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Abstract: Adaptation to environmental variation caused by global climate change is a significant
aspect of fisheries management and ecology. A reduction in ocean salinity is visible in near-shore
areas, especially in the Baltic Sea, where it is affecting the Atlantic cod population. Cod is one of
the most significant teleost species, with high ecological and economical value worldwide. The
population of cod in the Baltic Sea has been traditionally divided into two subpopulations (western
and eastern) existing in higher- and lower-salinity waters, respectively. In recent decades, both Baltic
cod subpopulations have declined massively. One of the reasons for the poor condition of cod in
the Baltic Sea is environmental factors, including salinity. Thus, in this study, an oligonucleotide
microarray was applied to explore differences between Baltic cod subpopulations in response to
salinity fluctuations. For this purpose, an exposure experiment was conducted consisting of salinity
elevation and reduction, and gene expression was measured in gill tissue. We found 400 differentially
expressed genes (DEGs) involved in the immune response, metabolism, programmed cell death,
cytoskeleton, and extracellular matrix that showed a subpopulation-dependent pattern. These
findings indicate that osmoregulation in Baltic cod is a complex process, and that western and eastern
Baltic cod subpopulations respond differently to salinity changes.
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1. Introduction

Global climate change due to human activities has an impact on many environmental
parameters, including salinity. Salinity fluctuation is a significant climate change stressor
affecting the abundance, diversity, distribution, growth, osmolarity, and metabolic activities
of fish and other marine organisms [1]. Seawater salinity has been decreasing in some
coastal seas due to the increased intensity of rains, freshwater inflow, and ice melting [2].
One of the regions most threatened by global climate change is the Baltic Sea, where
deviation in atmospheric circulation in the early 1980s reduced the inflow of Atlantic
oxygenated, cold, and salty water, thus causing dramatic changes in the ecosystem in the
following decades [3]. According to physical–biogeochemical models, due to the increasing
precipitation over Scandinavian land masses and the limited Atlantic Ocean connection,
salinity in the Baltic Sea will continue to decrease in the coming decades [4–6]. For these
reasons, the Baltic Sea has been used as a world-renowned model for environmental
changes [7]. The hazards mentioned above result from, among others, the characteristics
of these waters. The Baltic Sea is a shallow, semi-enclosed, brackish sea characterized by
gradually decreasing salinity in the northeast direction from 35 ppt in the Atlantic Ocean
to about 8 ppt in the southern Baltic Sea, and to 2–3 ppt in the inner Gulf of Bothnia, with
considerable local short-term salinity variations [5,8,9]. It is also characterized by high
vertical salinity stratification; the deep water mass has a higher salinity than at the surface
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and it is less oxygenated. Due to such a challenging environment, only a few marine fish
species have adapted to these conditions, including Atlantic cod (Gadus morhua L.).

The Atlantic cod is a key euryhaline fish species in the North Atlantic Ocean, with
significant commercial and ecological value that will be threatened by the expected climate-
related decline in salinity in the Baltic Sea [10,11]. Cod adapt to a wide range of salinities,
from 35 ppt in the North Atlantic, 20 ppt in the surface waters of Kattegat and the western
Baltic, to about 3 ppt in the northeastern Baltic; thus, they provide an excellent model to
study the molecular mechanisms underlying salinity adaptations. Previous studies using
single-nucleotide polymorphisms (SNPs), microsatellites, and transcriptomic data revealed
a genetic distinctiveness between the Baltic and Atlantic cod populations [12–14]. Further,
several molecular studies [15–19] confirmed the existence of two separate subpopulations in
the Baltic Sea: one termed western Baltic cod (abbreviated as WBC), located in subdivisions
(SDs) 22–24, and the other termed eastern Baltic cod (EBC), located in SDs 24–32 (division
by the International Council for the Exploration of the Sea (ICES)). Due to these results,
the inner Baltic cod is monitored and managed as western and eastern stocks for fishery
purposes [19,20].

