonal, 
while the diagonal shows correlations/R2 between references and pre
dictions. The idea is then to compare the correlations below and above 
the diagonal, to check that the covariance structure is not altered be
tween references and predictions. If the covariances are substantially 
higher for predictions, this indicates that we are trapped in a cage of 
covariance. To emphasize this effect, we propose to also plot the dif
ference between the upper and lower triangles of the matrix. Note that a 
large difference is only problematic if the predictive abilities for both 
responses (given in the diagonal) also are high. 

Correlations histogram: As an alternative to the heatmap, we 
propose to evaluate histograms of the pairwise correlations between 
analytes. Predictions and references are plotted as separate bars. With 
this approach, it is also possible to compare cages of covariance of 
several datasets at a time, for instance from different spectroscopic 
techniques or different experiments. 

Explained variance: If the number of analytes is high, the covari
ance pattern may be complex and it can be difficult to assess the cor
relations heatmap directly. The eigenvalues of the correlations heatmap 
(or equivalently explained variance from PCA) can then be a better way 
to evaluate the cage of covariance. The cumulative explained variance 
gives a picture of the underlying dimensionality of the full set of ana
lytes. If the dimensionality is lower for the predictions than the refer
ences, this indicates that we are trapped in a cage of covariance[2]. In 
this article, the references and predictions have been auto-scaled prior to 
the PCA. 

Common and unique regression coefficients: A method for 
assessing how much of the prediction of one analyte (ŷ1 = Xb1) depends 
on the prediction of another analyte (ŷ2 = Xb2) has been presented 
earlier[4,17]. In short, the method splits each regression vector (or 
equivalently predictions) into two orthogonal parts: one that is common 
between the two analytes and one that is unique. The common part of 
the regression coefficients b1 is defined as the orthogonal projection 
onto the regression coefficients for the second model b2: 

b1,common = Pb1, P = b2
(
bT

2 b2
)− 1bT

2 (1)  

Where P is the least squares projection operator. The unique part is 
simply the residuals: 

b1,unique = b1 − b1,common = (I − P)b1 (2)  

The magnitudes of the common and unique parts are then calculated as 
sums of squares of the individual contributions, and b1,common and b1,unique 

may be plotted to inspect which spectral bands that contribute to each 
part. The method assumes that both models are made using the same 
predictors X, i.e. the same samples and preprocessing. 

Covariance ratio: The quantification of common and unique con
tributions presented above is useful for assessing dependencies between 
pairs of analytes but is not so useful if the number of analytes is large. We 
therefore propose a new metric called the covariance ratio (CR), which 
is based on explained variance from PCA. We define the covariance ratio 
as: 

CR =
2
∑ EC

100

N − 1
−

N + 1
N − 1

(3)  

Where EC is a vector with the cumulative explained variance in the auto 
scaled predictions or references, i.e. the total variance explained up to 
given component. For example, the third element of EC is the total 
explained variance for components 1, 2 and 3. The summation is done 
om the cumulative explained variance, over the number of components. 
I.e. the variance of the first component, plus the sum of the variance 
from components one and two, plus the sum of the variance from 
components one to three, and so on.. N is the number of measured 
analytes. EC is the only term related to the covariance. The other terms 
are there to scale the covariance ratio between 0 and 1, to make it easier 
to compare between different datasets and gain an understanding about 
the current dataset. A CR of 0 means that the matrix of response vari
ables has full rank, meaning that there is no cage of covariance. A CR of 
1, on the other hand, means that all response variables are completely 
correlated. 

