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A B S T R A C T   

Cleaner fish species have gained great importance in the control of sea lice, among them, lumpfish (Cyclopterus 
lumpus) has become one of the most popular. Lumpfish life cycle has been closed, and hatchery reproduction is 
now possible, however, current production is reliant on wild caught broodstock to meet the increasing demand. 
Selective breeding practices are called to play an important role in the successful breeding of most aquaculture 
species, including lumpfish. 

In this study we analysed a lumpfish population for the identification of genomic markers linked to production 
traits. Sequencing of RAD libraries allowed us to identify, 7193 informative markers within the sampled in
dividuals. Genome wide association analysis for sex, weight, condition factor and standard length was per
formed. One single major QTL region was identified for sex, while nine QTL regions were detected for weight, 
and three QTL regions for standard length. 

A total of 177 SNP markers of interest (from QTL regions) and 399 high Fst SNP markers were combined in a 
low-density panel, useful to obtain relevant genetic information from lumpfish populations. Moreover, a robust 
combined subset of 29 SNP markers (10 associated to sex, 14 to weight and 18 to standard length) provided over 
90% accuracy in predicting the animal's phenotype by machine learning. Overall, our findings provide significant 
insights into the genetic control of important traits in lumpfish and deliver important genomic resources that will 
facilitate the establishment of selective breeding programmes in lumpfish.   

1. Introduction 

Sea lice infestation remains the most pressing issue affecting salmon 
aquaculture worldwide. Losses linked to sea lice were estimated at €700 
million worldwide in 2015 and continues to increase [1]. These losses 
not only result from reduced production due to sea lice-associated 
mortalities, decreased fish growth, and reduced flesh quality, but also 
from the cost of treatment against sea lice. This often involves the use of 
parasiticide chemicals or mechanical treatments of limited effectiveness 
or carry other health risks [2]. 

To address this issue, biological control of sea lice infection in 
Atlantic salmon cages has become an important alternative to tackle the 
one of the most important diseases affecting salmon aquaculture. This 

strategy has gained increasing popularity mainly due to its effectiveness 
and environmental safety [3]. In Norway, for example, about 0.7 million 
cleaner fish were deployed in salmon cages in 2006 which drastically 
increased to 43 million cleaner fish deployed in 2019, while showing a 
slight decrease in the last couple of years (Norwegian Directorate of 
Fisheries, 2022 [4]). Estimated figures indicate that approximately half 
of the cleaner fish used in the Atlantic salmon industry are lumpfish 
(Cyclopterus lumpus), and the remainder includes diverse species of 
wrasse [5,6] such as ballan wrasse (Labrus bergylta), corkwing wrasse 
(Symphodus melops) and Goldsinny wrasse (Ctenolabrus rupestris). How
ever, current cleaner fish production relies heavily on wild-caught 
broodstock, and production from farmed broodstock remains minimal 
[5,7]. 
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In recent years, hatchery production technologies for cleaner fish, 
particularly lumpfish and ballan wrasse, have been under intense 
development. Among these species, lumpfish hatchery production has 
proven to be more straightforward, with relatively high and stable 
survival rates [1] being achieved, making it a promising candidate for 
extensive use as a cleaner fish [8]. Lumpfish is a sub-Arctic species 
commonly found along the Icelandic, Norwegian, and British coastlines, 
as well as the East coast of North America [9]. Crucially, the lumpfish 
life cycle has been closed, and hatchery reproduction is now possible. 
However, there are only a limited number of hatcheries producing 
lumpfish in Europe, and breeding programmes are notably lacking [1]. 
Selective breeding is an effective strategy for improving the production 
of aquaculture species, by enhancing economically important traits 
[10]. Lumpfish hatchery production, which imitates natural conditions, 
takes only about seven months before the fish are ready for deployment. 
This is significantly shorter than the roughly 1.5 years required for 
ballan wrasse deployment, making the production cycle much more 
cost-effective [1]. Contrary to most aquaculture species, lumpfish grow 
much faster than would be preferred, leading to problems associated 
with delousing behaviour [11]. There is a marked decline in delousing 
activity in lumpfish upon reaching a large body size (over 300 g in 6-10 
months), likely due to their slow movement, feeding off salmon pellet, 
and increasing aggressive (and territorial) behaviour, mainly triggered 
by the onset of sexual maturation [11]. Therefore, the establishment of 
breeding programmes that allow the production of stocks with a more 
favourable growth rate and other desirable traits would greatly benefit 
lumpfish production. 

