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Recent research has revealed the significant impact of novel feed ingredients on

fish gut microbiota, affecting both the immune status and digestive performance.

As a result, analyzing the microbiota modulatory capabilities may be a useful

method for assessing the potential functionality of novel ingredients. Therefore,

this study aimed to evaluate the effects of dietary polychaete meal (PM) from

Alitta virens on the autochthonous and allochthonous gut microbiota of

European seabass (Dicentrarchus labrax). Two diets were compared: a control

diet with 25% fishmeal (FM) and a diet replacing 40% of fishmeal with PM, in a 13-

week feeding trial with juvenile fish (initial weight of 14.5 ± 1.0 g). The feed,

digesta, and mucosa-associated microbial communities in fish intestines were

analyzed using high-throughput sequencing of the 16S rRNA gene on the

Illumina MiSeq platform. The results of feed microbiota analyses showed that

the PM10 feed exhibited a higher microbial diversity than the FM diet. However,

these feed-associated microbiota differences were not mirrored in the

composition of digesta and mucosal communities. Regardless of the diet, the

digesta samples consistently exhibited higher species richness and diversity than

the mucosa samples. Overall, digesta samples were characterized by a higher

abundance of Firmicutes in PM-fed fish. In contrast, at the gut mucosa level, the

relative abundances of Mycobacterium, Taeseokella and Clostridium genera

were lower in the group fed the PM10 diet. Significant differences in metabolic

pathways were also observed between the FM and PM10 groups in both mucosa

and digesta samples. In particular, the mucosal pathways of caffeine metabolism,

phenylalanine metabolism, and sulfur relay system were significantly altered by

PM inclusion. The same trend was observed in the digesta valine, leucine, and

isoleucine degradation and secretion pathways. These findings highlight the

potential of PM as an alternative functional ingredient in aquafeeds with

microbiota modulatory properties that should be further explored in the future.
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1 Introduction

Population growth and increasing demand for high-quality fish

products pose a current challenge to the aquaculture sector, urging

the identification of sustainable practices to meet food demand. The

high dependence on fishmeal as the main protein source in aquafeeds

has contributed to the overexploitation of marine resources and

posed unbearable fluctuations in feed production costs (1, 2). In

recent years, the adoption of good management practices has

decreased the volume of unsustainable catches targeted for fishmeal

production (from 30 Mt to 16 Mt) (3), resulting in a lower supply of

marine-harvested ingredients for aquafeed production. Coupled with

the rapid growth of the aquaculture industry, the limited supply of

fishmeal has forced producers to rely on the use of alternative

ingredients in the diets of farmed fish. This has led the feed

industry to explore multiple alternative protein sources that often

affect fish physiology and performance (4).

Since the suitability and sustainability of vegetable ingredients

in diets for carnivorous fish have been increasingly questioned (5),

other resources need to be explored, including ingredients that do

not compete directly with the human food supply. Low-trophic

marine species, such as polychaetes, have a well-balanced

nutritional profile with high protein content and the ability to

accumulate high levels of w3 long-chain polyunsaturated fatty acids

(LC-PUFA) and have shown potential to be included in aquafeeds

(6–8). Moreover, marine polychaetes have been reported as a

valuable source of bioactive compounds, including chitin and

chitosan, which have been described as potential functional

ingredients through their antimicrobial and anti-inflammatory

actions and modulation of fish gut microbial communities (9).

A functional ingredient or additive refers to a feed component that

goes beyond its nutrient effects and exerts physiological effects, thereby

influencing one or more functions within an organism and

contributing to improved performance, health, or enhanced disease

resistance (10). These effects are frequently associated with changes in

the gut bacterial communities (11). These communities are important

in fish and contribute to host metabolism, nutrition, immune

regulation, and disease resistance by preventing the colonization of

opportunistic pathogens (12). Despite the lack of the knowledge on

mammals and fish microbiota, over the last few years, many efforts

have been made to bridge the gap (13–16) Research on fish microbiota

has been strongly encouraged by the aquafeed industry, which has

advantages in terms of new probiotics derived from the microbiota and

the corresponding prebiotics. Coupled with the aim of reducing

fishmeal incorporation in aquafeeds, various studies have

demonstrated the impact of fishmeal replacement by other protein

sources on the gut microbiota of fish (13, 17). For instance, a study on

the partial replacement of fishmeal with a mix of poultry by-product

meal and plant proteins indicated that the ratio between animal and

vegetable proteins was a determinant of the gut microbiota profile in

rainbow trout (Oncorhynchus mykiss). In particular, Firmicutes and

Proteobacteria were discriminatory for diet type in fish with dietary

plant ingredients, favoring a higher Firmicutes: Proteobacteria ratio

than dietary land animal proteins (18, 19). Recently, low-trophic

organisms have emerged as novel alternative ingredients in
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aquafeeds. For example, insects are characterized by high nutritional

value, low production costs, and potentially lower environmental

impact (20, 21). Their use in aquafeeds has yielded remarkable

results as potential substitutes of fishmeal (22–31). with some

remaining challenges to be met in terms of matching the

performance of high quality fish meal (32). Insects contain a

significant amount of chitin, which is an indigestible polysaccharide.