Virtual spiking: Spiking experiments have previously been used to 
break covariances[1,10]. We propose to use spiking instead to assess the 
covariance. While breaking the covariances is more useful, assessing the 
covariance requires only one spike sample, and the spiking can be done 
virtually. Virtual spiking is useful when it is not possible to do actual 
spiking experiments, but spectra of pure interferants may be found e.g. 
from literature or previous experiments. Spiking works by adding 
increasing proportions of interferant or analyte spectra to a sample 
spectrum and assessing how the predictions are affected by the added 
interferant. The sensitivity to spiking can then be calculated as: 

Sensitivity =
Predictionoriginal spectrum − Predictionspiked spectrum

Concentration of added substance
(4)  

3. Results and discussion 

Beef dataset: In a previous report on in-line determination of fat 
marbling in beef loins by NIR spectroscopy, it was noticed that the 
concentration of muscle protein myoglobin tended to affect the NIR 
predictions of fat[18]. It was suspected a covariance between fat and 
myoglobin (which can be quantified as the amount of iron). There is a 
natural reason for this covariance: both fat content and iron content tend 
to increase with age of the animal. The beef dataset illustrates a situation 
with a simple covariance structure: myoglobin covaries with fat. Fig. 1 
shows spectra of lean meat (less than 2 % fat), myoglobin (in deoxy 
state) and fat. Fig. 2 visualizes the covariance between fat and iron (i.e. 
myoglobin) in our data set. 

The myoglobin spectrum overlaps with the main absorption peak for 
fat. The two spectra are quite different in shape, but the myoglobin has a 
much stronger signal in the wavelength range used here. The main ab
sorption peak at about 980 nm in lean meat originates from water. 

Fig. 3 shows the correlations heatmaps for fat and iron in the beef 
dataset. This is a simple case, with only one correlation. The correlation 
between the predicted values is considerably higher than the correlation 
between the reference values, indicating a clear cage of covariance. A 
decomposition into unique and common regression coefficients (using 2 
PLS components) shows that 71 % of the variation is unique for fat. By 
extension, 29 % of the fat predictions come from myoglobin rather than 
fat, which is a significant effect of cage of covariance. To test the cage of 
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covariance of the meat dataset using the spiking approach, one sample 
was virtually modified with the fat spectrum and the myoglobin spec
trum separately. All the spectra were normalized with SNV, but the 
added fat and myoglobin spectra were adjusted to 1 % of the intensity of 

the sample spectrum. Fig. 4 shows the R2 of the cross-validated fat model 
as well as the model’s sensitivity, as defined in (4), to fat and myoglobin, 
depending on the number of components. 

The model performance (R2) for fat changes very little above two 
components, while the model change in prediction with a 1 % increase 
in fat changes from 0.6 % to 0.9 % when the number of components is 
increased to four. Due to the cage of covariance, the fat model is also 
sensitive to an increase in myoglobin concentration, leading to higher 
fat predictions. So, in total, the performance of the fat model does not 
increase with increased number of PLSR components. Spiking and esti
mation of the sensitivity can be used to determine the optimal number of 
components when robustness is important. Overall, reducing the 
complexity of the cage of covariance to a single number can help with 
understanding the dataset. Sensitivity to spiking, either normal or vir
tual, and covariance ratio do this. 

Emulsion dataset: The emulsion dataset illustrates a medium level 
of complexity for the cage of covariance. It has two groups or levels of 
covarying analytes. The first group is the gross component level (i.e., 
water, fat, and protein), and the second is the fatty acid composition: 
saturated fatty acids (SAT), mono-unsaturated fatty acids (MUFA), and 
poly-unsaturated fatty acids (PUFA). Both groups covary due to closure 
(i.e., the components sum up to 100 %). 

Fig. 5 shows an example NIR spectrum from the dataset. Fig. 6 shows 
the correlations heatmaps of all analytes calibrated for in the dataset. 
The two groups have large internal covariance, both in the references 
and in the predictions, but there is no covariance between the groups. 
Within the first group (water, fat, and protein) the covariances between 

Fig. 1. Normalized NIR spectra of lean meat, fat, and deoxy-myoglobin.  

Fig. 2. The fat and iron contents in the beef dataset, plotted against each other 
(R = 0.8). 

