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Hyperspectral imaging benchmark based on machine learning
for intraoperative brain tumour detection
Raquel Leon 1,11✉, Himar Fabelo 1,2,11✉, Samuel Ortega1,3, Ines A. Cruz-Guerrero 4,5,6, Daniel Ulises Campos-Delgado 4,7,
Adam Szolna8, Juan F. Piñeiro7, Carlos Espino8, Aruma J. O’Shanahan8, Maria Hernandez8, David Carrera8, Sara Bisshopp8, Coralia Sosa8,
Francisco J. Balea-Fernandez1,9, Jesus Morera8, Bernardino Clavo 2,10 and Gustavo M. Callico 1

Brain surgery is one of the most common and effective treatments for brain tumour. However, neurosurgeons face the challenge of
determining the boundaries of the tumour to achieve maximum resection, while avoiding damage to normal tissue that may cause
neurological sequelae to patients. Hyperspectral (HS) imaging (HSI) has shown remarkable results as a diagnostic tool for tumour
detection in different medical applications. In this work, we demonstrate, with a robust k-fold cross-validation approach, that HSI
combined with the proposed processing framework is a promising intraoperative tool for in-vivo identification and delineation of
brain tumours, including both primary (high-grade and low-grade) and secondary tumours. Analysis of the in-vivo brain database,
consisting of 61 HS images from 34 different patients, achieve a highest median macro F1-Score result of 70.2 ± 7.9% on the test set
using both spectral and spatial information. Here, we provide a benchmark based on machine learning for further developments in
the field of in-vivo brain tumour detection and delineation using hyperspectral imaging to be used as a real-time decision support
tool during neurosurgical workflows.
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INTRODUCTION
In 2020, brain and central nervous system (CNS) cancer was the
twelfth most common cancer in terms of mortality, with an
estimated 308,102 incident cases, associated to 251,329 deaths
worldwide for both sexes and all ages1. These numbers are
expected to increase by 38.5% and 43.7% for incidences and
mortality, respectively, for 20402. In the young population under
35 years of age, it was the second most common cancer in terms
of mortality (31,181 deaths) after leukaemia1, while in children
under 14 years old, it was the second most common cancer in
terms of both morbidity and mortality (24,388 incident cases/
11,889 deaths) worldwide1. Particularly, brain tumours account for
>90% of occurrence within CNS cancers, linked to high mortality
and morbidity, especially in paediatric cases3,4.
Brain tumours are divided into primary and secondary (also

called metastatic) tumours. Primary tumours appear in the brain,
while secondary tumours appear elsewhere in the body and, then,
metastasize to the brain5. Primary tumours are also divided into
low-grade (LG) and high-grade (HG) according to their malignity.
LG tumours include grades 1 and 2 (G1 and G2), while HG tumours
correspond to grades 3 and 4 (G3 and G4), being glioblastoma
(G4) the most frequent (~50%) and deadly (5-year survival rate of
5.5%) primary brain tumor6. The new grade Arabic numbering has
been recently introduced in the 2021 WHO (World Health
Organization) classification of CNS tumors7. Moreover, brain
tumours can be intra-axial, which are located within the brain
parenchyma and arise from the brain cells, or extra-axial, which

are located outside the brain parenchyma and arise from the
structures lining or surrounding it (e.g., meninges)8.
Surgical resection is the most common treatment for primary

brain tumours, especially for diffuse gliomas, since the early and
total resection of the tumour increase the overall survival rate (e.g.,
5-year survival rate of 50% for diffuse astrocytoma and 81% for
oligodendroglioma6). In this sense, the extent of resection
increases the survival rates of patients with all types of gliomas.
However, to achieve maximal resection, neurosurgeons need to
determine the precise limits of the tumour during surgery using
imaging-guiding techniques9. Additionally, neurosurgeons must
avoid damaging normal tissue, which can lead to neurological
deficits in patients and thus affect their quality of life (QoL)10.
Current intraoperative imaging guidance techniques have several

limitations9. Image-guided stereotactic (IGS) neuronavigation is
based on pre-operative imaging, such as standard magnetic
resonance imaging (MRI), T1-weighted gadolinium-enhanced (T1G),
T2 (T2w) or fluid attenuation inversion recovery (FLAIR). Nevertheless,
IGS is affected by the brain shift phenomenon produced due to
changes in tumour volume caused by craniotomy11. Intraoperative
MRI (iMRI) requires specialised operating theatres and equipment,
increasing the time and cost of surgery12. Ultrasound (US) is a less
expensive alternative to iMRI that provides real-time imaging not
affected by navigation inaccuracy or intraoperative changes (like in
IGS). However, it has problems related to artefacts (blood, haemo-
static material, bones, etc.) and requires long training periods to
create high-quality images, resulting in 2D images that are difficult to
interpret13. Intraoperative fluorescence imaging, such as
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5-aminolevulimic acid (5-ALA) or fluorescein sodium (FS) are
commonly used in brain surgeries for delineating tumour boundaries.
Nonetheless, these fluorescence agents do not detect the majority of
LG gliomas and must be orally administered to the patient, possibly
producing side effects14,15. Consequently, there is still room for new
research in imaging modalities and methods that could overcome
these limitations, offering substitute or complementary approaches
to the current state-of-the-art techniques16. There is a current
necessity to develop new imaging acquisition and visualization
systems to provide quick, detailed, accurate and highly personalised
diagnostics for optimal decision-making during neurosurgical
procedures, improving the outcomes in the QoL of the patient and
reducing the errors, surgical times, and costs.
In this sense, hyperspectral (HS) imaging (HSI) is an emerging

technique capable of providing label-free, non-contact, near real-
time, and minimally-invasive intraoperative guidance by using
non-ionizing illumination and without employing any contrast
agent17, hence being totally harmless for the patient. HS images
are formed by hundreds of narrow spectral channels within and
beyond the visual spectral range (Fig. 1a). This technique provides,

for each pixel, a continuous spectrum that allows the identification
of the tissue, material or substance present in the captured scene
based on its chemical composition18.
In recent years, medical HSI has started to achieve promising

results in many different specialities (e.g., oncology19,20, digital and
computational pathology21, ophthalmology22, dermatology23,24 or
gastroenterology25,26) through the utilization of cutting-edge
artificial intelligence (AI) algorithms and thanks to the increased
modern computational power27,28. Promising results are being
achieved in different types of cancer using HSI19. Particularly, HSI
has been widely studied in the literature for gastrointestinal
cancer in both in-vivo and ex-vivo tissue samples, including
stomach, liver, oesophagus, pancreas, and colorectal cancer26. For
example, Tsai et al. presented a new method using HSI and deep
learning (DL) to diagnose in-vivo oesophageal cancer, improving
accuracy by 5% compared to RGB (red-green-blue) images29. In
the field of head and neck cancer, Eggert et al. combined the use
of HSI and DL to discriminate between healthy and tumour tissue
in laryngeal, hypopharyngeal, and oropharyngeal mucosa, reach-
ing an accuracy of 81%30. In addition, in the field of dermatology,