It is considered a functional ingredient with a prebiotic action, which

usually drives an increasing abundance of beneficial lactic acid bacteria

and bacilli (17). In contrast, the impact of polychaetes as raw materials

for aquafeeds on fish gut microbiota is yet to be explored. Therefore,

there is no evidence for their possible modulatory effects on the gut

microbial communities of cultured fish. Accordingly, this study aimed

to assess the potential of polychaete meal (PM) obtained from Alitta

virens as an alternative functional ingredient to replace 10% fishmeal in

diets for European seabass diets by evaluating fish growth performance

and gut microbiota.
2 Materials and methods

2.1 Ethical statement

The experimental trials in this study were performed by

accredited scientists in laboratory animal science by the

Portuguese Veterinary Authority (1005/92, DGAV-Portugal,

following FELASA category C recommendations) and conducted

according to Directive 2010/63/EU of the European Parliament and

Council on the Protection of Animals for Scientific Purposes.
2.2 Ingredients and experimental diets

Two isoproteic (51% dry matter, DM), isolipidic (17% DM), and

isoenergetic (22 kJ g-1 DM) diets were formulated and extruded by

Nofima (Norway) with a pellet size of 2.0 mm. A control diet (FM) was

formulated to contain 25% of fishmeal and compared to a diet

containing 10% spray-dried PM (Alitta virens, Topsy Baits), at the

expense of 40% fishmeal (PM10). The proximate composition of the

ingredient and experimental diets is shown in Table 1. Further

comprehensive characterization of these elements was performed

in (33).
TABLE 1 Ingredients and proximate composition of the
experimental diets.

Ingredient (%) PM FM PM10

Fishmeal LT a - 25.0 15.0

Polychaete meal b - 0.0 10.0

Wheat gluten c - 5.04 6.04

Wheat d - 6.0 5.2

Fish Oil e - 9.2 10.0

Rapeseed oil f - 2.8 1.3

(Continued)
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2.3 Experimental conditions and
feeding trial

Juvenile European seabass (Dicentrarchus labrax) were

transported from Aquicultura Balear SAU, Spain to the Fish
Frontiers in Immunology 03
Culture Experimental Unit of CIIMAR, Portugal. For a 2-week

period, the fish were acclimated to the experimental conditions

while being fed a commercial diet (Aquasoja, Sorgal S.A.; 50% crude

protein, 20% crude fat, in dry matter basis). Before the start of the

trial, the fish were anesthetized and individually weighed (14.5 ± 1.0

g). Homogeneous groups of 40 fish were then distributed into 6

fiberglass tanks of 160-L in a saltwater re-circulation system.

The system maintained appropriate levels of salinity (35‰),

temperature (22.0 ± 0.5°C), dissolved oxygen, pH, and

nitrogenous compounds throughout the trial, as recommended

for this species (Blancheton, 2000). Each diet was randomly

assigned to triplicate groups of fish, which were fed to apparent

satiation three times daily (9, 12:30, and 16:30) using automatic

feeders for 13 weeks.
2.4 Sample collection

At the end of the trial and 5 h after the last meal, all fish were

lightly anesthetized for individual weighing (g). Then, six fish per

tank were sacrificed using a sharp blow on the head for intestinal

microbiota sampling. Before dissection, the external surface of each

fish was wiped with 70% ethanol to avoid any accidental

contamination from external body surface microbes. The intestine

(excluding pyloric ceca) was aseptically removed with alcohol-

disinfected instruments from each fish, and the digesta was

collected by squeezing into sterile 2 mL tubes containing 800 mL
RNAlater. The autochthonous intestinal bacteria were collected by

scraping the intestinal mucosa with a sterile blade and placed in a

sterile 2 mL tube with 300 mL of RNAlater. Both digesta and mucosa

were pooled into three groups of two fish per tank (n = 9 per dietary

treatment). Additionally, 10 g of each feed was collected for analysis

of the feed microbiota. All the samples were stored at room

temperature until DNA extraction.
2.5 Microbiota analysis

2.5.1 Bacterial DNA extraction
The DNA extraction procedure has been described by (34).

Briefly, DNA was extracted from 300 mg of digesta (nine samples/

group), 200 µL of mucosal bacterial suspension (six samples/group),

and 200 mg of each feed (three aliquots/feed). The DNeasy

PowerSoil® Pro Kit (Qiagen, Milan, Italy) was used for extraction

according to the manufacturer’s instructions. The concentration

and purity of DNA were spectrophotometrically measured using

a NanoDrop™ 2000 spectrophotometer (Thermo Scientific,

Milan, Italy). Bacterial DNA was stored at -20°C until NGS

library preparation.