Fig. 3. The correlations heatmap for the beef dataset. The left figure shows the correlations between the predictions above the diagonal and the correlations between 
the references below the diagonal. The right figure shows the squared differences between the R values from the predictions and the references. The diagonal always 
shows the R2 values between the predictions and the references. 

Fig. 4. The fat model’s performance for and sensitivity to fat, as well as its 
sensitivity to myoglobin. 
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the references and between the predictions are virtually the same. In the 
second group (SAT, MUFA, PUFA), the covariances in the predictions are 
higher than the covariances in the references. The most notable is that 
the correlation between SAT and PUFA is much stronger for the pre
dictions (-0.71 compared to − 0.62). This is a clear indication of cage of 
covariance. The differences between the correlations are also plotted. 
This is to highlight pairs with potentially strong cage of covariance. Pairs 
with stronger correlations between the references than between the 
predictions are set to 0 since they are not likely to be problematic. 

When decomposing the common and unique parts of SAT and PUFA 
regression coefficients, the common part is 37 % i.e., 37 % of the in
formation used by the two models is the same, indicating a cage of 
covariance between SAT and PUFA. When doing the same for Fat and 
SAT/PUFA, the common part is 0.1/0.4 %, meaning that there is no cage 
of covariance with the fat model. If SAT is increased, while PUFA is kept 
constant, the predictions for PUFA will still decrease, and vice versa. 
Both the subgroups have covariance from closure. As long as no new 
constituents are added, the closure covariance will not be a problem. In 
the subgroup of fatty acids, the constituents have very similar spectral 
profiles. This causes the covariances in the predictions to be different 
than the covariances in the references. This will result in erroneous 
predictions, particularly when the fatty acid composition is outside the 
concentration range of the calibration set. 

Fig. 7 shows the correlations histogram of the emulsion dataset. This 

is a histogram of all correlations between pairs of analytes, and the plot 
can be useful for simplifying the correlations heatmap. If multiple 
datasets with many analytes of interest are to be compared, the corre
lations heatmap quickly becomes unwieldy, while multiple histograms 
can easily be compared, and if there are any correlations that stand out, 
they can be further investigated. Likewise, the differences in correlations 
can also be plotted in a histogram, to quickly assess whether there is any 
potentially problematic cage of covariance. The correlations histogram 
for the emulsion dataset has two separate sets of reference pairs. One set 
has correlations between − 0.4 and − 1. These are correlations within the 
groups of covarying analytes, i.e. between the gross components (fat, 
protein, and water) and between the fatty acids (SAT, MUFA, and 
PUFA). The second set has covariances around 0. These are the corre
lations between the groups with closure, as well as a few weak co
variances within the groups e.g., between fat and protein. 

Fig. 8 shows the explained variance from a PCA of reference and 
predicted values. The area between the black line and the line for the 
references or the predictions represent how much of the variance is 
covariance between the analytes. If the covariance is high, there might 
be cage of covariance. If the lines for predictions and references are well 
separated, there is definitely cage of covariance. Because there are two 
groups with closure, four PCA components are sufficient to explain the 
six properties. Because of the two groups with closure, we also expect at 

Fig. 5. An NIR-spectrum from the emulsion dataset.  

Fig. 6. The correlations heatmaps of the emulsion dataset.  

Fig. 7. The correlations histogram of the emulsion dataset.  
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least 33 % covariance. With closure, we need one less variable to 
describe the possible variance of the system. Since we have two groups 
of three, 33 % of the variance must be covariance to have closure. The 
covariance ratios were calculated to 35 % for the reference and 36 % for 
the predictions, meaning that 35 and 36 % of the variance consists of 
covariance. The correlation between MUFA and PUFA are the reason 
why the covariance ratios are above the expected 33 %. 