Selective breeding of commercially important traits has been applied 
in the improvement of numerous aquaculture species [12]. Growth- 
related traits in particular are common targets for selection in aqua
culture breeding programmes due to their impact in production and 
profitability, and have shown great improvement after a few generations 
[13,14]. This success in growth improvement can be attributed the 
medium to high heritability values that most aquaculture species show 
for these type of traits, ranging from 0.3 to 0.6 [12]. Contrary to the 
prevailing progression towards the growth rate increase of livestock 
species, lumpfish selection aims to reduce the growth if the animal to 
increase its usage as cleaner fish. 

Recent developments in genomic technologies have transformed 
selective breeding programmes for aquaculture species. This has mostly 
been driven by continuous advances in sequencing technologies that 
enable high-throughput discovery and screening of genetic markers, in 
particular single nucleotide polymorphisms (SNPs), which are highly 
abundant and widely distributed through the genome [12]. Screening of 
thousands of SNPs via genotyping-by-sequencing (GBS) techniques 
(such as ddRAD) or by SNP arrays has become common practice in 
devising and managing selective breeding schemes for many commer
cial aquaculture species, including emerging ones [12,15]. GBS tech
niques are based on a reduced representation of the genome achieved by 
the use of restriction enzymes that will cut the DNA at specific sites and 
will create a library of sequences dispersed across the genome. The main 
advantage of GBS tools is that can provide sequencing of numerous in
dividuals at enough depth to identify SNPs confidently. While high 
coverage whole genome sequencing can provide much better repre
sentation of the genome, the cost associated to the sequencing is still 
highly expensive, considering the of hundreds of animals needed for 
GWAS or breeding programme applications [15]. These technologies 
have also helped in the development of reference genome sequences for 
numerous aquaculture species [16], including the recent release of a 
reference genome for lumpfish that serves as a valuable genomic 
resource for advancing production of this species [17]. All these 
genomic resources have provided a keystone for the development of 
selection schemes by the application of marker assisted selection (MAS), 
the adoption of accurate genomic relationship matrices (GRM) for 
breeding value calculations, and the advancement of genomic selection 
in most aquaculture species [12]. 

To support the establishment of sustainable selective breeding pro
grammes for lumpfish, this study aimed to develop genetic resources for 
the species and identify genomic regions associated with growth traits 
and sex. These efforts will contribute to the production of stocks with 
favourable growth rates and other traits of interest, ultimately leading to 
the development of an effective and sustainable solution to the sea lice 
infestation issue in salmon aquaculture. 

2. Materials and methods 

2.1. Family creation 

Wild broodstock were obtained from Skjerneset Fisk at Averøy, 
Norway. A total of 14C. lumpus independent full-sib families (1Q to 14Q) 
were created, within 3 h of each other on the same day in October 2018, 
and reared from fertilisation to final sampling at the NOFIMA Cleaner 
Fish Unit at Sunndalsora, Norway. All families were reared in discrete 
incubation units/tanks as outlined below, that were supplied by a 
common water source to ensure comparable environmental conditions. 
During egg incubation water temperature averaged 7.4 ◦C ± 0.8 ◦C, 
while during larval rearing water temperature averaged 11.5 ◦C ±
0.5 ◦C. Following hatching, temperatures were increased from the in
cubation temperature to the larval rearing temperature over a period of 
one week. From fertilisation to just prior to hatching, egg masses were 
held within individual perforated trays (20 × 30 × 10 cm) submerged 
within a communal trough. Just prior to hatching these trays were 
transferred to individual 250 L cylindroconical tanks. Hatching in all 
families initiated within three calendar days of each other, no later than 
300 degree-days post fertilisation. Larvae were fed following routine 
commercial practice, first with live feed (Artemia), before weaning to a 
commercial formulated feed (Otohime, PTAqua, Norway). At 90 days 
post hatch, when fish reached an average of 0.58 g wet weight, the total 
number of families being reared was rationalised to four, rearing ca
pacity was limited which required the reduction of families and there
fore four families were selected based on survival performance to this 
point to ensure a suitable number of study animals to complete the 
study. Stock numbers were balanced to an average of 3250 juveniles 
which were selected at random within each family. At this stage the four 
selected families were transferred into 1500 L cylindroconical tanks for 
the remainder of the study. The final four families (3Q, 7bQ, 10Q 
&11Q), were reared following normal commercial practice until 180 
days post hatch, when the final phenotyping sampling was performed. 