Adult Baltic cod often undertake complex migrations to feeding and spawning
grounds depending on the area [21]. According to previous studies, Baltic cod require
a salinity above 11–12‰ for egg development and successful reproduction [22], which
limits spawning areas to several locations. The main spawning areas for WBC are Kiel
Bay and Arkona Basin. The latter is also used by EBC, which can result in mixing [20].
Former spawning grounds for the eastern stock in Gdańsk and Gotland Deep are dysfunc-
tional because of strongly reduced inflows of high salinity and oxygenated water from
the North Sea and increased hypoxia; thus, reproduction mainly takes in the Bornholm
Basin [23–25]. During vertical and horizontal migrations to spawning areas with a depth
occupation of over 60 m and active travelling speed of up to 14 m d−1, Baltic cod is exposed
to variable salinities [26]. For successful spawning, EBC enter deep water up to 19.2 ppt,
as revealed by tagging experiments [27]. Due to challenging brackish conditions in the
Baltic Sea, cod subpopulations exhibit several physiological and genetic adaptations to
low-salinity water, including egg buoyancy [28], sperm motility [29], hemoglobin type [30],
osmoregulation and ion exchange [31], and different spawning times [21]. Studies on the
Atlantic cod response to salinity stress have been focused on selected osmoregulatory genes
such as Na/K-ATPase α genes (atp1a) and heat shock protein 70 (hsp70), aquaporins, the
solute carrier gene family, and receptors of prolactin (prl) [16,31,32]. Further, recent studies
showed that the genes involved in adaptation to low salinity in the Baltic Sea are located on
chromosomes 2 and 12 [16,18,33]. These adaptations to the environmental conditions in the
Baltic Sea may contribute to a strong and effective reproductive barrier between WBC and
EBC; thus, Baltic cod can be viewed as an example of ongoing speciation [16]. Our prelimi-
nary studies of the transcriptome showed that eastern and western Baltic subpopulations
from the natural environment differ in gene expression, which might be related to salinity
tolerance [13,34]. However, understandings of the local genetic adaptation to low salinity
in the Baltic Sea are still limited. Further, in recent decades, the Baltic cod population
has decreased, especially EBC, which have experienced a strong depletion manifested by
decreased resistance to pathogens, length–weight factor, reproduction/productivity, and
an increase in natural mortality [25,35]. The reason for this, alongside overfishing, is the
change in climate and environmental conditions, including salinity, which has caused a
reduction in spawning areas.

Although many studies have investigated the response of the fish transcriptome to
salinity changes using next-generation sequencing (NGS) [36–38] and microarrays [5,39,40],
the current understanding of genetic and physiological responses to salinity fluctuations
is still limited. In general, teleosts use similar strategies to maintain osmotic homeostasis;
however, there are also some differences in the regulation of internal water and solute
homeostasis [41]. Furthermore, recent studies revealed inter-population differences in fish
responses to salinity [42,43]. To address this problem in the present study, cod individuals
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derived from the western and eastern subpopulations were kept in tanks, where salinity
was gradually changed, and then gene expression was measured using a genome-wide
DNA oligonucleotide microarray to characterize the putative salinity-regulated genes and
the biological and molecular processes involved in salinity adaptation.

2. Materials and Methods
2.1. Ethics Approval

The experimental procedures were carried out according to the EC Directive 2010/63/EU
for animal experiments and were approved by the Local Ethics Committee on Animal Exper-
imentation of Gdansk Medical University (decision no. 60/2012).

2.2. Sampling and Experimental Design

Gadus morhua juvenile individuals were caught in November 2012 in Schleifjord, Kiel
Bight (KIEL)—ICES SD 22, with an average size of 33.95 ± 0.32 cm, and the Gulf of Gdańsk
(GDA)—SD 26, with an average size of 30.7 ± 5.27 cm, which represent the western and
eastern Baltic cod subpopulations, respectively (Figure 1).
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Figure 1. Sampling locations. The fish of the Kiel Bight (KIEL) and the Gulf of Gdańsk (GDA)
represent the eastern and western Baltic cod subpopulations, respectively.

The live fish were transported in containers with sea water to the marine station of the
University of Gdańsk in Hel, and then divided into two 2000 L tanks filled with recirculated
water. The fish were kept at a constant temperature (10 ◦C), in a natural photoperiod,
and under salinity conditions similar to those of the collection sites (GDA—8 ppt; KIEL—
18 ppt). They were fed fresh herrings once a day and acclimated for more than 14 days
until their typical behavior was restored. Next, fish from each localization were randomly
divided and transferred to separate tanks termed control, salinity decrease, and salinity
increase groups, and again acclimated as described above (Figure 2). The control tanks
represented the natural salinities of the geographic region (abbreviated as GDA8 and
KIEL18). During the osmotic challenge, the salinity was gradually changed (1 ppt per
hour) in order to exclude acute stress and was measured every hour with a conductometer
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(Elmetron, Zabrze, Poland) [32]. In the increase group, salinity was elevated by 10 ppt
and to 33 ppt in the GDA and KIEL groups (abbreviated as GDA18, GDA33, KIEL28, and
KIEL33; Figure 2) by adding aquarium ocean salt (Aquarium Systems, Sarrebourg, France).
In other tanks, salinity decreased by 10 ppt in the KIEL group (KIEL8) and to 3 ppt in both
the GDA and KIEL groups (GDA3 and KIEL3). In experimental tanks, individuals were
collected after 1 h, 12 h, and 72 h after reaching the desired salinity level (Figure 2). The
fish were anesthetized using tricaine methanesulfonate (MS222) and sacrificed via spinal
cord dissection, and their weights and lengths were measured.
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Figure 2. Experimental design using Gadus morhua individuals of two geographical origins: the Gulf
of Gdańsk (GDA) and the Kiel Bight (KIEL), representing eastern and western Baltic cod, respectively.