Fig. 1 Proposed intraoperative HSI approach for surgical assistance. a HSI concept explanation. b Synthetic RGB images of a surface-layer
tumour (left) and a deep-layer tumour (right). Tumour area is surrounded in yellow by a clinical expert. c HS data acquisition and labelling
procedure during surgery. In the ground-truth map, red represents tumour tissue (TT) labelled pixels, green normal tissue (NT) pixels, blue
blood vessel (BV) pixels, and black background (BG) pixels. Meanwhile, white represents non-labelled pixels. VIS Visual; VNIR Visual and Near
Infrared; SWIR Short-Wave Infrared; MIR Mid-Infrared; SRGB Synthetic Red-Green-Blue.
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this technology has been extensively used to study in-vivo skin
cancer lesions31,32, however there is a lack of large, high-quality
datasets of HS skin lesion images to develop trustworthy AI-based
algorithms that will improve current results achieved with
standard RGB images23. Additionally, HSI is becoming a tool not
only for cancer detection, but also for the diagnosis of other
diseases, such as biomarker discovery and validation33 or tissue
perfusion measurement34. For example, it can provide an early
diagnosis of diabetic retinopathy, as symptoms are not presented
at the early stages of this disease35 or potentially identify
biomarkers for the non-invasive detection of Alzheimer’s disease
through in-vivo retinal HSI measurements36. Moreover, HSI has the
potential to be used during awake brain surgery to identify
eloquent brain areas adjacent to tumours (already explored in
functional ultrasound imaging37).
Previous works from this group have evaluated, as a proof-of-

concept, the use of HSI and data processing frameworks,
particularly machine learning (ML) and DL algorithms, for
intraoperative brain tumour detection and delineation using a
limited set of images and patients, employing a leave-one-patient-
out cross-validation, and focused in glioblastoma detection38–40. In
this work, a more exhaustive spectral characterization of the
different tissue and tumour types with an increased dataset is
provided, as well as a more robust generation and validation of
the classification results obtained using both the spectral and the
spatial information for tumour delineation and identification
targeting pathology-assisted surgery with real-time performance.

RESULTS
Spectral characterization of brain tissue
Sixty-two HS images obtained from 34 different patients
(Supplementary Table 1) were captured and labelled to create

ground-truth maps (GTs) following a specific protocol for data
collection (Fig. 1b, c) (see Methods). Four classes were established:
tumour tissue (TT), normal tissue (NT), blood vessel (BV), and
background (BG). Raw HS data were pre-processed (see Methods)
to standardize and reduce the noise of the spectral signatures.
Statistical differences were found between all the medians of each
spectral channel when comparing TT vs. NT (Fig. 2a) and TT vs. BV
(Fig. 2b) using the paired two-sided Wilcoxon Rank Sum test at 5%
of significance level. High standard deviation values were
obtained in the spectral signatures due to the interpatient
variability and also the different tumour types included in the
database. Additionally, the intraoperative HS data acquisition
during surgery is a complex procedure that can be affected, in
some cases, by the non-flat brain surface (Fig. 1b). These irregular
surfaces can affect the illumination conditions, and, hence, the
image focus in certain areas, reducing the reflectance values and
increasing the noise of the spectral signature respect to the more
focused areas. For this reason, a complete pre-processing chain
(see Methods) was applied to the HS data, where each spectral
signature was normalized as minimum 0 and maximum 1 to only
consider the shape of the signature in the processing algorithms
computation. Additionally, a decimation process was applied to
reduce the dimensionality of the data in the spectral dimension
and, hence, the computational cost of the processing
algorithms41.
The mean spectral signatures of TT, NT, BV were converted to

absorbance values (Fig. 3) to be represented and compared with
the molar extinction coefficient of oxyhaemoglobin (HbO2) and
deoxyhaemoglobin (deoxyHb)42. Absorbance values of all classes
increase between 500 and 600 nm (Fig. 3a,c,e), due to the
existence of two HbO2 absorbance peaks ( ~ 540 and ~575 nm)
and one deoxyHb absorbance peak (~555 nm) in this spectral
range43. Particularly, HbO2 peaks in BV are not detected (Fig. 3e),
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Fig. 2 Spectral characterization of different brain tissue and tumour types. Mean (solid lines) and standard deviation (std) (dashed lines) of
the entire labelled dataset after applying a basic pre-processing (calibration, extreme band noise removal, and noise filtering) and separated
by classes, including the corresponding p-value (magenta dots) computed for each spectral channel using the paired two-sided Wilcoxon
Rank Sum test at 5% of significance level between the two compared classes. a TT vs. NT class. b TT vs. BV class. c Primary vs. secondary
tumours. d HG vs. LG primary tumours. e G1 vs. G2 primary tumours. f G3 vs. G4 primary tumours.
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probably because we labelled veins and arteries indistinctly,
involving HbO2 and deoxyHb characteristics. Higher absorbance
values were found in TT with respect to NT, but lower than BV.
Moreover, an absorbance peak was found at ~760 nm (Fig. 3b, f)
related to deoxyHb44,45. Our spectral data reveal that the
contribution of deoxyHb is the highest in BV (Fig. 3f), having a
lower contribution in TT (Fig. 3b). However, this contribution is not
found in NT (Fig. 3d). This difference between NT and TT could be
mainly related to the lack of oxygenation in the brain tissue
affected by cancer46.

Spectral characterization of different brain tumour types
As stated in the introduction section, brain tumours can be
subdivided into different subtypes depending on their origin
(primary/secondary) or the grade of malignity in the case of
primary tumours. Regardless of tumour grade and origin, there is
an absorbance peak (reflectance valley) around 760 nm (Fig. 2c–f)
related to deoxyHb44. Secondary tumours present lower standard
deviation values than primary ones (Fig. 2c). However, this fact can
be related to the reduced number of patients affected by
secondary tumours in our database, and the reduced number of
labelled pixels with respect to the primary type. Despite of this,
statistical differences between the medians of each spectral
channel were found at 440–599, 602–756 and 769–909 nm
spectral ranges. HG and LG primary tumours present similar
reflectance and standard deviation values (Fig. 2d). Nonetheless,
statistical differences were found at 466–510, 522–549, 559–572
and 580–909 nm spectral ranges (Fig. 2d). Considering the tumour
grades of primary tumours (Supplementary Fig. 1), statistical
differences were found between the medians of all spectral

channels of G1 and G2 tumours (Fig. 2e), whereas in the case of G3
and G4 tumours (Fig. 2f), only the 440–460, 578–644, 745–764 and
779–909 nm spectral ranges were found to be statistically
different.