2.5.2 Illumina NGS library preparation
The 16S amplicon sequencing library was prepared using the

GalSeq srl sequencing service (Milan, Italy) according to the Illumina

protocol “16S Metagenomic Sequencing Library Preparation for

Illumina MiSeq System” (#15044223 rev. B). The composition of the

microbial communities was determined by sequence analysis of the
TABLE 1 Continued

Ingredient (%) PM FM PM10

Soy Protein Concentrate g - 20.8 20.8

Horse beans h - 14.0 14.0

Corn gluten i - 7.50 7.50

Soybean meal j - 5.0 5.0

Rapeseed lecithin k - 0.5 0.5

Choline chloridel - 0.5 0.5

Stay-Cl - 0.05 0.05

Vitamin mix l - 0.5 0.5

Mineral mix l - 0.5 0.5

NaH2PO4
l - 1.5 1.5

Lys (99%)l - 0.50 0.55

Methionine (99%)l - 0.20 0.25

Yttrium oxidem - 0.01 0.01

H2O - 0.40 0.80

Proximate composition

Dry matter (%) 95.1 91.1 89.8

Ash (% DM) 16.4 8.9 8.5

Crude Protein (% DM) 65.5 51.8 51.0

Total Lipids (% DM) 10.9 16.6 16.6

Energy (kJ g−1 DM) 20.1 21.9 22.5

EPA+DHA (% DM) 0.8 1.3 1.3

Mineral composition (mg 100 g-1 DM)

Phosphorus - 1545.7 1346.1

Iron - 28.7 29.2

Copper - 1.8 1.9

Manganese - 7.0 6.6

Zinc - 18.8 20.2

Selenium - 0.1 0.1
aPelagia AS, Bergen, Norway.
bRaw material from Topsy baits, Wilhelminadorp, The Netherlands, Processed for the current
trial by Nofima AS, Bergen, Norway.
cTereos SYRAL Belgium N.V., Aalst, Belgium.
dNorgesmøllene AS, Bergen, Norge.
ePelagia AS, Bergen, Norway.
fEMMELEV, Otterup, Denmark.
gCJ Selecta S.A., Araguari MG, Brazil.
hSoufflet, Grand Est, France.
iRoquette Frères, Lestrem, France.
jFiskå Mølle, Etne, Norway.
kBerg + Schmidt, Hamburg, Germany.
lVilomix Norway AS, Hønefoss, Norway.
mVilomix Norway AS, Hønefoss, Norway.
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hypervariable region V4 16S rRNA gene, amplified using the primers

515F: 5′-GTGYCAGCMGCCGCGGTAA-3’ and 806R: 5′-
GGACTACNVGGTWTCTAAT-3′. The libraries were sequenced on

a NovaSeq 6000 System (Illumina) employing a paired-end 2 × 150 bp

sequencing strategy with a cluster density of 300 K/sample. All raw read

sequencing data were submitted to the public European Nucleotide

Archive (EBI ENA), accession code: PRJEB61546.

2.5.3 Raw sequencing data analysis
Raw sequencing data were analyzed using the QIIME 2 TM (version

2020.2) pipeline (35) and the taxonomic assignment of amplicon

sequence variants (ASVs) was performed using the SILVA database

(https://www.arb-silva.de/). The entire process of data elaboration

included a pre-processing step, during which paired-end sequencing

reads were adapter-trimmed, quality-filtered (Q > 30), and merged. The

remaining high-quality reads were then dereplicated, and singletons and

chimeric sequences were removed by running the qiime dada2 denoise-

paired command. The output of the dada2 pipeline was an ASV table,

which recorded the number of times each ASV was observed for each

sample. Taxonomic classification was performed at the genus level.

Eukaryotic, mitochondrial, and chloroplast sequences were removed.

Alpha (within a single sample) and beta (between samples) diversity of

bacterial communities were performed usingQIIME alpha-phylogenetic

and beta-phylogenetic commands, respectively.

For alpha diversity, the Chao 1, Faith PD, Observed ASVs,

Shannon, and Simpson indices were calculated. For beta diversity,

weighted and unweighted UniFrac distances were calculated

depending on whether relative abundance or only presence/

absence were considered. The UniFrac distances of individual

samples were visualized using two-dimensional Principal

Coordinate Analysis (PCoA) plots (36, 37).

2.5.4 Predictive functional analysis of
bacterial communities

PICRUSt (Phylogenetic Investigation of Communities by

Reconstruction of Unobserved States) software package (38) was

used to predict functional profiling of microbial communities using

16S rRNA marker gene sequences and the Greengenes (v.13.8)

reference database. The entire data set of OTUs was used for the

PICRUSt analysis. Metagenomic functions and pathways were

predicted against KEGG pathways, as described in detail by

Rimoldi et al. (27). The PICRUSt output files were then run on
Frontiers in Immunology 04
the Statistical Analysis of Metagenomic Profiles (STAMP) software

package (39), generating extended error plots for each comparison.
2.6 Statistical analyses

Growth performance, feed intake, and feed alpha diversity data

were analyzed using the Student’s t-test to assess statistically

significant differences between dietary treatments. Differences

were considered statistically significant at p < 0.05. Analyses were

performed using SPSS, 21.0, IBM Corporation, 2011.