2.3. RNA Extraction

Samples of gill were collected from 81 fish: KIEL (n = 48) and GDA (n = 33) and stored
in RNAlater, according to the manufacturer’s instructions (Qiagen, Hilden, Germany) [34].
Total RNA was extracted with the ISOLATE II RNA Mini Kit (Bioline, London, UK) and
stored at −80 ◦C [14]. The RNA concentration and integrity were measured with the Epoch
microplate spectrophotometer (BioTek Instruments, Inc., Winooski, VT, USA) and Agilent
Bioanalyser (Agilent, Santa Clara, CA, USA) [13]. The mean RNA integrity value was
9.62 ± SD 0.59 for the KIEL and 9.05 ± SD 0.93 for the GDA groups.

2.4. Microarray Analysis

Microarray hybridization was performed in the Department of Physiological Sciences
of Warsaw University of Life Sciences (SGGW) with the Agilent-0048047 Genome-wide
Atlantic cod microarray, second version_ACIQ2 (GEO accession no. GPL18775; Agilent,
Santa Clara, CA, USA) using the Gene Expression Hybridization Kit (Agilent, Santa Clara,
CA, USA), according to the manufacturer’s protocol. This DNA oligonucleotide 4 × 44 k
microarray includes 60 mer probes for unique transcripts from the Ensembl and Unigene
databases [44]. The hybridized arrays were washed using the Agilent Gene Expression
Wash Buffer Kit and scanned with an Agilent Technologies Scanner G2505C, according to
the manufacturer’s protocol (GE2_1010_Sep10). The scanned microarray images were ana-
lyzed using Agilent Feature Extraction software (version 10.10.1.1) [34]. Normalization of
the raw mean signal was performed using the Limma package (version 3.58.1) in R [34,45]
using the following functions: BackgroundCorrect (normexp method), normalizeWithinAr-
rays (lowess method), and normalizeBetweenArrays (quantile method) [34]. Differentially
expressed genes (DEGs) between the experimental groups and the control were identified
using the significance analysis of microarrays (SAM) method in siggenes software (version
1.76.0) [46] and the rank product method in the RankProd package (version 3.28.0) [47],
with a fold-change [FC] ≥ 2, a p-value < 0.05, and a false discovery rate (FDR) < 0.05. The
Pearson correlation between experimental groups was analyzed using the R package. The
Wilcoxon rank sum test (in R) was used to compare the means of the GDA and KIEL groups.
Normalized data were analyzed using a two-factor model implemented in the limma
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package in R (p-value < 0.05) to assess the time course of responses to salinity changes in
subpopulations (the factors were population and time or salinity).

Available gene annotations were downloaded from the Ensembl database (release 99;
http://www.ensembl.org/Gadus_morhua, accessed on 1 February 2020). Genes without
annotations were searched against proteins from the NCBI non-redundant (nr) database
using the Basic Local Alignment Search Tool (blastx) implemented in BLAST+ (v.2.2.29) [48],
with an E-value threshold of 10−5, using sequences to which probes were designed [34].
Gene symbols were assigned using the HUGO Gene Nomenclature Committee (HGNC)
and the Zebrafish Information Network (ZFIN) databases. Pathway enrichment analysis
was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology-Based
Annotation System (KOBAS v.3.0) for the human data (corrected p-value < 0.05) [49].

2.5. Data Availability

The microarray data were deposited in the National Center for Biotechnology Informa-
tion Gene Expression Omnibus (NCBI GEO) under the accession number GEO: GSE195878.

3. Results
3.1. Measurements

The length and weight of each fish used in this experiment were measured and
compared between the GDA and KIEL groups using the Wilcoxon rank sum test. Statistical
analysis revealed that the body parameters of the GDA fish were significantly lower than
those of the KIEL group (p-value < 0.001; Figure 3).
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Figure 3. Measurements of the (a) length and (b) weight of the individuals used in this study (n = 81).
The Gulf of Gdańsk (GDA) represents EBC; the Kiel Bight (KIEL) represents WBC. Two asterisks
indicate a p-value < 0.001.