2.2. Phenotype measurement and sampling 

For all four families the same sampling regime was followed. A total 
of 100 individuals were selected at random, culled by lethal anaesthesia 
and then for each individual total length (±1 mm), standard length (±1 
mm), weight (±0.01 g) and sex (where identifiable) were recorded. 
Thereafter a family specific upper and lower size threshold was calcu
lated (bottom 10% of population curve “small” and top 10% of popu
lation curve “big”) as shown in Table 1. Then, a further 100 “small” and 
100 “big” individuals within each family were sampled. For all fish body 
condition was measured using Fulton's condition factor (K = 100 ×
weight/length3; [18]). The subsequent genomic analysis was based on a 
125 individual (50 “big”, 50 “small” as well as 25 random selected in
dividuals) from each family. Gender of juveniles within each family was 
balanced where possible. A total of 36 wild broodfish (including 14 
parental pairs) were also samples but collecting fine clips. 

2.3. DNA extraction 

Fin clips for all parents and offspring were stored in 99% ethanol at 
4 ◦C until DNA extraction. Genomic DNA was extracted using a salt 
extraction method as described before [19]. Total nucleic acid content 
and quality (260 nm/230 nm and 260 nm/280 nm ratios) were 
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determined by spectrometry (Nanodrop; Thermo Scientific, Hemel 
Hempstead, UK) before measuring double-stranded DNA concentrations 
using a Qubit dsDNA Broad Range Assay Kit and Qubit Fluorometer 
(Invitrogen, Paisley, UK). 

2.4. Library preparation and sequencing 

The ddRAD libraries were prepared using an adapted version of an 
existing protocol [19]. Briefly, DNA from each sample was digested at 
37 ◦C, for 75 min with restriction enzymes PstI and NlaIII (New England 
Biolabs, UK), followed by heat-inactivation at 65 ◦C, for 25 min. The 
DNA samples were then individually barcoded through the ligation of 
specific P1 and P2 adapters, each containing a unique five or seven base 
nucleotide sequence. After addition of pre-mixed adaptors (PstI:NlaIII 
1:16) and incubation of samples at 22 ◦C, for 10 min, T4 ligase (2000 
ceU/μg DNA), rATP (100 mM) and CutSmart buffer (1×) were added 
and samples incubated for 90 min at 22 ◦C, followed by heat inactivation 
(65 ◦C, 20 min). Libraries were column purified (PCR MinElute, Qiagen, 
Manchester, UK), size selected by gel electrophoresis (550-650 bp) and 
amplified by PCR (15 cycles). Sequencing was performed by Novogene 
(UK) Co. Ltd. (Cambridge, UK) using an Illumina Novaseq 6000 platform 
(150-base paired-end reads). 

2.5. Marker assembly and genotyping 

The sequence data from the 536 individuals (4 families for 125 
offspring, and 36 broodfish; Supplementary Table S1) were pre- 
processed to discard low quality reads (i.e., with an average quality 
score <20). Sequences lacking the restriction site or having ambiguous 
barcodes were discarded during sample demultiplexing stage. Retained 
reads were then aligned against the genomic assembly of C. lumpus 
(NCBI Assembly accession GCA_009769545.1) using bowtie2 v2.3.5.1 
[20] and assembled using gstacks from Stack v2.60 [21] (using the 
marukilow model, and ignoring the read pairing). 

All loci that were common to at least two individuals, with no further 
filtering, were exported from Stacks. As the analysis was based on a 
ddRAD sequencing method, many SNPs were sequenced in a very 
limited number of individual, creating a lot of missing genotypes. To 
avoid to introduces errors or reliable result in the downstream analysis, 
we didn't use an imputation step on such large matrix, where a sub
stantial portion of the genotypes is missing. Using PLINK v1.9 [22], 
groups of variants that shared the same coordinates were identified, and 
only the first marker was retained (–list-duplicate-vars suppress-first), to 
avoid duplications or indistinctions. Moreover, SNPs with unknown 
position or located in partial chromosomes were excluded from the 
analysis. For each dataset (parents and offspring, corresponding to two 
separate sampling campaigns), SNPs and individuals were further 
filtered for quality control in a two steps process, again using PLINK. 
First, SNP inclusion was confined to those with minor allele frequency ≥

0.005 and p-value of χ2 test for Hardy-Weinberg equilibrium ≥10-6 Then 
SNPs and animals with a call rate ≥ 0.9 were selected. Quality control 
was performed on the datasets (parents and offspring) independently. 
Filtered scores were then combined in one dataset, keeping only shared 
SNPs. 

2.6. Multidimensional scaling analysis 

R v4.2.0 [23] was used to carry out Multidimensional Scaling 
Analysis on the dataset using the package Bioconductor/SNPRelate 
v1.30.1 [24] to calculate the Identity-By-State (IBS) proportion for each 
sample. 