Salmon dataset: The salmon dataset illustrates a situation with a 
complex cage of covariance. Fig. 9 shows a Raman spectrum from one of 
the samples. The dataset has many measured properties: specific fatty 
acids, the fat content, and a few aggregate fat properties such as iodine 
value and groups of fatty acids. Fig. 10 shows the correlation difference 
heatmap for the salmon dataset. Compared to the other two datasets, the 
predictions and references here have a large difference in correlations, 
and many pairs of analytes have higher correlations between the pre
dictions than the references. Since the spectral properties of the fatty 
acids are so similar, the models cannot completely resolve them, 
creating a strong cage of covariance effect in the spectral models. This is 
illustrated in the explained variance plot of Fig. 11 where we can see a 
high level of covariance in both references and predictions. Only 13 
variables are used in this plot, corresponding to the number of fatty acids 

Fig. 8. The explained variances from PCA of the references and predicted 
values from the emulsion dataset. 

Fig. 9. Raman spectrum from one sample in the salmon dataset.  

Fig. 10. The correlations heatmap and the correlations difference heatmap for 
the salmon dataset. 

Fig. 11. The explained variance of the references and the predictions.  
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included in the data set. The other 6 parameters provided in Fig. 10 are 
derived from the 13 fatty acids (e.g., SAT is the sum of all saturated fatty 
acids), and it is therefore not meaningful to include them when assessing 
the cage of covariance. The covariance ratio is 64 % for the references, 
but 71 % for the Raman predictions. Compared to the emulsion dataset, 
the salmon dataset has a much higher level of cage of covariance. 

Fatty acid contents in muscle or tissue can in principle be provided in 
two ways: (1) as proportional contents (i.e., in percentage of total fat 
contents); and (2) as absolute contents (i.e., in percentage of total 
sample contents). Fig. 12 shows the correlations histogram for the 
salmon dataset. We show the correlations for references and predicted 
values, both when they are expressed as percentage of fat and as per
centage of sample, respectively. When the percentage of sample is used, 
the correlations are very high, above 0.5, because the contents of most 
fatty acids covary with the total fat content. When the concentrations 
are expressed as % of total fat, the correlations are evenly distributed 
between − 1 and 1. It is therefore very important to be aware of this 
distinct difference. Except when explicitly stated otherwise, all figures 
and numbers in this article uses percentages of fat for all fatty acids. 

Fig. 13 shows the results of the virtual spiking method for the salmon 
dataset. The analyte tested was DHA, virtually spiked with 1 % of the 
DHA Raman spectrum. The sensitivity for DHA is quite low for all the 
models, because of the high covariances with the other fatty acids. The 
sensitivity reaches a maximum at four PLS components. With more 
components, the sensitivity decreases. In contrast, the model accuracy 
increases as more components are used. When the model has reached the 
highest accuracy, the sensitivity has decreased from 0.9 to 0.5. It is 
therefore clear that components five to seven model signals from other 
fatty acids. Since DHA covaries with the other fatty acids, the model can 
use information from them to increase the accuracy for DHA. One of 
these other fatty acids is EPA, and in the data set DHA and EPA are well 
correlated. The DHA model can then use signal from DHA and EPA to 
predict DHA. Fig. 10 shows that the predictions of EPA and DHA have a 
correlation that is 0.2 higher than the correlation between the refer
ences. Since the model is now using signal from other compounds, the 
sensitivity for DHA decreases. This is a good indicator of the potential 
benefit of the cage of covariance. The more signal that can be used, the 
more accurate the model can be, at the price of decreased robustness. 
This also poses an important question for application development in 
spectroscopy: Is the increased accuracy worth lower robustness? 