3.2. Microarray Analysis

Comparison with references from both localizations revealed differentially expressed
genes in each experimental group (including time and salinity). In summary, 756 DEGs and
881 DEGs were identified in the GDA and KIEL subpopulations, respectively (Supplemen-
tary Table S1). Of these, on average, 66.86% were annotated using the Ensembl or NCBI
nr databases (excluding uncharacterized and hypothetical proteins), and gene symbols
were assigned to 58.05%. The analysis revealed that subpopulations shared 296 DEGs
(Venn diagram, Supplementary Figure S1). The numbers of DEGs in each experimental
group (including salinity and time) are presented in Figure 4 and Supplementary Table S2.
In general, a lower number of DEGs was identified across the KIEL groups compared to
the GDA groups; however, the difference was not statistically significant (Figure 4a). The
increase to 33 ppt in KIEL (12 h) and GDA (1 h) caused the expression changes in the
highest number of genes compared to other groups (Figure 4a). The number of DEGs was

http://www.ensembl.org/Gadus_morhua
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similar between 1 h and 12 h and then decreased after 72 h (1 h vs. 72 h; p-value < 0.05) in
both the KIEL and GDA groups (Figure 4b).
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A positive Pearson correlation was found between the experimental groups within
the subpopulations, indicating a similar expression trend (Supplementary Figure S2a). The
opposite results were obtained by comparing the GDA and KIEL groups, which showed
a negative correlation (Supplementary Figure S2a). Wilcoxon’s rank sum test using the
absolute value of log2 expression revealed that in most GDA and KIEL groups the median
expression level was significantly higher at 1 h compared to 12 h or 72 h; however, in
the KIEL8 (1 h vs. 72 h) and GDA3 (1 h vs. 12 h) groups, the difference was not signifi-
cant. It was different in the KIEL33 group, where median expression increased with time
(p-value < 0.05; Supplementary Figures S2b and S2c). Furthermore, the magnitude of the
expression changes in the KIEL group after 1 h of exposure to increased salinity was higher
(p-value < 0.001), following which salinity decreased (Supplementary Figure S2c). There
was no such trend in the GDA groups. In the event that salinity decreased and increased
to 33 ppt, the magnitude of expression changes after 1 h of exposure was higher in the
GDA group (Figure 5a). The same pattern was revealed when comparing the groups with
reduced salinity after 12 h and 72 h; however, a salinity level increase to 33 ppt provoked
higher expression in the KIEL group compared to the GDA group (p-value < 0.001). Salinity
increased by 10 ppt caused similar magnitude expression changes in both the GDA and
KIEL groups at each time point (Figure 5a,b).

The principal component analysis (PCA) performed for all identified DEGs from this
study showed a clear division of the GDA and KIEL groups (Figure 6).