The alpha diversity data of the gut samples (digesta and mucosa)

were analyzed by two-way ANOVA with diet and sample origin as

independent factors. A non-parametric ANOSIM test with 999

permutations was applied to assess beta diversity dissimilarities

among groups, whereas the remaining microbiota data (microbial

relative abundances and metabolic pathways) were analyzed by

Welch’s two-sided t-test using PAST3 software (40). In all

comparisons, statistical significance was set at P < 0.05.
3 Results

3.1 Fish growth performance and
feed utilization

Both experimental diets were well accepted by European seabass

juveniles, and mortality throughout the feeding trial was very low

(< 1%). After 13 weeks, the fish quintupled their initial body weight,

reaching an average of 77.9 g (Figure 1). Growth performance and

feed utilization parameters, including SGR and FCR, were not

significantly affected by the replacement of 40% of fishmeal with

PM (Figure 1).
3.2 Microbiota analysis

3.2.1 Sequencing efficiency
All feed and intestinal samples were efficiently sequenced, except

for one mucosal sample from the PM10 feeding group that was

discarded. A total of 2656796 high-quality sequences were obtained,

specifically 479301, 1297769, and 879726 from the feed, digesta, and
FIGURE 1

Growth performance and feed utilization of European sea bass fed the experimental diets. Values are expressed as mean ± SD (n = 3 tanks).
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mucosa samples, respectively (Supplementary Data File S1). Good’s

coverage value greater than 99% in all samples indicated that the

bacterial communities were well representative. All sequencing data

were submitted to the European Nucleotide Archive (EBI ENA) public

database under accession code PRJEB61546.

3.2.2 Alpha and beta diversity
Based on the rarefaction curves, the sequencing depth to

calculate alpha diversity indices was set at 65172 reads. Alpha

diversity analysis showed higher microbial biodiversity in the

PM10 feed than in the FM feed, as indicated by the significantly

higher values of Shannon and Simpson indices (Table 2).

Concerning digesta or mucosa samples, no differences in species

richness (Chao 1 and Observed ASV indices), and biodiversity
Frontiers in Immunology 05
(Shannon, Simpson, and Faith PD indices) were found in response

to dietary treatments. However, regardless of the feed, species

richness and biodiversity were higher in digesta samples than in

mucosa samples (Table 2).

Analysis of beta diversity showed significant differences among

bacterial communities only for unweighted UniFrac metrics. The

result of pairwise comparisons is reported in Table 3. The ANOSIM

test revealed differences (p < 0.05) between the bacterial

communities of the digesta and gut mucosa, regardless of the feed

(Table 3). No difference was found between digesta samples from

two dietary groups. Accordingly, the principal coordinate analysis

(PCoA) plot of unweighted UniFrac distances of microbial

communities revealed three separate clusters corresponding to the

digesta, mucosa, or feed samples (Figure 2).
TABLE 2 Measurements of alpha diversity of gut and feed-associated microbiota.

Chao1 Shannon Simpson FaithPD Observed ASVs

Gut samples

FM-DIG 1989 ± 302 7.74 ± 0.50 0.97 ± 0.01 21.65 ± 3.95 21.65 ± 3.95

PM10-DIG 2097 ± 591 7.33 ± 0.65 0.97 ± 0.01 23.15 ± 7.07 23.15 ± 7.07

FM-MUC 1621 ± 366 6.83 ± 0.39 0.96 ± 0.01 20.64 ± 5.56 20.64 ± 5.56

PM10-MUC 1364 ± 442 6.63 ± 0.36 0.96 ± 0.01 19.07 ± 6.75 19.07 ± 6.75

Two-way ANOVA

Diet 0.817 0.208 0.349 0.951 0.725

Origin 0.006 0.001 0.011 0.316 0.005

Interaction 0.305 0.614 0.749 0.531 0.389

Feed samples

FM-feed 1230 ± 69 6.16 ± 0.03* 0.95 ± 0.00* 17.98 ± 0.53 17.68 ± 0.53

PM10-feed 1252 ± 31 6.39 ± 0.01 0.96 ± 0.00 17.77 ± 0.36 17.77 ± 0.36
Data are expressed as mean ± SD. (*) p < 0.05. The significant p-values of two-way ANOVA are reported in bold. For t-test (*) indicates p< 0.05.
TABLE 3 Results of ANOSIM analysis of gut and feed samples based on Unweighted Unifrac distance values.

ANOSIM

Group 1 Group 2 Sample size Permutations R p-value

FM-feed PM10-feed 6 999 0.07 0.309

FM-feed FM-MUC 9 999 1.00 0.014

FM-feed FM-DIG 9 999 0.95 0.014

PM10-feed PM10-MUC 8 999 0.86 0.022

PM10-feed PM10-DIG 9 999 0.91 0.009

FM-DIG FM-MUC 12 999 0.60 0.001

FM-DIG PM10-DIG 12 999 -0.04 0.651

FM-DIG PM10-MUC 11 999 0.64 0.002

FM-MUC PM10-DIG 12 999 0.28 0.040

FM-MUC PM10-MUC 11 999 -0.11 0.869

PM10-DIG PM10-MUC 11 999 0.456 0.007
fro
Significant p –values (< 0.05) are in bold.
ntiersin.org

https://doi.org/10.3389/fimmu.2023.1266947
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Monteiro et al. 10.3389/fimmu.2023.1266947
FIGURE 2