2.7. Identification of trait associated markers 

Using the recorded phenotypic data (total length, standard length, 
weight, condition factor and sex) association analyses were performed 
within the package R/SNPassoc v2.0-11 [25] for R v4.2.0 [23], using the 
“log-additive” model (except for sex, where “co-dominant” model was 
used). We used a p-value threshold of 0.001 and a corrected p-value for 
multiple tests of 0.001/number of tests. The model used for the analysis 
was based on Interval Mapping. The algorithm used considers the 
phenotype to follow a mixture of Bernoulli distributions and uses a form 
of the EM algorithm for obtaining maximum likelihood estimates [26]. 
Two-way and multiple quantitative trait locus (QTL) models were also 
run with this package. R/qtl2 v0.28 [27] was used to identify the con
fidence interval of the QTLs on each chromosomes. After calculating the 
kinship matrix with calc_kinship, we performed a univariate QTL map
ping using the scan1 function for each trait. 

2.8. Genetic relationship matrix 

A genetic relationship matrix (GRM) was used to estimate the genetic 
relationships between individuals from the SNPs. The assigned genetic 
relationship value between two individuals (i and k) represents the off- 
diagonal values of the GRM and can be estimated by the following 
equation: 

Ajk =
1
N

∑N

i=1

(
xij − 2pi

)
(xik − 2pi)

2pi(1 − pi)

Where xi. is the number of copies of the reference allele (0,1,2) for 
the ith SNP and for individual j or k respectively, N is the number of SNPs 
in common (for both individuals j and k) and pi is the reference allele 
frequency of the ith SNP. For each SNP the estimate is summed (Σ) and 
weighed equally (1/N). 

The diagonal values of the GRM represent one plus the inbreeding 
coefficient and can be calculated with the following equation: 

Aj = 1+
1
N

∑N

i=1

x2
ij − (1 + 2pi)xji + 2p2

i

2pi(1 − pi)

2.9. Estimation of the variance explained by genome-wide SNPs by REML 

A restricted maximum likelihood estimation (REML) analysis was 
used to partition the variance of phenotypic trait across a group of 
observed values (fixed effects) and the genomic relatedness (random 
effect based on the GRM). The analysis was performed in the GCTA 
v1.94.1 [28] using the following equation: 

Y = Xβ+ Zγ + ε  

where Y is the phenotype, X is the incidence matrix for fixed effects, β is 
the fixed variable effect size, Z is the GRM, γ is the vector of random 
effects from the GRM, and ε is the residual random effect (representing 
environmental, non-genetic effects). 

Table 1 
Summary of population statistics. Mean weight (g) and length (mm) distribu
tions as well as maximum and minimum sizes observed, along with threshold 
sizes (as defined by individual total length) which demarked population specific 
upper (90%) and lower (10%) size thresholds for selective sampling.   

Wet 
weight 
(g) 

Total 
length 
(mm) 

Largest 
Individual 

Smallest 
Individual 

90% & 10% 
threshold 

Family 
3Q 

9.76 ±
7.7 

57.59 ±
13.4 

57.13 g 
105 mm 

0.81 g 
30 mm 

>71 mm 
<41 mm 

Family 
10Q 

5.44 ±
5.2 

46.99 ±
12.5 

51.25 g 
107 mm 

0.47 g 
25 mm 

> 66 mm 
< 33 mm 

Family 
11Q 

3.64 ±
5.7 

39.84 ±
12.5 

43.82 g 
97 mm 

0.25 g 
21 mm 

> 57 mm 
< 29 mm 

Family 
7bQ 

2.79 ±
0.8 

39.53 ±
8.7 

20.14 g 
77 mm 

0.36 g 
22 mm 

> 50 mm 
< 31 mm  
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2.10. Estimating components of heritability 

With the fixed and random (GRM) effects specified, the model is 
fitted using REML to generate an estimate of variance explained by the 
GRM adjusted for all the fixed effects. GCTA calculates by default a 
likelihood ratio test (LRT) in order to examine the significance of the 
random effects for the GRM on the fit of the model (p-value). SNP-based 
heritability estimates were obtained by the proportion of genotypic to 
phenotypic variation obtained by the GRM in the analysis. 

2.11. QTL strength model 

The effect of all SNP markers for each QTL was analysed using WEKA 
v3.8 [29], which contains a variety of machine-learning algorithms, 
including “REPTree” [29], a fast decision tree learner that builds a de
cision/regression tree using information gain/variance and reduced- 
error pruning with backfitting. “REPTree” considers all the markers, 
then derives for each individual a phenotype prediction (lengths, weight 
and sex) based on its genotypes for the markers considered. To train the 
model, we used minimum total weight of the instances in a leaf of 3 
(minNum) and the amount of data used for pruning was 4 (numFold). The 
most predictive SNP markers for each QTL were selected and used to 
produce a reduced SNP panel with the same prediction power compared 
to the full set of markers. Permutatively, individuals were removed one- 
by-one from the training set, with the algorithm subsequently assigning 
their predicted phenotypic values. 