Brain tissue classification based on spectral information
The HS data collected intraoperatively was used as input for ML
and DL-based algorithms (i.e., random forest (RF), k-nearest
neighbours (KNN) using Euclidean (KNN-E) and Cosine (KNN-C)
distances, support vector machines (SVMs) using the linear (SVM-
L) and radial basis function (SVM-RBF) kernels, and a two-layer
deep neural network (DNN)) and unmixing-based methods (i.e.,
linear extended blind end-member and abundance extraction
(EBEAE) and nonlinear extended blind end-member and abun-
dance extraction (NEBEAE)) to generate classification models
capable of distinguishing between the four different classes (TT,
NT, BV, and BG). Labelled data were used to train and optimize the
hyperparameters of the algorithms and to quantitatively evaluate
the results on the test set (see Methods). Due to the high
computational cost required to train the ML/DL algorithms,
training data were reduced to 1000, 2000, and 4000 pixels per
class, following the method proposed in a previous work41. In
general, during the optimization process using the macro F1-Score
metric independently to the training data reduction used
(Supplementary Figs. 2–4), the results tend to stabilize at a certain
hyperparameter for all the five folds (Supplementary Table 2–4).
No statistically significant differences were found between the

three training data reductions (Fig. 4a). Hence, the use of 1,000
pixels per class allowed to reduce the time required for training
the model (particularly for the SVM-based implementations)
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Fig. 3 Spectral characterization of TT, NT, and BV classes and their relationship with HbO2 and deoxyHb. Mean absorbance values of the
entire labelled dataset separated by classes (solid lines) after applying a basic pre-processing (calibration, extreme band noise removal, and
noise filtering) and molar extinction spectra (dashed lines) of HbO2 and deoxyHb. a TT class between 440 and 650 nm. b TT class between 650
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without compromising the classification performance. For this
reason, we selected this training data reduction for the
subsequent experiments. Additionally, our results show that
statistically significant differences were found between the
unmixing-based methods and the ML-based ones, obtaining

lower classification performance. The highest median macro F1-
Score result was obtained with the SVM-RBF model (78.4 ± 5.1%),
but no statistically significant differences were observed between
this algorithm and the others (except for EBEAE and NEBEAE). The
highest average overall accuracy (OA) was also reached by the
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SVM-RBF (91.5 ± 4.7%), but the highest TT sensitivity (65.9 ± 13.1%)
was obtained with the DNN (Fig. 4b). Average specificity results
were >90% for the ML and DL-based approaches.
Qualitative results, extracted from the validation set and

obtained after applying the supervised classification model
(generated using 1,000 pixels per class and the optimal
hyperparameters) to the entire HS image, show the pixel-wise
identification of both labelled and non-labelled pixels (Fig. 4c and
Supplementary Fig. 5). As expected, according to the quantitative
results (Fig. 4a,b), the unmixing-based methods (EBEAE and
NEBEAE) increase the number of false positives and false negatives
in the classification maps, particularly in Op35C1 employing
EBEAE, where the normal tissue is identified as tumour, and
Op57C1 using NEBEAE, where tumour areas are identified as
normal tissue. The remaining classifiers achieve more consistent
results, although the SVM-based and DNN algorithms improve the
identification of the tumour areas in Op42C2 and Op57C1 (only
using SVM-L and DNN).

Brain tumour identification and delineation based on spatial-
spectral information
Following the approach proposed in a previous work38, the use of
the spatial information available in the HS images was included to
evaluate the possible improvement of the classification results and
to reduce the false positives found in the supervised classification
maps computed based only on the spectral information (see
Methods). We have compared the quantitative results of the
validation set (Fig. 5a) using only the spectral information
(Spectral), applying the KNN filtering to include also the spatial
information (Spatial/Spectral) and combining the spatial-spectral
supervised classification with an unsupervised segmentation
through a majority voting (MV) approach (Majority Voting). Our
results reveal that the inclusion of the spatial information
increases the median macro F1-Score results (0.4-7.7%), reducing
the standard deviation (0.2–3.7%), in all algorithms, except for the
unmixing-based approaches. However, no statistical differences
were found between these results. Additionally, it is worth
noticing that the Majority Voting results achieved lower median
results and increased the std. Nonetheless, this lower performance
could be motivated by the construction of the output classifica-
tion map in the MV approach, which is obtained by considering
only the majority class assigned to each cluster of the
unsupervised hierarchical k-means (HKM) map. At the Spatial/
Spectral stage, the SVM-RBF reached the highest average OA
(92.3 ± 4.6%), but the DNN obtained the best average TT
sensitivity (68.9 ± 14.3%), closely followed by the SVM-L algorithm
(67.7 ± 19.3%) (Fig. 5b).
The qualitative results of each step of the proposed algorithm

have been analysed, where the supervised map represents, as an
example, the classification map generated using only spectral
information with the DNN method (Fig. 5c and Supplementary Fig.
6). The PCA (Principal Component Analysis) map represents, in a
false colour intensity map, the first principal component where the
more important information contained in the HS image is
relocated in a low dimensional space. For example, in Op8C1

(Supplementary Fig. 6), the tumour area is partially highlighted
with more intensity values (between the two rubber ring markers
on the right of the image). The KNN-Filtered map offers a
smoothed version of the supervised map, where the spatial
properties of the HS image are used (by combining the
information of the probability maps generated by the supervised
classifier and the PCA map). This approach reduces the granularity
of the supervised map, providing more homogeneous class
regions. This Spatial/Spectral classification was combined with an
unsupervised segmentation (HKM map) that identifies 24 different
regions (or clusters) in the HS image according to their similar
spectral characteristics, providing a very accurate delineation of
different structures but without any identification of the tissue,
material or substance that each cluster represents. For this reason,
the information provided by the HKM map was merged with the
KNN-Filtered map by means of a MV approach38, where each
cluster is labelled by the majority class within it. In the MV map
(Fig. 5c), the boundaries between different class regions are
determined by the HKM map, while the identification of each
cluster class is defined by the KNN-Filtered map. However, in these
maps, only the information relative to the class with the majority
number of pixels in each cluster is shown. Hence, as a surgical
visualization tool, we proposed to combine the information
provided by the three maximum probability values (classes NT,
TT, and BV) of the MV approach, by mixing the RGB colours in each
cluster according to the percentage of pixels covered by each
class in such cluster (i.e., the R channel corresponds to the
percentage of TT pixels, the G channel to NT pixels, and the B
channel to BV pixels). For example, a cluster represented by a
bright red, green or blue colour denotes it belongs to only one
single class (TT, NT, or BV, respectively). In contrast, any other
colour represents a combination of classes in a cluster (e.g., purple
colour represents a mixture between TT and BV classes that
commonly happens in certain blood vessels, hypervascularized
areas or extravasated blood, see Op42C2, Op35C2 or Op57C1 in
Fig. 5c and Supplementary Fig. 6). This resulting map is called
three maximum density (TMD) map38 (Fig. 5c).
After performing all the analysis and hyperparameter optimiza-

tions of the algorithms using the validation set, the test sets of the
different k-folds were evaluated (Fig. 6a). Quantitative results of
the macro F1-Score metric show, as expected, a performance
reduction in the test set of 0.5-1% respect to the validation one,
providing the best median score of 70.2 ± 6.3% using the DNN
algorithm in the Spatial/Spectral approach. Similar average OA
results are obtained using SVM-L (86.6 ± 5.5%) and DNN
(86.8 ± 3.4%) as supervised classifiers, while a slight increase of
the SVM-L average TT sensitivity (57.8 ± 23.7%) respect to the DNN
(54.7 ± 21.9%) is obtained (Fig. 6b). Specificity average results are
in general >90% in all ML and DL-based approaches for all classes.
Some examples of the TMD maps of the test set (Fig. 6c) show

that the glioblastoma cases (Op12C1, Op15C1, Op39C2, Op43C1,
and Op43C2) delineate in red the tumour areas, as expected by
neurosurgeons (marked in yellow over the synthetic RGB images).
Particularly, Op15C1 presents some decoloured red/orange/purple
areas that could represent the infiltrative nature of glioblastoma
tumours in the surrounding tissue. Moreover, the surrounding