The signal strength and quality can be important with respect to the 
cage of covariance. The fatty acids have very similar signals. As an 
example, the Raman spectra of EPA and DHA have only 0.13 % 

difference in the signal in the region used covered by this dataset. That is 
the reason why the emulsion dataset has higher correlations between 
SAT and PUFA in the predictions than in the references, while the fat, 
protein, and water subgroup have similar correlations in the predictions 
and the references. The small differences between the fatty acids should 
result in poor models, and in one sense it does: the models use signal 
from multiple fatty acids to predict a single fatty acid. This results in 
improved performance when samples with the same covariance are 
used. The price is instead lower robustness: when samples with different 
covariances are used, the performance is decreased. 

4. General discussion 

The cage of covariance and the tools presented here are ultimately 
about understanding the data. Understanding the data will allow the 
user to make the trade-offs needed in applications of spectroscopy. 
Robustness and accuracy are important and common parameters. By 
understanding the covariances that are built into the spectroscopic ap
plications, the user can assess the robustness, identify sample constitu
ents that models are not robust against, and make more educated 
decisions regarding the accuracy. 

The tools evaluated in this study are expected to simplify the way to 
make these educated decisions. The cage of covariance can be viewed 
with other methods, and with different perspectives, but we have chosen 
to illustrate the ones we found most useful, and easiest to communicate 
in text. For instance, a scatter plot of covariances can be very useful in 
complex scenario, but to gain the full value the covariance pairs need to 
be labeled. The salmon case is such a scenario. With the 78 covariance 
pairs the scatter plot becomes very messy. On a computer, this can be 
circumvented by zooming, and highlighting relevant points. In a paper, 
the labels become limiting. Since the covariance heatmap contains the 
same information, while being easier to read, we have chosen to omit the 
scatter plot in spite of its usefulness. 

To summarize, testing the covariance with spiking can be useful if 
the other analytes in the data set are not known, or are too cumbersome 
to measure. It works by comparing the predictions for a sample with and 
without extra analyte spiked in. If all relevant analytes are known and 
measured, other methods are available. The correlation difference 
heatmap plots all the correlations between pairs of analytes, and the 
differences between the correlations among the predictions and refer
ences. This is useful for identifying specific pairs of analytes with 
problematic cage of covariance. The correlations histogram simplifies 
the correlations heatmap by only displaying the correlations as a his
togram. This helps in quickly determining if there is a potential problem 
and allows for direct comparisons between different datasets or 
methods. Comparing correlation difference heatmaps between multiple 

Fig. 12. The correlations histogram for the salmon dataset, both for the fatty 
acids measured as percentage of the fat and as percentage of the sample. 

Fig. 13. The spiking method applied on the salmon dataset for DHA.  
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datasets or methods can be unwieldy, while comparing multiple histo
grams in a single figure is simple. To cover more complex covariance 
structures, the explained variance of the covariance is used. The vari
ance of the references and predictions explained by PCA simplifies the 
diagnostics of cage of covariance, which can be useful in complex sce
narios. To further simplify diagnosis of the cage of covariance, it can be 
represented by a single number. Both the covariance ratio and the 
common regression coefficients do this, to help with reporting and 
comparing different systems. The common regression coefficients are 
applied on the regression coefficients but assumes that the same samples 
and spectral preprocessing methods are used. The covariance ratio only 
requires that the same samples are used, but they can be from the test 
set, the training set, or any other sample set. In case there is significant 
cage of covariance, there are solutions available. Some of them have 
been referenced but not discussed here, since the focus of this article is 
on the diagnosis of the cage of covariance. 

5. Conclusions 

The cage of covariance indicates how sensitive a model is to changes 
in sample composition, and by extension the model’s robustness. For 
many applications, diagnosing, illustrating, and assessing the cage of 
covariance are important parts of the model development and valida
tion. This article contains some selected tools for this, that should be 
used based on the needs and resources available. Tools like this will help 
understanding the samples, and the spectroscopic models used, and their 
limitations. Understanding the chemical and spectroscopic system is 
vital for finding and avoiding systematic prediction errors in spectros
copy. Ultimately, the understanding of the system is necessary for 
creating robust spectroscopic models. 
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