3.3. Sub-Population-Dependent Transcripts

Across all transcripts included in the analysis, 29.83% (400) showed differential ex-
pression between subpopulations (FC > 2; Supplementary Table S3). Of these, 70.50%
were annotated, and 57% had a gene symbol. The enrichment analysis of subpopulation-
dependent genes revealed several DEGs involved in the immune response (complement
and coagulation cascade, the ILl-17 signaling pathway, cytokine–cytokine receptor interac-
tion, and neutrophil degranulation; Figure 7). These included cd59, complement factor H
(cfh), chemokines (ccl2, ccl20, and ccr2), mucins (muc2, muc5b, and muc5ac), lectins toll-like
receptor 2 (tlr2), nlr family card and pyrin domain containing 3 (nlrc3 and nlrp3), and
natterin (aep1). Endocrine system pathways, such as thyroid hormone signaling, PPAR sig-
naling, and estrogen signaling, were also enriched across subpopulation-dependent genes.
Between these genes, there were several Ca2+-transporting ATPases (atp2a1 and atp2a2),
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protein kinase c alpha (prkca), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic
subunit alpha (pik3ca), notch receptor 2 (notch2), iodothyronine deiodinase 1 (dio1), and
creb-binding protein (crebbp). The EBC and WBC subpopulations also showed differential
regulation of genes involved in lipid metabolism (sphingolipid metabolism, arachidonic
acid pathways, and linoleic acid pathways), such as ceramides (cers2, cers3, and cers4), phos-
pholipase a and acyltransferase 3 and 4 (plaat3 and plaat4), phospholipase d family member
4 (pld4), prostaglandin i2 synthase (ptgis), farnesyl diphosphate synthase (fdps), fatty acid-
binding protein 1 (fabp1), acyl-coa synthetase bubblegum family member 2 (acsbg2), and
two genes of the cytochrome p450 family 1 subfamily a (cyp1a1 and cyp1a2). Furthermore,
genes involved in programmed cell death (apoptosis, necroptosis, and the p53 signal-
ing pathway), including caspases (casp2, casp8, and casp13), bcl2-associated x, apoptotic
regulators (bax), bcl2-like 14 (bcl2l14), bcl2-interacting protein 3 (bnip3), and members of
the tnf receptor superfamily (tnfrsf9, tnfrsf10b, tnfrsf14, and tnfrsf15), were differentially
expressed between these two subpopulations. The western and eastern subpopulations
also showed differential regulation of genes related to tissue remodeling, such as type X
collagen (col10a1), type 13 keratin (krt13), fibronectin 1 (fn1), lysyl oxidase (lox), tenascin n
(tnn), myosin heavy chain 3 and 7 (myh3 and myh7), and myosin light chain 3 and 10 (myl3
and myl10), which are involved in the regulation of the actin cytoskeleton (Figure 7).
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Of the total of 290 DEGs with time differences, 75 (25.86%) were shared between time
points, including such transcripts as bax, casp8, kinesin family member 5b (kif5b), nlrp3,
pik3ca, and tnfrsf10b involved in apoptosis and necroptosis, cyp1a1, cyp1a2, and acsbg2
involved in fatty acid metabolism, and dio1 and notch2 related to the thyroid hormone
signaling pathway. Additionally, several immune-related genes such as aep1, ccl20, and
interferon-induced very large GTPase 1 (gvinp1), while fish-egg lectin, muc2, and piscidin
were regulated over time (Figure 8a). A suite of immune genes such as lysozyme g, muc5ac,
s100 calcium-binding protein p (s100p), sam and hd domain containing deoxynucleoside
triphosphate triphosphohydrolase 1 (samhd1), tnfrsf14, and tnfrsf15, as well as the stress
response protein (hsp70) and genes involved in glycerophospholipid biosynthesis (plaat3
and plaat4) and haloacid dehalogenase-like hydrolase domain containing 5 (hdhd5) were
differentially expressed only 1 h after the change in salinity. Further, 12 h after the salinity
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change, genes involved in neutrophil degranulation, such as rab37, members of the ras
oncogene family (rab37), actin-related protein 2 (actr2), purine nucleoside phosphorylase
(pnp), and tlr2, showed differences between the GDA and KIEL groups, as well as mhc
class I anigen. Moreover, genes involved in the cell cycle, including the up-regulator of cell
proliferation-like (urgcp) and nedd1 gamma-tubulin ring complex targeting factor (nedd1),
and in tyrosine degradation, such as dihydropteridine reductase (qdpr) and asparaginase
and isoaspartyl peptidase 1 (asrgl1), were only differentially expressed after 12 h. On the
other hand, aldolase fructose-bisphosphate a (aldoa) (involved in glycolysis), pld4 (involved
in inositol phosphate metabolism), tripartite motif containing 39 (trim39), sialic acid-binding
ig-like lectin 14 (siglec14), and killer cell lectin-like receptor b1 (klrb1) (involved in the innate
immune system) were only differentially expressed 72 h after the salinity change. Of the
308 subpopulation-dependent genes related to salinity change, the highest number of
DEGs was observed after salinity decreased (190) and the lowest after salinity increased to
33 ppt. Of these, 74 DEGs (23.94%) were shared between the salinity groups. According
to the time course, salinity increased and decreased caused a differential expression of
genes involved in the immune response (aep1, nlrc3, nlrp3, gvinp1, L-rhamnose-binding
lectins, muc2, and piscidin), thyroid metabolism (dio1 and notch2) and ion channel transport
(transient receptor potential cation channel subfamily v member 5; trpv5) (Figure 8b).
Additionally, cytoskeleton and extracellular matrix genes, such as lox, myh3, myl10, desmin
(des), col10a1, and fn1, were common between salinities. On the other hand, genes related
to the cell cycle, including blm recq-like helicase (blm) and baf nuclear assembly factor 1
(banf1), response to elevated platelet cytosolic Ca2+ (endonuclease domain containing 1;
endod1), immune-related genes (cfh, gvinp1, and immunoglobulins), and plaat4 (involved
in glycerophospholipid biosynthesis), were only differentially expressed at 3 ppt. Salinity
increased by 10 ppt (to 18 ppt and 28 ppt) caused caspase expression changes (casp2
and casp8), bcl2l14 related to the apoptosis process, some immune-related genes (ccl2 and
ccl20), immunoglobulin lambda constant 1 (iglc1), and apolipoprotein L domain-containing
protein 1 (apold1) (involved in lipid metabolism). The lowest number of genes that showed
a difference between the GDA and KIEL groups was detected at a salinity level increased
to 33 ppt. Between identified genes were those involved in the notch signaling pathway
(notch2 and crebbp), ppar signaling and lipid metabolism (acsbg2 and fabp1), ferroptosis
(iron-responsive element-binding protein 2; ireb2) and the keratinization process, such as
keratin (krt13), cornifelin (cnfn), and s100 calcium-binding protein a16 (s100a16).
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4. Discussion