Fig. 4 Spectral classification results of brain tissue. a Boxplots of the macro F1-Score results of the validation set for each training data
reduction and each classifier, including the 5 folds using the optimal hyperparameters in each classifier. In the plot, the centre line, the box
limits and the whiskers represent the median, the upper and lower quartiles and the 1.5× interquartile range, respectively. Two medians are
significantly different at the 5% significance level if their intervals (shaded colour areas) do not overlap. b Average OA, sensitivity, and
specificity results of the validation set from the 5 folds using the data reduction of 1000 pixels per class (error bars represent the standard
deviation). c Examples of SRGB images, GT maps and supervised classification maps generated using the EBEAE and DNN algorithms with the
optimal hyperparameters from different tumour types of the validation set. Approximate tumour areas were surrounded in yellow lines on the
SRGB image by the operating surgeon according to the intraoperative neuronavigation and the definitive pathological diagnosis of the
resected tissue. Rubber ring markers were employed in some cases (e.g., Op8C1) to indicate the area where the biopsies for pathology were
resected. Opx Operation number x; Cy Capture number y.
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blue areas could be related to the hypervascularized tissue that
surrounds the tumour, also including the blood vessels in such
regions (Op15C1 in Fig. 6c). The same fact can be visualized in
Op12C1, Op43C1, and Op43C2. In the case of Op20C1 and
Op39C1, the tumour is somehow revealed but not as a red area,
since the tumours are located in a deep layer of the brain tissue.
Op20C1 has not an additional image captured after the resection
started, since the tumour resection in such location of the brain
could cause serious damages and side effects to the patient, and,
additionally, the tumour boundaries were not clear enough to
perform a secure and effective resection. For such reason, the
operating surgeon decided not to operate the patient, prevailing

the QoL of the patient. On the contrary, after Op39C1 was
captured, the operating surgeon continued the tumour resection,
and a second image (Op39C2) was captured during resection,
where it is possible to observe the correct delineation of the
tumour area in a bright red colour. This was also the case of Op43,
but before starting the resection, the tumour was clearly visualized
in the brain surface, showing a possible infiltration in the
surrounding tissue (orange/purple colour in the upper-left part
of the tumour area).
Moreover, we qualitatively evaluated some examples of test

cases not related to high-grade gliomas (Fig. 6c). Firstly, Op35C1
presents a healthy brain surface, since the tumour was in a deep
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layer, where no false positives are present in the parenchymal
area, only those related to extravasated blood surrounding the
parenchymal area. In Op35C2 and Op41C2, it is possible to
observe that the proposed algorithm can identify not only high-
grade tumours but also low-grade tumours, a G2 oligodendro-
glioma and a G1 ganglioglioma, respectively. Finally, secondary
tumours are also detected by the proposed algorithm, as shown in
Op35C1 where a metastatic breast carcinoma is identified,
although some false positives surrounding the parenchymal area
are also presented. These false positives could be produced
because of the low quality of the image, where an optimal focus
was not achieved.

Comparison with previous related works in HSI and other
techniques
Different previously published works used the first data campaign
from the in-vivo HS brain database employed in this work. In 2018,
the hybrid framework used in this study, which combined
supervised and unsupervised machine learning methods to
perform a classification based on spatial and spectral information
was presented38. However, the study only employed 5 HS images
from 5 patients achieving an overall accuracy of 99.7% using an
intra-patient methodology, which commonly provides unrealistic
optimistic results. Later, the same framework was tested using the
complete first data campaign (36 HS images from 22 patients), but
only a qualitative analysis of the results was performed39. In 2019,
a DL approach was proposed to identify glioblastoma tumours
obtaining an OA of 80% following an inter-patient approach using
26 HS images from 16 patients, where only 8 HS images contained
tumour tissue pixels labelled, evaluating only these HS images in
the test set using a leave-one-patient-out cross-validation
methodology40. In 2020, another research employed a blind linear
unmixing method (EBEAE) to identify glioblastoma as a low
computational time cost alternative. This work employed 26 HS
images from 16 patients, where only 6 HS images contained
tumour tissue pixels labelled, achieving an OA of 76.1% using a
leave-one-patient-out cross-validation methodology47. Later, a
nonlinear unmixing approach based on a multilinear mixture
model (NEBEAE) was employed, performing an intra-patient
validation process with the same database. Using 2 HS images
from different patients the method achieved an OA of 97.9%48,
providing again unrealistic results that can be employed in a real-
world scenario. A method based on the fusion of multiple deep
models was proposed by Hao et al. to use the spectral and spatial
information to identify glioblastoma. The proposed method
achieved an OA of 96.6% for four-class classification and OA of
96.3% for glioblastoma identification adopting a leave-one-
patient-out cross validation technique using 7 HS images from 5
patients49.
Urbanos et al. presented a HS acquisition system to acquire and

process HS images during surgical environment using a snapshot
HS camera able to capture 25 bands along the spectral range from
655 to 975 nm50. An HS database composed of 13 HS images from
12 patient was employed to train SVM, RF, and convolutional
neural network (CNN) classifiers achieving the best OA result using
SVM (60.0%) and an intra-patient approach. Using the same HS
database, Martín-Pérez et al. performed a comparison between
non-optimized models with optimized models and employing an
intra-patient approach with 10 HS images from 9 patients51. This
comparison was performed using SVM and RF algorithms and
three different optimization methods: grid search, random search,
and Bayesian optimization. The study showed that the RF results
did not provide significant improvement when the model was
optimized with any of the three optimization methods. However,
the optimized SVM model improved the tumour identification.
Sancho et al. presented SLIMBRAIN52, a modification of the HS
system presented by Urbanos et al. that incorporated augmented

reality using a LiDAR (Light Detection and Ranging or Laser
imaging Detection and Ranging) camera. The classification results
obtained from the HS images were overlapped with the RGB point
cloud captured by the LiDAR camera and presented in an
augmented reality visualization.
In the field of surgical microscopes combined with HS cameras,