2.12. Low density SNP panel 

To develop an extensive SNP panel able to capture all genomic re
gions of interest, as well as maximising the estimation of diversity, all 
SNP markers associated with the phenotypes of interest (lengths, weight, 
and sex) were selected as well as markers with the highest Fst values 
(elevated genetic differentiation). Fst were calculated using the function 
gl.fst.pop from dartR v2.7.2 [30] and based on all available allele fre
quencies for each families and broodfish. After several tests run by LGC 
Genomics (Teddington, UK), SNP markers that presented successful 
amplification by SeqSNP were used for the final panel. 

2.13. Panel validation 

The usefulness of the SNP panel was validated to confirm the asso
ciation of the selected markers to the analysed traits. For this purpose, 
additional members of the four families previously used in the genome- 
wide association study (GWAS) analyses, as well as parents, were gen
otyped, selecting the rest of the “big” and “small” individuals from each 
family (398 samples [~100 samples from each family], as well as a 
further 59 broodfish and 20 duplicated samples for control; Supple
mentary Table S2). In total, tissue samples from 477 fish were shipped 
and genotyped by LGC Genomics (Teddington, UK). 

3. Results 

3.1. Library sequencing 

High throughput sequencing of 536 individuals produced 
3,260,920,744 paired-end reads in total. After the removal of low- 
quality and incomplete reads, 78.9% of the total raw reads were 
retained (2,571,378,028 PE-reads; Supplementary Table S1). C. lumpus 
genome was used to map the reads and generate ddRAD-tags. A total of 
3,048,066 unique loci were detected, with 477,421 shared by at least 
two samples. 

3.2. SNP identification and quality control 

From the 477,421 SNPs initially identified between the two groups 

(36 parents and 500 offspring), the filtering process left 35 parents with 
19,227 SNPs passing the threshold, and 499 offspring with 8186 SNPs, 
as shown in Table 2. A total of 7193 common informative markers were 
identified (covering the remaining 534 individuals) and used in subse
quent analyses (Supplementary Data S1 and Supplementary Table S3). 

3.3. Sample structure 

A Multidimensional Scaling Analysis (IBS) was utilized to capture the 
complex structure of the samples and separate the individuals into 
clusters based on their genetic distance [31]. This process grouped in
dividuals of same origins together (families), while positioning prior 
family assignment errors or poor-quality samples as outliers (Fig. 1). 
Five distinct clusters were separated using the first two components 
(67.3% of cumulative variance). Families and parental/wild generation 
were clearly clustered. There was one exception; individual 11Q-212 did 
not behave as expected and did not cluster with any of the families, most 
likely due to wrong assignment during sampling or handling issues 
during the transfer into family tanks. 

3.4. Association analysis 

Making use of the 7193 QC filtered and informative SNP markers, R/ 
SNPassoc and R/qtl2 were used to conduct a QTL/GWAS analysis for 
both sex and morphometric ratios measurements. Genome wide asso
ciation was detected for both sex and morphometric measurements after 
Bonferroni test correction (Supplementary Table S3). One single major 
QTL (57 SNPs) was identified for sex determination (Fig. 2A), whereas a 
total of nine QTL regions (120 SNPs) were detected for weight (Fig. 2B), 
and three QTL regions (23 SNPs) for standard length (Fig. 2C). On the 
other hand, no significant association was detected when using Fulton's 
condition factor as a trait (Fig. 2D). All SNP markers associated with 
standard length were also significantly associated with Weight (Fig. 3 
and Table 3). The SNP based heritability estimates for all traits showed 
high values, with length showing a h2 of 0.57 (±0.04), condition factor 
0.49 (±0.06) and 0.67 (±0.04) for weight; Sex showed a heritability of 
1. 

3.5. Prediction and validation 

The combined prediction power of these 177 unique SNP markers 
(from the sex and weight QTL) was tested by building machine-learning 
algorithms and using an instance-based k-nearest neighbours' algorithm 
[32] based on the additive effect of the genotypes at each locus 
considered. Phenotype prediction power from using these 177 SNPs 
provided a 99% accuracy for the selection of a desired phenotype 
(Table 4). The SNP markers defining the QTLs for Weight and Standard 
length were further investigated to provide a small subset of marker fit 
for a quick SNP assay. This approach produced a robust combined subset 
of 29 SNP markers (10 associated to sex, 14 to weight and 18 to standard 
length, with weight and standard-length markers overlapping; Supple
mentary Table S4). When applied to all individuals, the combined pre
diction power remains over 90% (Table 4). 