Salinity is an important abiotic factor that affects cod activity, distribution, and reproduc-
tion in the Baltic Sea. Due to climate change and increased precipitation in northern latitudes,
salinity in the Baltic Sea has been expected to decrease [7]. Areas with sea surface salinity less
than 7 ppt have expanded since the 1970s, and could cover the whole Baltic Sea in the coming
decades [50,51]. The western and eastern Baltic cod populations have already adapted to the
marginal salinity of the Baltic Sea [9,52]. The ongoing salinity decline may cause the relocation
of cod, e.g., migration of the EBC stock towards the south and west directions. Previous studies
have showed the coexistence of WBC and EBC in the Arkona Sea due to differences in depth
distribution (WBC occurred mainly in shallower waters <20 m, while EBC were found in
deeper waters from 40 to 70 m) [53]. In another scenario, due to genetic differences between
stocks, salinity stress may induce selective mortality and local extinction [9].

Previous studies on the adaptation of Atlantic cod to low salinity in the Baltic Sea
showed that the mechanisms may be different in divergent subpopulations of cod, which
may contribute to a strong and effective reproductive barrier [14,16,34]. However, large-
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scale research on gene expression has not been conducted. In the present study, the genome-
wide oligonucleotide DNA microarray was employed to compare transcriptomic responses
to salinity changes in the western and eastern Baltic cod subpopulations represented by
fish from the Kiel Bight (KIEL) and the Gulf of Gdańsk (GDA), respectively. The results
are in accordance with our previous studies using the RT-qPCR method and transcriptome
sequencing [13,14,32]. All individuals used in this study have also been measured in
length and weight and showed statistically significant differences between the WBC and
EBC subpopulations (Figure 3), which is consistent with previous studies [54]. These
results showed a poor condition of the EBC, which may cause difficulties in recovery of
the stock [55]. A comparison of the magnitude of expression changes between the GDA
and KIEL groups revealed that during salinity reductions, the GDA groups responded
more robustly; this may indicate that the EBC subpopulation is better positioned for a
low salinity future. Further, we found that these two subpopulations displayed different
expression patterns (presumably adaptive responses) to salinity fluctuations. Despite
several similarities, 400 DEGs showed statistically significant differences between the KIEL
and GDA groups at different time points and salinities. These results provide new insights
into the molecular mechanisms underlying salinity adaptation in Baltic cod subpopulations.