Mühle et al. integrated an HS camera into a neurosurgical
microscope for brain tumour resections53. In this proof of concept,
a single HS image was analysed using an RF classifier to
discriminate between healthy tissue, malignant tissue, vessels,
and background. Using a 5-fold stratified cross-validation meth-
odology, the RF classifier achieved an overall accuracy of 99.1%,
providing again unrealistic results to be extrapolated in real-world
scenarios. Puustinen et al. developed an operating microscope-
integrated HSI system for microneurosurgery as a monitoring tool
during neurosurgical operations54. As a proof of concept, two HS
images of in-vivo glioma tumours were labelled and used to train
and test different ML algorithms, achieving the best OA of 98.3%
and an accuracy to identify the glioma class of 97.7% using the
light gradient boosting machine algorithm. Giannantonio et al.
presented an intraoperative HS system based on a surgical
microscope coupled to a visual and near-infrared (VNIR) camera55.
In this study, the authors presented a dataset of low-grade
gliomas (grade 1 and 2) composed of 18 HS images from 5
patients. Different algorithms were used (RF, SVM, and MLP),
obtaining an OA of 92.0% using an intra-patient methodology.
Table 1 summarize and compare the current studies found in

the literature which employs HSI for in-vivo brain tumour
detection. In particular, a significant number of studies are based
on small datasets and focus primarily on the identification of high-
grade tumours. Moreover, these studies are developed to utilize
an intra-patient framework. In contrast, our work uses an extensive
and diverse database that includes the four tumour grades and
different tumour types, both primary and secondary. The use of
this database and the validation framework based on an inter-
patient approach and a three-way data partition (training,
validation, and test) combined with a 5-fold cross-validation
approach (see Methods section), allow us to obtain robust results
mitigating the risk of overfitting commonly caused by AI-based
algorithms.
As stated in the introduction, intraoperative fluorescence

imaging is able to provide real-time tumour identification in
surgical practice making use of a contrast agent previously
administered to the patient. In neurosurgical procedures, three
fluorescent contrast agents have been studied: FS, indocyanine
green (ICG), and 5-ALA56. The protoporphyrin IX (PpIX) fluores-
cence provides intraoperative visual differentiation between
healthy and malignant tissue during resection of high-grade
gliomas57. On the one hand, Molina et al. evaluated the use of 5-
ALA-induced PpIX fluorescence in malignant glioma surgery58. A
total of thirty-two patients with grades 3 and 4 brain tumours
were included in the study, performing 128 fluorescence margin
biopsies. The sensitivity of fluorescence to detect tumour tissue
was 70.8%. On the other hand, Valdes et al. evaluated the use of
PpIX in low-grade gliomas using seventy-three biopsies from 12
patients with grades 1 and 2 brain tumours59. In this study, the
authors identified significant concentrations of PpIX which imply
the potential for detecting low-grade tumours. Using ICG, Cho
et al. evaluated thirty-six patients with grade 4 brain tumours,
performing 78 biopsies60. The study achieved a sensitivity of
97.0% for the presence of NIR fluorescence to detect tumour
tissue. Additionally, Lee et al. evaluated the use of ICG
fluorescence agent during surgery using a NIR camera61. The
study analysed 14 patients with grade 1 and 2 meningiomas. The
NIR fluorescence system achieved a sensitivity of 96.4% to identify
tumour tissue after analysing 46 biopsies performed to such
patients. With FS, Acerbi et al. evaluated thirteen patients with
high-grade glioma62. The study analysed 50 biopsies achieving a
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sensitivity result of FS in identifying tumour tissue was 80.8%.
Sweeney et al. performed a study of 98 patients with grade 4
tumours who underwent surgical resection using FS63. A
sensitivity of 62.0% was achieved in the identification of tumour
tissue. These studies are summarized in Supplementary Table 5.
Currently it is not possible to make a fair comparison between

the results obtained from HSI systems and intraoperative
fluorescence imaging systems, due to the lack of rigorous clinical
studies to evaluate the actual accuracy of HSI systems. However, it
could be very useful to carry out this comparison in future clinical
studies by using HSI systems in real environments during brain
surgical procedures to test their usability, safety, efficacy, and
efficiency respect to the tools currently employed.

Preliminary post-hoc interpretability of ML models
In the healthcare domain, ML models cannot be considered as
“black box” models and need to be explainable and interpretable
in order to provide a rationale behind the decisions made by the
classifiers to identify a certain instance64. This can be carried out
by using explainable artificial intelligence, such as LIME (local
interpretable model-agnostic explanations)65, SHAP (Shapley
additive explanations)66 or TreeExplainer67, among others. As a
preliminary study, we have employed the LIME as a model-
agnostic post-hoc approach to highlight the most relevant
wavelengths considered by 4 out of the 6 ML models employed
in this study for each class. In order to simplify this preliminary
analysis, as an example, we have examined the ML models of RF,
KNN-E, KNN-C, and DNN trained with the training set of the fold 1
established in this study. The LIME implementation was executed
in the MATLAB Statistics and Machine Learning Toolbox version
12.2 (R2021b), using the ML model as the “black box” input. The
number of important predictors to be identified was set to the
maximum number of features of the HS data (i.e., 128 spectral
bands). The synthetic dataset was composed by 5000 samples.

Figure 7 shows the 10 most relevant spectral bands identified by
LIME extracted from the 128 spectral bands for each model and
class. Positive coefficients are represented at the top of the chart
and negative coefficients at the bottom, where the different
symbols represent the different ML models, and the higher size is
related to higher importance. The average spectral signature of
each class from the training set is also represented in the chart.
The results show that the initial (<464 nm) and last (>835 nm)
spectral bands are, in general, not included in the 10 most
important spectral bands for all ML models. Nonetheless, the
remaining wavelengths are considered relevant, especially those
associated with the HbO2 (~540 and ~575 nm) and deoxyHb
( ~ 555 nm and ~760 nm) absorbance peaks. It is worth noticing
that each ML model identifies different important spectral bands,
mainly due to the different strategies employed by each classifier
to extract the features from the HS data during the training
process. However, in some cases, the same spectral bands (or
adjacent bands) are highlighted by all classifiers. Supplementary
Fig. 7 shows the coefficient values and the related specific
wavelengths of these 10 most relevant bands for each classifier
and class.

DISCUSSION
This work demonstrates the high potential of HSI for in-vivo
identification of brain tumour tissue and its boundaries during
neurosurgical operations. We have developed an intraoperative
customized HS acquisition system, employed in three data
acquisition campaigns, to collect 61 HS images of exposed brain
surface from 34 different patients that underwent surgery due to
brain cancer or another disease that required surgery. Using this
extended database with respect to previous works38–40,47,48, we
have analysed the spectral characteristics of the brain tissue
(normal and tumour) and blood vessels, and the different tumour
types according to their malignancy grades (G1 to G4) and origin
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signature of the BG class. In the plot, the size of the markers represents the level of importance computed by LIME (higher size is related to
higher importance). Positive coefficients are represented at the top of the chart while negative coefficients are shown at the bottom. RF is only
evaluated with positive predictor importance values.
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(primary and secondary), performing a statistical analysis between
all the medians of each spectral channel when comparing the
different classes and tumour grades and origins. Moreover, a
robust 5-fold cross-validation approach was used to evaluate eight
different processing algorithms, first using only spectral informa-
tion, and then using both spatial and spectral information
following a processing framework that we previously developed38.
The spectral-based classification results obtained using the