3.6. Low density SNP panel 

A total of 177 SNP markers of interest (from QTL regions) and 399 
top Fst SNP markers were combined in a low-density panel to test its 
usefulness in quantifying and maintaining genetic diversity within the 
tested population, along with potential use for selection purposes in the 
future. The inclusion the high Fst SNP also allow for detecting local 
adaptation, and merits inclusion in future genome scans and method
ologies. This final panel of 576 markers successfully delivering infor
mative genotypes was selected (Supplementary Data S2) and evaluated 
on the previously mentioned 477 samples, showing its usefulness to 
provide genotypes that can be used for selection purposes and family 
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structure (Fig. 4), although lacking enough resolution to determine 
population structure. 

4. Discussion 

4.1. Importance of generating genomic resources for emerging species 

The development of comprehensive genomic resources for important 
and emerging aquaculture species is crucial for gaining deeper insights 
into their biological characteristics, optimising breeding programmes, 
and enhancing selective breeding for desirable traits [12,15]. Genomic 
tools can be particularly advantageous for emerging species such as 
lumpfish, as it can expedite and improve the accuracy of the selection 
process for important traits, in addition to establishing breeding 
programmes. 

In this study, genomic markers were developed for a lumpfish stock, 
with 7193 informative SNPs being identified following a thorough QC 
filtering process. This is a significant achievement and represents a 
valuable starting point for future genomic research on the species. 
Genomic resources, such as DNA markers, have become an essential 
component of successful aquaculture production. As a result, many 
relevant aquaculture species have been targeted for SNP marker devel
opment via genotyping-by-sequencing (GBS) or whole genome 
sequencing [15,16]. 

The development of SNP markers has been extensively researched in 
Atlantic salmon over the last two decades, starting with the screening of 
a few hundred SNPs, to reach the development and application of 
numerous SNP arrays containing up to 900K markers [33–37]. Sea 

bream and sea bass are additional examples of species with successful 
genomic marker development, transitioning from GBS-based SNP 
identification to the development of medium-density SNP arrays 
[38–40]. Low-density SNP panels have emerged as a cost-effective 
alternative, providing access to genotyping resources at a fraction of 
the cost compared to high-density panels, especially when dealing with 
hundreds or thousands of animals. These panels have been successfully 
described for numerous aquaculture species and have demonstrated 
their application in genomic selection through accurate genomic rela
tionship matrices (GRM) or imputation into high-density panels [41]. 

This progress exemplifies how commercial interest and production 
needs can positively stimulate research advancement in aquaculture 
species, which could serve as a model for lumpfish research given the 
current demand for cleaner fish. 

4.2. GWAS on growth and sex in other species 

The increased accessibility to sequencing technologies has made 
GWAS (and QTL) analyses involving thousands of markers a norm for 
studying aquaculture and livestock species. This has enabled the iden
tification of significant associations between genomic markers and 
particular phenotypes, such as growth, sex, disease resistance, and 
colour, among others, through GWAS and QTL analyses, which is a 
fundamental step towards the selective improvement of stocks. Aqua
culture species have been extensively researched for the identification of 
QTL regions and markers associated with important traits [42]. The 
present study aimed to identify genomic regions associated with ana
lysed traits, and was successful in this regard (Table 3). The analysis of 
sex showed the strongest association, with a single major QTL located on 
chromosome 13 (Fig. 2A and Fig. 3) being identified. This result is in line 
with what was recently reported for another lumpfish stock, where 
chromosome 13 was also identified as the sex chromosome, and the Amh 
gene was suggested as the sex determining gene [17]. The Amh gene, 
short for “Anti-Müllerian hormone” gene, plays a significant role in sex 
determination and differentiation in various vertebrate species, 
including several species of fish, either as a primary determinant, a 
secondary influencer, or as part of a broader network of genes and 
molecular pathways. Although the QTL peak position does not exactly 
match the position of the Amh gene in the lumpfish genome. This could 
be due to many reasons, first the previous study utilized a 70K SNP array 
for lumpfish, while our analyses were based on 7193 SNPs, and there
fore, even though our results agree with the chromosome location, the 
lower marker density did not provide enough resolution to identify the 
specific location of the candidate gene. Nevertheless, a set of 10 SNPs 
located within this region accurately predicted sex in all samples, giving 
evidence that the sex determining locus is shared between populations. 