The analysis of gene expression revealed many subpopulation-dependent genes in-
volved in immune defense in WBC and EBC, thus indicating that salinity fluctuations have
a complex effect on the immune system, which is in accordance with previous studies in
teleosts [5,40]. Changes in immune-related pathways, in turn, can affect susceptibility to
bacterial, viral, and parasitic infections [56]. Among the subpopulation-dependent genes,
there were several transcripts belonging to pattern recognition receptors (PRRs). PRRs are
the key sensors of the innate immune system that respond to conserved molecular patterns
of microorganisms [57]. Two types of PRRs have been identified in this study, including
nucleotide oligomerization domain (NOD)-like receptors (NLRs) and c-type lectin receptors
(CLRs). CLRs that include L-rhamnose-binding lectins (csl2-like and sml-like) showed a
subpopulation-dependent pattern during salinity fluctuations throughout the course of
time, while fish egg lectins (fels) were regulated during salinity elevation. These results
suggest that different types of CLR are activated during salinity fluctuations in Baltic cod.
In addition to pattern recognition, lectins are involved in inflammation, agglutination,
phagocytic reactions, cell proliferation, protein folding, RNA splicing, and molecular traf-
ficking of molecules [58]. Furthermore, transcripts belonging to the NLR family (nlrp3 and
nlrc3) showed a subpopulation-dependent pattern under all salinities and times. NLRs play
a crucial role in the inflammatory response by forming an inflammasome in the cytosol to
protect the organism from pathogens and environmental factors [59]. The results of this
study suggest that NLRs may act as sensors to salinity stress, which is in agreement with
previous studies in grass carp (Ctenopharyngodon idella) [60]. In particular, the expression of
CLRs and NLRs in the GDA and KIEL subpopulations depends on the transcript variant,
which is in accordance with our previous study, and indicates that alternative splicing
supports the response to the variable salinity environment in Atlantic cod [14]. In this study,
cfh, cd59, and plat (involved in complement cascade) showed different expression patterns
between the EBC and WBC subpopulations. Complement components recognize, opsonize,
phagocyte pathogens and promote the inflammatory response [61]. Previous studies have
indicated that the complement system response may be salinity specific [62]. In coho
salmon (Oncorhynchus kisutch) gill tissue, members of this pathway were both down- and
up-regulated in response to salinity stress [40]. After 1 h post-salinity change, the lysozyme g
showed differential expression between the EBC and WBC subpopulations. The lysozyme
is a lytic enzyme that lyzes pathogens, and is involved in opsonization, phagocytosis, and
activation of the complement cascade [61]. In accordance, previous studies in Takifugu fas-
ciatus and common carp (Cyprinus carpio) revealed that salinity had an impact on lysozyme
activity [63,64]. In another study, lysozyme g activity was associated with complement
activity in Tilapia (Oreochromis mossambicus) after transfer to saltwater [65]. Additionally,
the gene identified as piscidin belonging to teleost-specific antimicrobial peptides (AMPs)
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showed a subpopulation-dependent pattern as salinity declined. Piscidin is involved in
the innate immune response and exhibits antimicrobial activity against various bacteria,
viruses, fungi, and parasites [66]. Previous studies have shown that piscidin can alter plasma
membranes via pore formation [66], and its expression may be affected by acute stress [67].
Together, AMPs, complement components, lectins, and lysozymes create fish mucosal
immunity [61]. The mucus layer is a barrier between organisms and the environment, and
in addition to its immunological role, it may be involved in osmoregulation [68,69]. Other
important constituents of mucus are high molecular weight glycoproteins called mucins.
In this study, the expression of several types of mucin differed between the EBC and WBC
subpopulations, depending on the course of salinity. Muc2 was common among all salini-
ties, I-muc showed subpopulation-dependent patterns at low salinity, while muc5ab and
muc5b during salinity increased. Further, st3 beta-galactoside alpha-2,3-sialyltransferase 1
(st3gal1), involved in mucin type O-glycan biosynthesis, showed different expression pat-
terns between the GDA and KIEL groups. Previous studies on Atlantic salmon (Salmo salar)
have revealed that the glycosylation process may differ within and between species [70,71].
The expression of mucin transcripts involved in salinity was identified in Arabian pupfish
(Aphanius dispar) [38], and the salinity-driven modification of mucins has been studied
in Atlantic salmon [72]. Mucus cells were activated in the gills of Japanese eel (Anguilla
japonica) after their transfer to seawater [69]. These results suggest that mucin secretion
may be important in adapting to salinity fluctuations in cod from the Baltic Sea and differ
between western and eastern subpopulations. Osmotic stress might also affect the innate
immune response of fish [73]. In this study, many transcripts annotated as aep1 were
identified during salinity fluctuations, and most of them showed subpopulation-dependent
patterns. Aep1 belongs to the pore-forming proteins (PFPs), widely distributed among
teleost genomes, which efficiently kill targets due to the damage to membrane cells by
forming a transmembrane pore [74,75]. Studies on aerolysin-like isoforms of zebrafish
(Danio rerio) showed that they function as innate immune molecules [76]. So far, its involve-
ment in osmoregulation is unknown; however, natterin was also regulated via salinity in
Arctic charr (Salvelinus alpinus) [77]. Together, these results suggest that salinity fluctuations
affect immune-related genes depending on the Baltic cod subpopulation, which affect their
immune cascade and, thus, their ability to detect pathogens.

In the present study, salinity stress affected the expression of genes related to pro-
grammed cell death (PCD), including the apoptosis, necroptosis, and p53 signaling path-
ways. Between these genes, several caspases (casp2, casp8, and casp13), proteins from the
Bcl2 family (bax, bcl2l14, and bnip3), and members of the tumor necrosis factor receptor
superfamily (tnfrsf9, tnfrsf10b, tnfrsf14, and tnfrsf15) showed a subpopulation-dependent
response. Caspases are highly conserved intracellular cysteine-dependent proteases known
for their critical role in mediating apoptosis and inflammatory responses [78]. According to
this study, casp8 previously showed population-dependent regulation in killifish (Fundulus
heteroclitus) [79]. The members of the Bcl2 family regulate cell apoptosis by inducing or
repressing cell death [80]. Different alterations in bax/bcl2 expression ratios can affect
mitochondrial cytochrome c release [81], thus inducing cell apoptosis [82]. TNFSFs are in-
flammatory cytokines that are involved in a variety of pathways ranging from inflammation,
lymphocyte maturation, and apoptosis to lymphoid and epithelial tissue development [83].
The influence of salinity on apoptosis has been observed in coho salmon [40] and Arabian
pupfish [38]. According to previous studies, programmed cell death is one of the steps in
remodeling the gill epithelium in response to salinity fluctuations [38,84].