Principal coordinate analysis (PCoA) plot of unweighted UniFrac distances of gut microbial communities from gut (mucosa and digesta) and feed
samples. Each point represents an individual.
B

A

FIGURE 3

Feed-associated microbiota profiles at phylum (A) and genus (B) level. Mean relative abundance (%) of the most prevalent bacteria in FM and PM10
feed (N=3) is reported. Bacteria with relative abundance lower than 0.5% are pooled and indicated as “others”.
Frontiers in Immunology frontiersin.org06

https://doi.org/10.3389/fimmu.2023.1266947
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Monteiro et al. 10.3389/fimmu.2023.1266947
3.2.3 Feed-associate bacterial communities
Considering only the most abundant taxa (>1%), the microbial

profiles of the feeds were mainly comprised of three phyla (Figure 3A),

five classes, eight orders, 12 families, and 15 genera (Figure 3B). Two

sided Welch’s t-test analysis performed on the relative abundance data

of bacterial taxa showed that 20 genera significantly differed between

the two feeds. Table 4 lists the genera displaying significantly different

relative abundances, most of which belong to the Firmicutes phylum

(11 out of 20). Photobacterium was the dominant genus in both feeds,

and was significantly more abundant in FM than in PM feed. In

contrast, genera belonging to the order Lactobacillales, represented by

Weisella, Lactobacillus, Streptococcus, and Lactococcus, were more

abundant in the PM10 than in the FM feed.

3.2.4 Host-associate bacterial communities
Considering the entire set of intestinal samples (mucosa and

digesta), the microbial profiles were mainly formed by five phyla

(Figure 4A), seven classes, 20 orders, 29 families, and 31 genera

(Figure 4B). Firmicutes and Proteobacteria constituted more than

90% of the total gut bacteria, followed by the Bacteroidota phylum,

regardless of feed or sample type.
Frontiers in Immunology 07
The results of the pairwise comparison between taxa relative

abundance data from the samples showed a stronger effect of

sample type (mucosa vs. digesta) than diet. Indeed, within the FM

group, a total of six genera significantly differed between digesta and

mucosa samples (Table 5), whereas for the PM10 feeding group, a

total of 19 genera resulted in significantly different abundances

between autochthonous and allochthonous gut microbiota samples

(Table 6). In general, digesta samples were characterized by a higher

abundance of Firmicutes, mainly represented by Lactobacillales,

Bacillales, and Clostridiales orders (Tables 5, 6). In digesta, the effect

of diet was evident only in the Anoxybacillus genus, which was

enriched in the FM feed group (Table 7). In contrast, at the gut

mucosa level, diet affected the relative abundance of four genera:

Mycobacterium, Taeseokella, Clostridium_sensu_stricto 1 and 7

(Table 8). All of these were more abundant in the FM diet group.
3.2.5 Predictive functional analysis of
bacterial communities

To evaluate whether differences in microbial composition due

to diet were associated with changes in microbial pathway

expression, we performed PICRUSt analysis by comparing
TABLE 4 List of bacterial feed-associated genera that significantly differed between two diets.

PHYLUM CLASS ORDER FAMILY GENUS
FM
(%) SD

PM
(%) SD Sig.

Firmicutes Clostridia Clostridiales Clostridiaceae
Clostridium_sensu_
stricto_ 7 0.32 0.02 0.16 0.01 0.002

Firmicutes Bacilli Lactobacillales Leuconostocaceae Weissella 2.51 0.11 3.51 0.15 0.002

Proteobacteria Gammaproteobacteria Oceanospirillales Endozoicomonadaceae Endozoicomonas 0.00 0.00 0.46 0.04 0.004

Firmicutes Bacilli Lactobacillales Lactobacillaceae Lactobacillus 1.81 0.03 2.23 0.07 0.005

Firmicutes Clostridia Clostridiales Clostridiaceae
Clostridium_sensu_
stricto _5 0.06 0.01 0.01 0.00 0.005

Firmicutes Bacilli Bacillales Planococcaceae Kurthia 0.08 0.01 0.01 0.00 0.006

Fusobacteriota Fusobacteriia Fusobacteriales Fusobacteriaceae Fusobacterium 0.14 0.01 0.06 0.02 0.008

Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Photobacterium 26.97 0.79 18.12 1.87 0.012

Firmicutes Clostridia
Peptostreptococcales-
Tissierellales

Peptostreptococcales-
Tissierellales Tepidimicrobium 4.02 0.08 1.90 0.39 0.014

Proteobacteria Gammaproteobacteria Alteromonadales Moritellaceae Moritella 1.02 0.11 0.58 0.05 0.014

Firmicutes Bacilli Lactobacillales Streptococcaceae Streptococcus 4.34 0.57 8.40 1.02 0.014

Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae Aliivibrio 0.53 0.04 0.31 0.01 0.015