Growth rate is a significant trait for improvement in newly domes
ticated species, and it has been extensively studied in most aquaculture 
species [42]. Analysis of weight and length in lumpfish showed poly
genic involvement, identifying significant associations across many 
chromosomes, and showing evidence of overlap in QTL regions in 
chromosomes 5, 19, 14, and 22 (Fig. 2B-C, Table 3, and Fig. 3). In 
contrast, the analysis of condition factor (K) did not identify significant 
associations, most likely due to the round morphology of lumpfish, 
which makes this index uninformative for this species [43]. The poly
genic nature of growth traits is not surprising, as most aquaculture 
species show this pattern. Contrary to most reported aquaculture goals, 

Table 2 
SNP markers filtering steps. *First step: SNP CR (Call rate) = 0.1, HWE (Hardy-Weinberg equilibrium) = 10-6. **Second step: Animal CR (Call rate) = 0.1, MAF (Minor 
allele frequency) = 0.005.  

Population Initial Excluded Remaining  

Animal SNP HWE* SNP CR* MAF** Animal CR** Animal SNP 

Parents 36 453,181 14 417,273 16,667 1 35 19,227 
Offspring 500 453,181 2521 418,009 24,465 1 499 8161  

Fig. 1. Multidimensional Scaling Analysis results of the full dataset. The first 
and second components explain 34.6%, and 32.7% of the variation found. 
Based on 7193 SNP markers. The black dots clustering with each family are the 
two brookstock/wild parents. Families 7bQ and 10Q are more clearly separated 
in the component 3 (not show in this figure). 
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Fig. 2. Markers associated with phenotypes. (A) Manhattan plot of the association for phenotypic sex. (B) Manhattan plot of the association with the fish weight. (C) 
Manhattan plot of the association with the fish Standard length. (D) Manhattan plot of the association with the fish condition factor. The -log10(p-value) values for 
association of directly genotyped SNPs are plotted as a function of position of the physical map. Each chromosome has been represented with a different colour. 

Fig. 3. QTL map. Chromosomal locations of highlighted genomic regions for QTLs in this study, including Standard length, fish weight, phenotypic sex and condition 
factor. The peak locations are located with white circles. 
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where growth rate QTLs have been largely exploited to increase growth 
rate, selection for slower growth rate and longer deployment time may 
be feasible for lumpfish. Grazing efficacy has been negatively correlated 
with the size of lumpfish and linked to parental/family effects, sug
gesting that the genetic component can play a significant role in 
improving growth and grazing [44]. Accordingly, obtained heritability 
estimates (0.57, 0.49, 0.67 and 1 for length, condition factor, weight and 
Sex respectively) are in accordance to values estimated for growth traits 
in other aquaculture species [12], therefore, improvement in growth 
rate (for better grazing efficiency) can be anticipated, considering that 
the genetic component plays an important role in the expression of these 
traits. 

The markers identified in this study show promise for the selection of 
slow-growing fish using a low number of markers (Table 4), and 
therefore, they have the potential to improve the grazing efficiency of 
selected stocks. 

4.3. Usefulness of findings. MAS and genomic selection applications 

The QTL markers identified in this study have great potential to 
significantly enhance the analysed traits, particularly growth, which has 
shown average genetic gains of over 10% per generation in some 

aquaculture species [45]. Selection to obtain the opposite outcome 
(slower growth) should be possible at similar rates, particularly with the 
introduction of genomic resources into the selection process. Our anal
ysis of 177 markers associated with the traits revealed 99% accuracy in 
predicting the animal's phenotype, and a selection of only 29 SNPs 
achieved similar accuracy, thus opening the possibility of using low- 
density SNP panels, such as the one described in this study, to provide 
practical genomic resources at a lower cost without sacrificing selection 
power. 

The results of this study demonstrate that a panel of 576 markers can 
determine family structure and accurately predict slow growth pheno
types, and sex-associated markers can accurately distinguish the sex of 

Table 3 
QTL detected in this study and the genomic regions harbouring them. The peaks and confidence intervals (CI) can be visualised in Fig. 2, while the QTLs are reported in 
Fig. 3. *Small peaks not reported in Fig. 3.  

Traits QTL Chr. Confidence intervals (bp) Peak (LOD; bp) Markers Mean of LOD 

Sex SexQTL 13 888,322 - 16,609,738 29.5; 5,952,081 57 12.8 
Weight QTL1* 1 3,584,426 - 9,963,809 8.3; 3,584,426 2 8.3  