validation set (Fig. 4a) showed that SVM-based and DNN methods
provided the best macro F1-Score results, although no statistical
differences were found among the other classifiers (except for the
unmixing-based methods, which provided less accurate results).
The qualitative results (Fig. 4c and Supplementary Fig. 5)
demonstrate the ability of the proposed HSI-based system to
identify not only high-grade gliomas (Op8C1), but also other low-
grade tumours (Op42C2 and Op35C2) and secondary tumours
(Op57C1). Moreover, these results show the capability of HSI to
accurately highlight the vascularization of the brain surface, being
especially remarkable in Op35C1 and Op42C2.
It is worth noticing that HS images captured in suboptimal

acquisition conditions, such as a lack of correct focus or
illumination, can introduce inappropriate spectral signatures
for training the algorithms and can produce inaccurate
classification maps. This limitation is particularly evident in
deep-layer tumours (Supplementary Fig. 8a), where it was not
possible to correctly focus the entire area of interest by using
our pushbroom-based HSI system. In the case of Op37C2
(Supplementary Fig. 8a), due to uncertainty at the time of
labelling the tumour pixels in the centre of the image, only NT,
BV, and BG classes were labelled. The average spectral
signatures (Supplementary Fig. 8b) reveal an acquisition
problem, possibly related to a lack of proper illumination, as
the reflectance values in the three classes decrease dramatically
in the infrared range (>700 nm). However, the DNN method
seems to overcome this handicap and correctly identify the
tumour area even using this non-optimal HS image.
The inclusion of spatial information improved the macro F1-

Score medians respect to using only spectral information,
although no statistical differences were found between these
results (Fig. 5a). After performing the hyperparameter optimiza-
tion process using the validation set, the test data of each k-fold
were processed providing both quantitative and qualitative results
(Fig. 6). The processing framework based on the DNN algorithm in
the Spatial/Spectral approach provided a macro F1-Score of
70.2 ± 7.9%, representing, as expected, a performance reduction
of 3.6% respect to the validation results. Qualitative test results
demonstrate the ability of the proposed framework to identify not
only HG gliomas (e.g., glioblastoma), but also LG and secondary
tumours (e.g., G2 oligodengroglioma, G1 ganglioglioma, meta-
static breast carcinoma) (Fig. 6c) and also extra-axial tumours (e.g.,
G1 meningioma).
The processing of the test dataset allowed us to identify some

HS image cases where the data acquisition conditions were not
optimal, producing some errors in the classification results
(Supplementary Fig. 9a), which may degrade the quantitative
results of the test sets. We found that in Op55C1 and Op55C2 the
classification results identified most of the pixels as tumour, and
only some parts related to background (Supplementary Fig. 9a).
After evaluating the spectral signatures of the labelled pixels in
such HS images, we found some differences in the infrared region
(from 700 to 900 nm) with respect to the other images. This
unusual behaviour was found also in Op56C2, where there is a
decrease in the reflectance values of the labelled spectral
signatures in the same infrared region (Supplementary Fig. 9b),
also producing wrong classification results where the parenchy-
mal area is identified as background (Supplementary Fig. 9a). The
low sensitivity of the HS sensor in this spectral range, coupled with

a possible misalignment of the light beam with the lens (due to an
improper focusing), could lead to this decrease in reflectance.
Despite these limitations, we have demonstrated with a robust

classification validation approach, the potential benefits of HSI for
brain tumour tissue identification, targeting a diagnostic support
system for guiding neurosurgical interventions in real-time. In
previous works, we demonstrated that it is possible to achieve
near real-time HS data processing using graphical processing
units, achieving processing times of ~6 s68. The proposed
intraoperative HSI-based acquisition system must be optimized
in further works by reducing the HS camera size, employing a
snapshot-based HSI technology (which is able to capture the
entire HS cube in a single shoot, providing also real-time
performance) and integrating it into a surgical microscope. This
new experimental setup will guarantee an improvement of the HS
image quality to solve the focus problems, especially for deep-
layer tumours. Additionally, an extensive clinical validation of the
proposed framework must be carried out, employing a large
number of patients and a multi-centre trial. This clinical validation
will perform a comprehensive pathological analysis of the entire
tumour area outlined by the TMD map (especially in the
boundaries between tumour and the surrounding normal tissue),
as well as correlate the results with the MRI information to verify
that the system can adequately identify tumour infiltration into
normal brain tissue, especially in HG gliomas. Additionally, the
relation between the improvement of the patient outcomes and
the use of the proposed system during the surgery could be
studied through the clinical validation.

METHODS
Study population
All patients over 18 years of age, with primary or secondary brain
tumours, undergoing brain surgery at the University Hospital of
Gran Canaria Doctor Negrín (Spain) who were capable of giving
informed consent for this study protocol before the surgery.
Patients were enrolled in three different data acquisition
campaigns (Fig. 8a) carried out between March 2015 to June
2016 (First Campaign), October 2016 to April 2017 (Second
Campaign) and July 2019 to October 2019 (Third Campaign).
Written informed consent was obtained from all the participant
subjects, including the publication of any potentially identifiable
images or data. Consent for publication was obtained from all
individuals who appears in the figures. The study protocol and
consent procedures were approved by the Research Ethics
Committee of the University Hospital Doctor Negrin (Ref 130069
for the first and second campaigns, and Ref 2019-001-1 for the
third campaign). All the research methodologies were performed
in accordance with relevant guidelines/regulations.

Study procedure
HS images were captured following the procedure (Fig. 1c)
previously described in detail69. First, a craniotomy was performed
to the patient by using IGS neuronavigation and then, the
durotomy was accomplished to expose the brain surface. Next, the
acquisition system was placed over the patient’s brain to acquire
the HS image. In some particular cases, rubber ring markers were
placed over tumour and normal tissue areas according to the IGS
system information to further identify the tissue type. After that,
tumour tissue was resected for neuropathological evaluation to
achieve the definitive diagnosis of the tumour. When possible,
more than one HS image were acquired while the tumour was
being resected.
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In-vivo hyperspectral brain database
HS images were manually cropped to select the region of interest
where the parenchymal area was exposed. Afterwards, the data
were labelled by using the information provided by the
neuropathologists and the knowledge of the operating surgeons,
using a semi-automatic labelling tool based on the spectral angle
mapper (SAM) algorithm developed for this purpose69. The GT
maps (Fig. 1c) were composed by four classes: TT (red colour), NT
(green colour), BV (blue colour), and BG (black colour). White pixels
in the GT maps represent the non-labelled pixels, as only those
with a high confidence of belonging to a particular class were
labelled. Several images in the database do not contain tumour
pixels due to the impossibility of performing a reliable labelling or
due to the patient underwent surgery for another pathology, such
as a blood clot or epilepsy.
Sixty-one HS images of exposed brain surface from 34 different

patients were included in the experiment after excluding several
HS images due to the inadequate capturing conditions (Fig. 8a).
Supplementary Table 1 summarizes the number of patients
(identified as Opx: operation number) and images (identified as
Cy: capture number) included from each data campaign, as well as
their image dimensions, number of labelled pixels and the
definitive pathological diagnosis.