Proteobacteria Gammaproteobacteria Burkholderiales Neisseriaceae Vitreoscilla 0.00 0.00 0.00 0.00 0.016

Proteobacteria Gammaproteobacteria Cardiobacteriales Wohlfahrtiimonadaceae Koukoulia 0.05 0.01 0.01 0.00 0.021

Firmicutes Clostridia Clostridiales Clostridiaceae
Clostridium_sensu_
stricto _1 0.24 0.03 0.13 0.02 0.022

Firmicutes Bacilli Bacillales Bacillaceae Anoxybacillus 1.43 0.19 0.76 0.09 0.023

Campilobacterota Campylobacteria Campylobacterales frcobacteraceae Pseudarcobacter 0.05 0.01 0.02 0.00 0.023

Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus 0.06 0.00 0.11 0.01 0.025

Firmicutes Bacilli Lactobacillales Vagococcaceae Vagococcus 0.03 0.00 0.01 0.01 0.028

Proteobacteria Gammaproteobacteria Enterobacterales Morganellaceae Proteus 0.01 0.00 0.00 0.00 0.030
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mucosa and digesta samples within the same feeding regime. This

analysis showed a slight effect of diet on both mucosa and digesta.

Only three pathways differed significantly between the FM and

PM10 groups in both the mucosa and digesta. Specifically, caffeine

metabolism, phenylalanine metabolism, and the sulfur relay system

varied in the mucosa, whereas valine, leucine, thyroid hormone

signaling, and isoleucine degradation and secretion system

pathways varied in digesta samples from the two dietary

treatments (Figure 5).
4 Discussion

In recent years, market forces driven by increased prices and

reduced availability have led to the substitution of marine

ingredients, including fishmeal, with plant-based alternatives (2,

41). However, this shift towards plant feedstuffs has recently been

questioned because of sustainability concerns and a negative impact
Frontiers in Immunology 08
on fish immune response and stress resilience-associated alterations

in the fish microbiome (5, 42, 43). This raises interest in exploring

low-trophic organisms as fishmeal alternatives, especially since their

incorporation into aquafeeds does not compete directly with the

human food supply. This study demonstrated the potential of PM as

an alternative ingredient in aquafeeds to replace up to 40% of high-

quality FM without compromising European seabass growth and

feed utilization.

Polychaete worms have been extensively used as a supplement

in shrimp maturation diets (44), but only a few studies have

explored the use of PM in fish diets. For instance, a study by

Thum et al. (45) has shown that PM obtained from A. virens can be

the main protein source in diets for rainbow trout, leading to similar

growth performance to that offish fed a commercial diet. Moreover,

the inclusion of 40% PM dietary protein from Nereis sp. promoted

the growth and survival of tilapia larvae (Oreochromis niloticus),

supporting this ingredient as a suitable alternative protein source in

aquafeeds (46). Furthermore, a recent study by Kals et al. (47)
B

A

FIGURE 4

Gut microbiota profiles at phylum (A) and genus (B) level. Mean relative abundance (%) of the most prevalent bacteria in digesta (DIG) and mucosa
(MUC) samples is reported (N=6). Bacteria with relative abundance lower than 0.5% are pooled and indicated as “others”.
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focused on the functional capabilities of PM derived from Nereis

virens fed to the common sole (Solea solea). This study revealed that

the ingestion of PM resulted in both enhanced growth and

alleviation of anemia in these fish. These findings underscore the

potential of using PM as a functional ingredient to promote growth

and improve fish health. However, the specific mechanisms

underlying these beneficial effects are currently unknown,

warranting further investigation into the underlying mechanisms

to fully comprehend its functional potential.

To our knowledge, this is the first study to evaluate the effects of

partial dietary replacement of fishmeal with PM on the gut

microbiota of cultured fish species. In the present study, 16S

rRNA gene sequencing was successfully applied to characterize

both gut mucosa-associated (autochthonous) and digesta

(allochthonous) microbial communities in European seabass.

Partial replacement of FM with PM did not have a marked effect

on the gut microbial community profiles. Alpha diversity analysis

revealed that neither species richness nor biodiversity of microbial

communities in both mucosa and digesta were affected by the

dietary inclusion of 10% PM. This is generally interpreted as a

positive response of fish to dietary PM. The diversity of the gut

microbiota is an indicator of good health. Fish diseases are often

associated with dysbiosis and the loss of intestinal microbial

diversity (48). In contrast to our previous findings in seabass (34),

but in line with previous data in salmon (Salmo salar) (23), the

transient microbiota was characterized by higher species richness

and biodiversity than the resident microbiota, regardless of the

dietary treatment. Similarly, beta diversity analysis showed

substantial differences between digesta- and mucosa-associated

intestinal microbiota, irrespective of diet, confirming what has

already been reported in European seabass and other fish species

(23, 28, 31, 34, 49). The transient and resident gut microbiota of

European seabass was dominated by Proteobacteria, Firmicutes,

and Actinobacteria phyla, which is consistent with existing

literature (34, 50–52). However, if we compare the digesta- and

mucosa-associated microbiota of fish fed the PM10 diet, the former

was characterized by a higher abundance of Firmicutes. Specifically,

an increased abundance of Bacillus and lactic acid bacteria (LAB),

mainly Pediococcus, Enterococcus, Leuconostoc, Streptococcus, and

Weisella genera, was found in digesta samples. Among these,

Leuconostoc, Enterococcus, Pediococcus, and Bacillus genera are

commonly used as probiotics in aquaculture (53). Interest in

probiotics for animal production has been growing in recent

years. In fact, studies have shown that they can improve fish

growth and survival by improving the nutritional value of feed,

and enhancing host disease resistance, respectively (54).