In this study, genes encoding components of the cytoskeleton and extracellular matrix
(ECM) involved in cell structure, motility, intercellular communication, and morphogenesis,
such as col10a1, myh3, myh7, myl3, myl10, fn1, des, and lox, showed differences between
the EBC and WBC subpopulations. Lox is an enzyme that plays a role in ECM remodeling
by cross-linking collagen and elastin [85]. Additionally, genes involved in keratinization
(krt13, cnfn, and s100a16) were differentially expressed in the KIEL and GDA groups in
response to increased salinity. During the keratinization process, keratins accumulate inside
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epithelial tissue cells to form a barrier, thereby reducing water loss during dehydration, as
seen in Arabian pupfish following salinity [38]. Similar results were obtained in the gills
of coho salmon after acclimatization to salinity [40]. Gill epithelium remodeling regulates
cell adhesion and signaling [86] and is a well-known component of osmoregulation in fish,
studied via transcriptome analysis in rainbow trout (Oncorhynchus mykiss) gill ionocytes in
freshwater and seawater [87].

Endocrine regulation, including thyroid hormones, is important in salinity acclimati-
zation in euryhaline fish [88]. Studies on the osmoregulatory system in Siberian sturgeon
(Actipenser baeri) highlighted the importance of the thyroid hormone signaling pathway
in this process [36], which has also been confirmed by results from this study. Thyroid
hormones regulate carbohydrate, lipid, and steroid metabolism. Additionally, NKA activity
and epithelium density can be significantly modified by thyroid hormones during salinity
fluctuations [89]. In this study, thyroid hormone signaling was one of the most enriched
pathways, and transcripts such as dio1, prkca, pik3ca, notch2, and crebbp were differentially
expressed between the EBC and WBC subpopulations. These results suggest that the
impacts of salinity on thyroid hormone homeostasis and the activity of the presented genes
depend on the cod subpopulation.

Alterations in the metabolic pathways in response to salinity have been observed in
various species [90,91]. The results of this study revealed that salinity fluctuations cause
subpopulation-dependent effects on lipid metabolism in Baltic cod. Lipids provide energy to
maintain osmotic balance and regulate membrane structure [92,93]. A study on Nile tilapia
suggested that fish may use lipids as their main energy source under osmotic stress [37].
Among the DEGs identified, acsbg2 and fabp1, involved in fatty acid metabolism, were
differentially regulated during the decrease and increase. These genes were also altered in
response to salinity in the delta smelt (Hypomesus transpacificus) [94] and in the tongue sole
(Cynoglossus semilaevis) [95]. Moreover, ceramide synthases (cers2, cers3, and cers4) showed
a subpopulation-dependent trend at low and high salinity, depending on the transcript
variant. Ceramide synthases reside at the center of sphingolipid metabolism by producing
ceramides through de novo synthesis or degradative pathways [96]. Previously, cers2 was
down-regulated in Arctic charr [77] and up-regulated in juvenile Nile tilapia [37]. In this study,
the genes cyp1a1, cyp1a2, and cyp2d15 that encode cytochrome P450 (CYP) enzymes showed
subpopulation-dependent patterns. CYPs are involved in the transformation and metabolism
of many endogenous and exogenous compounds in fish, including the biodegradation of
xenobiotics. In teleosts, cyp1a1 has been suggested as an indicator of chemical stress [97],
and its important role in acclimatization to higher salinity has been reported in rainbow
trout and coho salmon [87,97]. In summary, these results indicate differential metabolic
reprogramming in subpopulations of EBC and WBC in response to salinity.

5. Conclusions

Gene expression analysis using an oligonucleotide microarray showed the complexity
of salinity adaptation in cod from the Baltic Sea, and revealed that eastern and western cod
subpopulations respond differently to fluctuations in salinity. Among the subpopulation-
dependent genes were those involved in the immune system, which could thus affect sus-
ceptibility to pathogens. Moreover, the EBC and WBC subpopulations differ in metabolism
reprogramming, gill remodeling, and programmed cell death. This study provides the first
general insight into the pathways and functional categories involved in the response of two
Baltic cod subpopulations to salinity fluctuations.
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dependent genes.
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