Clinical data collection
A total of 61 HS images were acquired from 34 adult patients with
brain tumours. The summary of the patient demographics and
clinic data is shown in Table 2, while the detailed information is
presented in Supplementary Table 6. Ages ranged from 30 to
73 years, with a median age of 51.5 years. Among these patients,
there were 21 males and 13 females. Of these 34 patients, 28
(82.4%) had a primary tumour. The most frequency primary grade
was the G4 (44.1%, n ¼ 15), followed by G1 and G2 (14.7%, n ¼ 5

Table 2. Summary of patient demographic and tumour
characteristics.

Variable [patients with no
missing values/Total patients]

Characteristic Total (n) %

Sex [34/34] Male 21 61.8

Female 13 38.2

Age [33/34] Median 51.5 -

Range 30–73 -

Tumour Type [34/34] Primary 28 82.4

Secondary 6 17.6

Primary Tumour Grade [28/34] WHO Grade 1 5 14.7

WHO Grade 2 5 14.7

WHO Grade 3 3 8.8

WHO Grade 4 15 44.1

Metastasis [6/34] Breast 3 8.8

Lung 2 5.9

Kidney 1 2.9

Location [34/34] Right Frontal Lobe 3 8.8

Left Frontal Lobe 7 20.6

Right Parietal Lobe 7 20.6

Left Parietal Lobe 4 11.8

Right Temporal
Lobe

8 23.5

Left Temporal Lobe 1 2.9

Right Occipital Lobe 2 5.9

Left Occipital Lobe 1 2.9

Cerebellum 1 2.9

a

b

1st Fold
Training: n = 34; m = 23
Validation: n = 10; m = 5

Test: n = 17; m = 6

2nd Fold
Training: n = 37; m = 22
Validation: n = 11; m = 5

Test: n = 13; m = 7

3rd Fold
Training: n = 41; m = 22
Validation: n = 8; m = 5

Test: n = 12; m = 7

4th Fold
Training: n = 45; m = 22
Validation: n = 7; m = 5

Test: n = 9; m = 7

5th Fold
Training: n = 41; m = 22
Validation: n = 10; m = 5

Test: n = 10; m = 7

Total 
(n = 61; m = 34)

Excluded
(n = 5; m = 1)

Excluded
(n = 6; m = 0)

Excluded
(n = 13; m = 6)

Eligible 
1st Campaign

(n = 27; m = 16)

Initial 
1st Campaign

(n = 40; m = 22)

Eligible 
2nd Campaign

(n = 24; m = 10)

Eligible 
3rd Campaign
(n = 10; m = 8)

Initial
2nd Campaign

(n = 30; m = 10)

Initial
3rd Campaign
(n = 15; m = 9)

Density Map

1 cm

Raw HS Data

Preprocessing

Dimensional 
Reduction 

[PCA-1st component]

Supervised Classification 
[SVM-L, SVM-RBF, KNN-E, 
KNN-C, RF, DNN, BEAE, 

NEBEAE]

Unsupervised 
Segmentation

[HKM]

Spatial/Spectral Classification
[MV]

Spatial Filtering
[KNN Filter]

Fig. 8 Data partition and proposed processing framework. a Patient/image flow scheme of this work and data partition. n Number of HS
images, m number of patients. b Proposed processing framework to generate the density maps for intraoperative pathology-assisted surgery.
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each one), while the 8.8% (n ¼ 3) of the tumours were G3. The
remaining 6 (17.6%) tumours were secondary: 3 from breast
carcinoma, 2 from lung (one adenocarcinoma and one carcinoma),
and 1 from kidney (renal carcinoma). Most of tumours were
located in the right temporal lobe (23.5%, n ¼ 8), followed by the
left frontal and right parietal lobes (20.6%, n ¼ 7 each).

Intraoperative hyperspectral acquisition system
HS images of the in-vivo brain were obtained intraoperatively using
a custom HS acquisition system (Fig. 1b) previously described39 and
later improved70. In brief, the system was composed by a VNIR HS
pushbroom camera (Hyperspec® VNIR A-Series, Headwall Photonics
Inc., Fitchburg, MA, USA) able to capture 826 spectral channels in
the 400–1000 nm spectral range, having a spectral resolution of
2–3 nm and a maximum spatial resolution of 741 × 1004 pixels, due
to the pushbroommechanism for the data acquisition process39. An
illumination system based on a quartz tungsten halogen (QTH)
lamp of 150W coupled to a fibre optic cold light illuminator was
employed, avoiding the incidence of the high temperatures of the
QTH lamp in the exposed brain tissue. The working distance
between the HS camera lens and the brain surface was 40 cm, with
a pixel size of 128.7 µm and a maximum acquisition time of 60 s.

HS data pre-processing
Raw HS images were pre-processed to avoid the influence of
ambient illumination and dark currents of the HS sensor, and to
reduce dimensionality and noise following the procedure
previously described41. In brief, a raw HS image was calibrated
following Eq. (1), where CI is the calibrated image, RI is the raw
image, and WI and DI are the white and dark reference images,
respectively. The white reference was acquired in the same
illumination conditions that the raw HS image was captured, using
a standard white reference tile that reflects the 99% of the
incident light. The dark reference was obtained by keeping the
camera shutter closed, being used to correct the dark currents
produced by the HS sensor. Finally, a data smoothing approach
based on a moving average filter was applied for reducing the
high-frequency noise. Each smoothed value was averaged using a
window of five data points. Moreover, the extreme spectral
channels of the HS cube (the first 56 and the last 126 spectral
channels) were removed due to the low capabilities of the HS
sensor in these channels, which produces high noise in the
spectral signatures69. At this point, the HS cube is formed by 645
channels with an operating bandwidth between 440.5–909.1 nm.
HS cubes with this pre-processing chain were used for the spectral
characterization of the different tissue and tumour types. The
spectral signatures were also converted to absorbance (A)
following Eq. (2) to compare the spectra of the different classes
with the molar extinction coefficients of deoxyHb and HbO2,
where R is the reflectance value and λ represents each
wavelength.
In addition to this pre-processing, a dimensionality reduction of

the HS cube was performed by decimating the spectral channels
to reduce redundant information in the HS data due to the high
dimensionality, also allowing a drastic reduction of the execution
time of the processing algorithms without losing diagnostic
performance. As studied in a previous work41, the optimal
sampling interval was 3.61 nm, allowing the number of spectral
channels to be reduced to 128. Finally, the spectral signatures
were normalized independently to minimum and maximum
values of [0, 1].