Considering the effect of the diet on gut microbial communities

(digesta and mucosa), our data contradict previous findings on

seabass and rainbow trout (28, 31, 34) and the general assumption

that mucosa-associated intestinal microbiota is more resilient to

dietary changes than digesta-associated microbiota. Specifically, we

observed more pronounced changes in the mucosa-associated

intestinal microbiota than in the digesta in response to the diet.

At the resident microbiota level, partial substitution of FM with

10% PM reduced the relative abundance of the genera
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TABLE 6 List of genera in the PM10 feeding group that significantly differed between mucosa and digesta samples.

GENUS DIG (%) SD MUC (%) SD Sig.

Thermobacillus 0.04 0.01 0.00 0.00 0.003

Lachnoclostridium 0.25 0.11 0.05 0.08 0.009

Streptococcus 2.55 1.37 0.27 0.33 0.013

Peptostreptococcus 0.37 0.21 0.02 0.04 0.014

Clostridium_sensu_stricto_1 0.20 0.10 0.04 0.02 0.015

_Sedis Raoultibacter 0.18 0.11 0.00 0.00 0.018

Bacillus 4.13 2.36 0.65 0.38 0.021

Leuconostoc 0.38 0.25 0.01 0.02 0.022

Clostridium_sensu_stricto_18 0.18 0.09 0.04 0.07 0.023

Staphylococcus 4.06 1.42 20.04 11.77 0.029

Hathewaya 0.49 0.37 0.00 0.00 0.032

Clostridioides 0.13 0.08 0.02 0.03 0.035

Enterococcus 0.29 0.21 0.03 0.03 0.036

sierellales Gallicola 0.36 0.28 0.00 0.01 0.037

Tepidanaerobacter 0.09 0.07 0.00 0.00 0.038

sierellales W5053 0.13 0.11 0.00 0.00 0.039

Clostridium_sensu_stricto_7 0.16 0.12 0.01 0.02 0.039

Pediococcus 0.11 0.09 0.00 0.01 0.043

Weissella 0.45 0.23 0.14 0.19 0.043
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PHYLUM CLASS ORDER FAMILY

Firmicutes Bacilli Paenibacillales Paenibacillaceae

Firmicutes Clostridia Lachnospirales Lachnospiraceae

Firmicutes Bacilli Lactobacillales Streptococcaceae

Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcaceae

Firmicutes Clostridia Clostridiales Clostridiaceae

Actinobacteriota Coriobacteriia Coriobacteriales Coriobacteriales_Incertae

Firmicutes Bacilli Bacillales Bacillaceae

Firmicutes Bacilli Lactobacillales Leuconostocaceae

Firmicutes Clostridia Clostridiales Clostridiaceae

Firmicutes Bacilli Staphylococcales Staphylococcaceae

Firmicutes Clostridia Clostridiales Clostridiaceae

Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcaceae

Firmicutes Bacilli Lactobacillales Enterococcaceae

Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcales-Tis

Firmicutes Thermovenabulia Thermovenabulales Thermovenabulales

Firmicutes Clostridia Peptostreptococcales-Tissierellales Peptostreptococcales-Tis

Firmicutes Clostridia Clostridiales Clostridiaceae

Firmicutes Bacilli Lactobacillales Lactobacillaceae

Firmicutes Bacilli Lactobacillales Leuconostocaceae
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that can cause intestinal inflammation in mammals (55, 56).

Clostridium ss1 constitutes a large cluster of species that includes

both commensal and pathogenic species. All members of Clostridium

ss1 can ferment different carbohydrate substrates, producing butyrate

as the final product (8). Interestingly, an interaction effect of diet and

genotype was only found for Clostridium sensu stricto in selected for

growth sea bass fed a “future” diet with low marine ingredients (50).

However, in our study, we did not observe any advantage in terms of

growth in the control FM group because of the higher abundance of

this genus, probably due to the relatively rich diet of marine

ingredients, fishmeal, and fish oil. At the digesta level, PM only

negatively affected the Anoxybacillus genus, comprising cellulose-

decomposing bacteria that usually populate the gut of herbivorous

species such as grass carp (Ctenopharyngodon idellus) (57). Usually,

this genus is enriched in the intestines of fish fed cellulosic feed.

