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At present, specific guidance on how to choose, assess and interpret climate

model projections for the aquaculture sector is scarce. Since many aspects of

aquaculture production are influenced by the local farm-level environment,

there is a need to consider how climate model projections can be used to

predict potential future farming conditions locally. This study compared in-situ

measurements of temperature and salinity from Norwegian salmon farms and

fixed monitoring stations to simulations from a regional ocean climate model for

multiple locations and depths in southern Norway. For locations considered in

this study, a similar seasonal cycle in terms of phasing was visible for modelled

and measured temperatures. For some depths and times of the year the

modelled and measured temperatures were similar, but for others there were

differences. The model tended to underestimate temperature. On occasion

there were differences between average modelled and measured temperatures

of several degrees and aquaculture users would need to consider the

implications of using the modelled temperatures. As for salinity, the model

does not include localized freshwater inputs, so the model overestimated

salinity for locations close to shore and was not able to represent more

brackish water conditions in shallower depths. It was not possible to draw a

general conclusion as to whether the model was suitable for aquaculture

purposes, as the similarities and differences between the modelled and

measured values varied by variable, area, depth, and time. These findings made

it clear that aquaculture users would have to implement a process to determine

whether they could use climate model outputs for their specific purpose. A

model vetting framework is presented that can be used to support decisions on

the use of climate model projections for aquaculture purposes. The vetting

framework describes four stages that can be used to establish the necessary

context regarding the aquaculture requirements and model capabilities, and

then check how the model is simulating the conditions of interest at farm sites.

Although the focus was aquaculture, the findings are relevant for other sectors

and the framework can guide use of climate models for more local-scale

assessment and management in coastal locations.
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1 Introduction

Over the last few decades, the aquaculture sector has become an

important contributor to food and nutrition security (FAO, 2022).

Aquaculture is also expected to have an important role in feeding

the growing human population in the future, but as with many

other food-producing systems, climate change is a threat (Barange

et al., 2018). Action is urgently needed on the emerging challenges

according to constructive, knowledge-based recommendations to

secure both current production and sustainable growth of the

sector. Most aspects of aquaculture will be impacted by climate

change, and the aquaculture community requires information from

climate models on potential future environmental conditions to

support adaptation (Falconer et al., 2022).

Climate models simulate physical processes within and between

atmosphere, oceans, land, and cryosphere, for scenarios that

represent consequences of anthropogenic activities under a series

of assumptions. Scenarios are used as it is impossible to account for

the infinite number of potential future trajectories, and a set of

common scenarios also facilitates comparison between different

models and communication across different disciplines (Kriegler

et al., 2012; O’Neill et al., 2014; Meinshausen et al., 2020). Climate

modelling is complex and requires substantial resources,

supercomputer facilities, and specialized groups of experts

(Schmidt and Sherwood, 2015), and climate models undergo

extensive testing and refinement throughout the modelling

process (Flato et al., 2013). Still, models are representations of

reality, with trade-offs in what can be simulated. This means that

while climate models may be fit for one purpose, they may not

necessarily be appropriate for another due to differences across

classes of models in the processes, scales, and variables that they

simulate (Baumberger et al., 2017).

As climate change is affecting almost all aspects of life on Earth

(Scheffers et al., 2016), climate models are used to underpin

decisions made across a vast number of disciplines. Climate

modelers often make model outputs available to other disciplines

for impact assessments, but it is impossible for climate modelers to

fine-tune and facilitate outputs for the infinite number of potential

applications. Accordingly, users of the climate model information

have an obligation to ensure the user-selected output frommodelled

projections are well facilitated and appropriate for their purpose.

When using outputs from climate models (e.g., modelled

projections of future sea temperature), the aquaculture

community needs to have some understanding of both the

modelling process and utilized scenarios, as well as their limits,

when planning their study. Confidence in the models and their use

is important and should be based on a thorough assessment since

information provided by climate model projections can influence

strategic decisions and future actions (Schmidt and Sherwood,

2015; Baumberger et al., 2017; Knutti, 2018).