CI ¼ RI � DI
WI � DI

(1)

AðλÞ ¼ � logðRðλÞÞ (2)

Supervised classification algorithms
ML algorithms used in this work were based on SVM, RF, and KNN
classifiers, while the DL algorithm employed was a two-layer one-
dimensional DNN. Moreover, two unmixing-based algorithms were
studied (EBEAE and NEBEAE) using their MATLAB implementa-
tions48,71. SVMs are widely used for classification and regression
purposes72. The objective of this classifier is to separate different
data classes by finding out the best separation hyperplane with a
maximum margin. In this study, the optimal hyperplane was
computed employing linear and RBF kernels. The LIBSVM library
was used for the SVM-L and SVM-RBF implementations73. The
hyperparameter to be optimized for the SVM-L was the cost (C)
parameter, which controls the decision limit that separates the
positive and negative classes, while for SVM-RBF the hyperpara-
meters optimized were cost and gamma (γ). RF is based on decision
trees, identifying the new data class by taking a vote of their
predictions from an aggregation of decision trees74. The optimiza-
tion of the RF model was performed by searching for the most
appropriate number of trees (T). KNN compares each incoming
sample with all their neighbours using a distance metric to find the
closest neighbors75. For the KNN classifier, we employed the
Euclidean and Cosine distance metrics and the hyperparameter to
be optimized in each case was the number of nearest neighbours
(N). The MATLAB (R2021b) Statistics and Machine Learning Toolbox
version 12.2 was employed for the RF and KNN-E and KNN-C
implementations. The DNN was composed by two hidden layers,
followed by a batch normalization layer, using the rectified linear
unit as an activation function. The learning rate was established as
0.1, and the network was trained for 300 epochs. The output size (L)
of the hidden layers was optimized. The MATLAB (R2021b) Deep
Learning Toolbox version 14.3 was used for the DNN implementa-
tion. This DNN structure was studied in a previous work and
compared with a two-dimensional CNN implementation, achieving
the DNN the best performance40. The EBEAE is employed in non-
negative datasets using a linear mixing model to perform the
estimation of characteristic spectral endmembers and their
abundances71. The NEBEAE is a nonlinear version of EBEAE, capable
of quantifying non-linear optical interactions during the acquisition
process, which is also robust against noise48. In both cases, different
hyperparameters can be modified to adjust the similarity among
endmembers (ρ) and the entropy of the abundances (γ). These
algorithms have been previously used to identify glioblastoma
tumour in pathological slides and in-vivo tissue using HS
data40,47,48,71,76. In this case, the characteristic endmembers were
estimated by the EBEAE and NEBEAE algorithms, respectively. The
estimation process was performed using the labelled pixels from
the training set. The representative number of endmembers was
two for NT, two for TT, one for BV and three for BG, while the ρ
hyperparameter was set as 0.3 for NT, 0.2 for TT, and 0.01 for BG47.
The endmember of the BV class was obtained by calculating the
average of all labelled pixels in that class. In both algorithm the
entropy weight (γ) hyperparameter was optimized during the
estimation of the complete abundance matrix.

Three-way data partition and k-fold cross-validation
To correctly evaluate the classification performance of the proposed
approach, a three-way data partition was carried out at patient level,
dividing the HS database into training (60%), validation (20%), and
test (20%) sets. Additionally, five different folds were created to
achieve more robust results due to the limited number of patients.
This data partition was performed randomly using the patients’
identifiers as instances, where each patient could have more than
one HS image (Fig. 8a and Supplementary Table 7). Labelled data
were employed to train the classification models (training set), to
optimize their hyperparameters (validation set), and to quantitatively
evaluate the results using unseen HS data (test set). The
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hyperparameter optimization of each algorithm was performed in
each fold independently, evaluating the results with their respective
validation sets and using the macro F1-Score metric and performing
a coarse search (Supplementary Fig. 2–4). The optimal hyperpara-
meters were selected using the best macro F1-Score result of each
fold without considering the BG class.

Training data reduction approach
Due to the high computational cost required to train several of the
employed classifiers, a methodology based on K-Means algo-
rithm41 was used to reduce the number of pixels in the training
set (see Supplementary Table 8), balancing the classes, avoiding
the inclusion of redundant information, and drastically reducing
the training execution time. In this approach, K-means clustering is
applied independently to each class of labelled pixels in the
training set to obtain 100 different clusters (K ¼ 100) per class
empirically selected (in this work, 400 clusters in total related to
the four classes: NT, TT, BV, and BG). Thus, 100 centroids
corresponding to a particular class are obtained. To reduce the
original training data set, these centroids are used to identify the
most representative pixels of each class using the SAM algorithm.
For each centroid, only the n most similar pixels are included in
the reduced training set. In this work, three different number of
similar pixels were evaluated (n 2 f10; 20; 40g), generating three
different training sets composed by 1000, 2000, and 4000 pixels
per class (100 centroids × n pixels). The total number of labelled
pixels in the HS images from the validation and test sets was used
for the quantitative evaluation of the processing framework (see
Supplementary Table 8). This approach was evaluated in a
previous work, where different metrics were compared with
respect to the completed training set. The results obtained in such
work revealed that the OA did not present a relevant change
between using the completed and reduced training sets, however,
the accuracy of TT class improved up to ~20% and the execution
time when training the classification model was drastically
decreased (an speedup of ~48 × ) when using the reduced set41.

Proposed processing framework for TMD map generation
The spatial-spectral approach is based on a combination of a
dimensionality reduction, a supervised classifier, a spatial filtering,
an unsupervised segmentation, and a MV algorithm to merge the
results from both supervised and unsupervised approaches (Fig.
8b). This approach was employed in previous works38,40 to prove
that the use of the spatial information available in the HS images
helps to improve the classification results and to reduce the
misclassified pixels found in the supervised classification maps
created using only the spectral information. In this work, the PCA
algorithm was employed for dimensionality reduction39, obtaining
a one-band representation of pre-processed HS image (Fig. 5c).
The spatial filtering aims to improve the supervised classification
including the spatial features. The KNN filtering algorithm was
employed using the previously studied parameters (λ ¼ 1 and
K ¼ 40)38 and a window size of 8 rows using the Euclidean
distance77. The probability maps from the supervised classifier and
the one-band representation are the inputs of this algorithm. The
HKM algorithm38 was used as the unsupervised segmentation
method to identify K different clusters into the HS images (K ¼ 24
according to a previous work38). Finally, the MV algorithm is used
to merge the results obtained from the spatial-spectral supervised
classification and the unsupervised segmentation, using a colour
gradient approach to create the TMD maps38. MATLAB (R2021b)
Statistics and Machine Learning Toolbox version 12.2 was
employed to implement the PCA and KNN filtering algorithms.

Performance metrics
The classification performance was evaluated using macro F1-
Score (Eq. 3), OA (Eq. 4), sensitivity (Eq. 5), and specificity (Eq. 6)
metrics, where TP are true positives, TN are true negatives, FN are
false negatives, and FP are false positives. Macro F1-Score was
computed with the mean of F1-Score per class (Eq. 7), where i is
the class index and N the number of classes. BG class was not
considered to obtain the macro F1-Score result. Additionally,
spectral characterization results were statistically analysed using a
paired two-sided Wilcoxon Rank Sum test at the 5% significance
level.

Macro F1� Score ¼ 1
N

XN

i¼0

F1� Scorei (3)

Specificity ¼ TN
TN þ FP

(4)

OA ¼ TP þ TN
TP þ TN þ FP þ FN

(5)

Sensitivity ¼ TP
TP þ FN

(6)

F1� Score ¼ 2TP
2TP þ FP þ FN

(7)

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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