QTL2* 2 1,931,736 - 1,931,736 8.3; 1,931,736 1 8.3  
QTL2 3 4,805,596 - 26,754,368 10.2; 26,754,368 12 8.1  
QTL4 4 11,522,283 - 23,529,190 8.3; 19,116,224 13 7.3  
QTL5 5 3,362,532 - 22,429,695 9.3; 4,965,412 15 8.3  
QTL6* 6 1,992,512 - 5,395,107 8.2; 1,992,512 2 7.9  
QTL7* 8 20,552,086 - 20,552,086 7.1; 20,552,086 1 7.1  
QTL8* 9 13,608,747 - 25,957,741 8.3; 13,608,747 2 7.6  
QTL9 10 249,201 - 17,391,982 8.3; 249,201 4 7.7  
QTL10 11 13,911,073 - 22,899,415 8.3; 16,341,550 5 7.4  
QTL11 12 4,710,808 - 18,097,392 7.9; 18,097,392 9 7.6  
QTL12* 13 8,434,979 - 16,572,657 8.0; 16,572,657 3 7.7  
QTL13 14 260,826 - 23,505,589 9.4; 23,505,589 15 8.1  
QTL14* 15 6,396,440 - 6,396,440 7.2; 6,396,440 1 7.2  
QTL15* 17 11,464,082 - 13,337,808 8.3; 11,464,082 2 8.1  
QTL16* 18 8,262,460 - 13,642,938 8.3; 8,262,460 2 8.3  
QTL17 19 470,829 - 16,571,612 13.2; 1,188,533 17 10.4  
QTL18* 21 14,317,822 - 24,347,228 7.9; 24,347,228 3 7.6  
QTL19 22 5,460,636 - 21,864,352 9.4; 16,287,751 10 8.6  
QTL20* 25 11,069,039 - 11,069,039 7.5; 11,069,039 1 7.5 

Std length QTL1 5 4,965,412 - 13,898,772 7.6; 4,965,412 6 7.3  
QTL2* 14 23,505,589 - 23,505,589 7.1; 23,505,589 1 7.1  
QTL3 19 470,829 - 13,758,119 11.7; 1,188,533 12 10.2  
QTL4 22 16,287,751 - 21,864,352 7.4; 19,726,257 4 7.1  

Table 4 
Details of the Phenotypic Variation Explained and prediction accuracy for the 
full SNP dataset and reduced subset. For each trait tested, the subset of SNPs is 
reported between brackets. The marker subsets overlap. Sex is a binary char
acter, where correct prediction is provided, Weight and Std length are contin
uous variables where Precision (Correlation) is specified. Subset list is provided 
in Supplementary Table S4 (29 unique SNP markers).   

Markers Correct prediction 
Precision 

Mean absolute 
error 

Sex (All) 177 99.7% 0.008 
Sex (subset) 10 95.5% 0.0742 
Weight (All) 177 99.9% 10.257 g 
Weight (subset) 14 92.5% 67.468 g 
Std length (All) 177 99.8% 1.433 mm 
Std length 

(subset) 
18 91.4% 16.410 mm  

Fig. 4. Multidimensional Scaling Analysis results of the validation panel (477 
samples) dataset. The first and second components explain 31.7%, and 29.1% of 
the variation found. Based on 576 SNP markers. 
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individuals, which is particularly beneficial for selecting broodstock at 
early stages (Table 4 and Fig. 4). Furthermore, these genomic resources 
can be used to determine relatedness, population structure, genetic 
variation, and inform genomic selection [41]. The inclusion of high SNP 
Fst marker will also allow for detecting local adaptation in future 
genome scans and methodologies [46]. While further analyses are 
necessary to explore the SNP panel's ability to differentiate the 
geographical origin of lumpfish populations and test the application of 
genomic selection for improving selection schemes, the findings provide 
significant insight into the genetic control of important traits in 
lumpfish. 

Overall, the developed genomic resources offer great potential for 
facilitating the development of breeding programmes for lumpfish and 
selection based on genomic information. Our study sheds light on the 
genetic factors influencing growth and sex in lumpfish and highlights 
the potential of low-density SNP panels as a cost-effective and powerful 
tool for genomic selection in aquaculture. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2023.110721. 
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[40] C. Peñaloza, T. Manousaki, R. Franch, A. Tsakogiannis, A.K. Sonesson, M.L. Aslam, 
F. Allal, L. Bargelloni, R.D. Houston, C.S. Tsigenopoulos, Development and testing 
of a combined species SNP array for the European seabass (Dicentrarchus labrax) 
and gilthead seabream (Sparus aurata), Genomics. 113 (2021) 2096–2107, https:// 
doi.org/10.1016/j.ygeno.2021.04.038. 

[41] C. Kriaridou, S. Tsairidou, R.D. Houston, D. Robledo, Genomic prediction using low 
density marker panels in aquaculture: performance across species, traits, and 
genotyping platforms, Front. Genet. 11 (2020) 124, https://doi.org/10.3389/ 
fgene.2020.00124. 
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