Although the amount was higher in the fecal matter of FM fish, the

relative abundance of the Anoxybacillus genus in both digesta sample

groups was lower than 1%, which is why there was no effect on feed

utilization. In addition, based on the gut microbial profiles, we can
Frontiers in Immunology 11
clearly state that although there was a large relative abundance of LAB

in the PM10 diet, they failed to colonize/establish fish guts. For the

same reason, we can also state that gut microbial communities were

not simply a mirror of feed-associated bacteria. To avoid this

drawback and fully unveil the response of intestinal microbiota to

diet, it is usually recommended to perform concurrent profiling of

digesta- and mucosa-associated intestinal microbiota, as performed

in the present study, rather than addressing only one or a

combination of both. In the present study, PICRUSt analysis was

used to estimate the differential functional capabilities of mucosa and

digesta communities as a function of diet. As expected, no major

significant differences were detected between the samples. These

findings align with our earlier results, demonstrating that

incorporating PM up to 10% in European seabass diets fosters

comparable growth and nutrient utilization to FM (33).

In conclusion, our data support the potential of PM as an

alternative functional ingredient in aquafeeds with microbiota-

modulatory properties. Dietary supplementation with 10% PM

seems to compensate for the possible drawbacks of high levels of
TABLE 7 List of genera that significantly differed in digesta samples between the two feeding groups.

PHYLUM CLASS ORDER FAMILY GENUS FM-DIG (%) SD PM10-DIG (%) SD Sig.

Firmicutes Bacilli Bacillales Bacillaceae Anoxybacillus 0.80 0.50 0.21 0.18 0.045
frontier
TABLE 8 List of genera significantly differed in mucosa samples of two feeding groups.

PHYLUM CLASS ORDER FAMILY GENUS
FM-

MUC (%) SD
PM10-
MUC (%) SD Sig.

Actinobacteriota Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium 0.15 0.04 0.04 0.05 0.003

Bacteroidota Bacteroidia Cytophagales Spirosomaceae Taeseokella 0.27 0.08 0.07 0.10 0.007

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium_sensu_stricto_1 0.14 0.07 0.04 0.02 0.020

Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium_sensu_stricto_7 0.14 0.10 0.01 0.02 0.031
FIGURE 5

PICRUSt analysis results of predicted functional pathways in the gut microbiota.
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FM substitution. Indeed, the replacement of 40% of fishmeal did not

have any effect on the growth performance parameters of fish.

However, the study revealed that PM has the potential to slightly

modulate both digesta and gut mucosal communities, making it a

promising alternative functional ingredient for aquafeeds. This

study has also contributed to improving the knowledge of

emerging ingredients for aquafeeds as alternatives to traditional

marine and plant-based feedstuffs, envisioning the sustainable

development of aquaculture.
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26. Huyben D, Vidaković A, Werner Hallgren S, Langeland M. High-throughput
sequencing of gut microbiota in rainbow trout (Oncorhynchus mykiss) fed larval and
pre-pupae stages of black soldier fly (Hermetia illucens). Aquaculture (2019) 500:485–
91. doi: 10.1016/J.AQUACULTURE.2018.10.034

27. Rimoldi S, Antonini M, Gasco L, Moroni F, Terova G. Intestinal microbial
communities of rainbow trout (Oncorhynchus mykiss) may be improved by feeding a
Frontiers in Immunology 13
Hermetia illucens meal/low-fishmeal diet. Fish Physiol Biochem (2021) 47:365–80.
doi: 10.1007/S10695-020-00918-1/FIGURES/4

28. Rimoldi S, Gini E, Iannini F, Gasco L, Terova G. The Effects of Dietary Insect
Meal from Hermetia illucens Prepupae on Autochthonous Gut Microbiota of Rainbow
Trout (Oncorhynchus mykiss). Animals (2019) 9:143. doi: 10.3390/ANI9040143

29. Terova G, Gini E, Gasco L, Moroni F, Antonini M, Rimoldi S. Effects of full
replacement of dietary fishmeal with insect meal from Tenebrio molitor on rainbow
trout gut and skin microbiota. J Anim Sci Biotechnol (2021) 12:1–14. doi: 10.1186/
S40104-021-00551-9/TABLES/6

30. Terova G, Ceccotti C, Ascione C, Gasco L, Rimoldi S. Effects of partially defatted
hermetia illucens meal in rainbow trout diet on hepatic methionine metabolism.
Animals (2020) 10:1059. doi: 10.3390/ANI10061059

31. Terova G, Rimoldi S, Ascione C, Gini E, Ceccotti C, Gasco L. Rainbow trout
(Oncorhynchus mykiss) gut microbiota is modulated by insect meal from Hermetia
illucens prepupae in the diet. Rev Fish Biol Fish (2019) 29:465–86. doi: 10.1007/S11160-
019-09558-Y/FIGURES/5

32. Kousoulaki K, Sveen L, Norén F, Espmark A. Atlantic salmon (Salmo salar)
performance fed low trophic ingredients in a fish meal and fish oil free diet. Front
Physiol (2022) 13:884740/BIBTEX. doi: 10.3389/FPHYS.2022.884740/BIBTEX

33. Monteiro M, Costa RS, Sousa V, Marques A, Sá T, Thoresen L, et al. Towards
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