The aquaculture industry, researchers, and other stakeholders

have many questions over how climate change may impact the

sector (Falconer et al., 2022) and need information on how the

environment is changing. Global and large-scale regional averages

are of limited use since many of the fundamental aspects of

aquaculture production such as growth, behavior, health, welfare,
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product quality, site selection and carrying capacity, are site-specific

and influenced by the farm environment and surrounding area.

Farmed species are limited to the three-dimensional space of the

production environment, which only occupies a relatively small

area compared to most climate model domains. For example, a

typical salmonid farm consists of 12 circular 32m diameter net-pens

(McIntosh et al., 2022). In contrast, global scale ocean climate

models tend to have an ocean grid cell resolution of approximately

100km, and though the resolution will vary between models, a

regional scale ocean model could typically have a resolution of

approximately 10km. In some cases, it may soon be possible to

develop higher resolution climate models for fjords or coastal bays

(Chassignet and Xu, 2021), but marine aquaculture farms are found

in many coastal locations throughout the world (Clawson et al.,

2022) and it is unlikely that local-scale climate models (<1km) could

be developed for all aquaculture locations. Hence, aquaculture users

will often be reliant on climate model projections from global or

regional-scale climate models, so there is a need to consider how

these will simulate local conditions of interest at their sites.

Another important consideration for aquaculture users, is that

climate models do not simulate all variables and all regions with the

same level of accuracy (Frölicher et al., 2016). Some regions and

variables are dynamically more challenging and climate models

struggle to accurately present them. For example, when simulating

potential ecosystem stressors, the uncertainty of global climate

models is higher in regions with open ocean convection or sea

ice, and there is a larger model uncertainty associated with net

primary production than with sea surface temperature (Frölicher

et al., 2016). At the same time, each climate model offers its own

unique set of parameters and equations, and some climate models

might perform well even in regions or for variables of high model

uncertainty (e.g., Kwiatkowski et al., 2017; Goris et al., 2018;

Bourgeois et al., 2022).

To date, most aquaculture climate change studies have focused

on temperature (Catalán et al., 2019; Froehlich et al., 2022). This is

unsurprising since most aquaculture species are ectotherms and

physiological and metabolic processes are dependent on the

temperature of their environment (Handeland et al., 2008; Zippay

and Helmuth, 2012). However, other factors such as oxygen,

salinity, and wind-driven mixing also affect growth, feed

utilization, behavior, health, welfare, disease treatment, and

mortality (Sandø et al., 2021; Falconer et al., 2022). The context

of how these parameters will be used in aquaculture may vary and

the level of precision required by end users will depend on the

intended use of the information. Consequently, there is a need to

understand how climate models represent variables of interest and

how these can be evaluated to ensure they are appropriate for use in

aquaculture assessments.

The Norwegian coast is long and complex, scattered with many

coastal bays, inlets, and fjords, and these physical characteristics

provide many suitable locations for net-pen aquaculture. There are

approximately 1000 sea water sites located along almost the entire

length of the country, and more than 1.5 million metric tons of

Atlantic salmon (Salmo salar) was produced in Norway in 2021

(Directorate of Fisheries, 2023). Sea water sites are found in

sheltered positions within fjord systems, and in more exposed
frontiersin.org
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environments along the Norwegian coast. Environmental

conditions vary in and between these different regions, which

influences how the aquaculture sector is exposed to a range of

climate stressors (Falconer et al., 2022). The Norwegian coastline is

already experiencing a fast rate of sea surface warming since 1980

(Kessler et al., 2022), and expected future ocean climate changes in

Norway include additional increases in sea temperature (especially

in the winter), increased periods of extreme temperature (i.e.

marine heatwaves), increased runoff in winter and reduced runoff

in the summer season, changes in salinity, loss of oxygen and

reduced pH (Hanssen-Bauer et al., 2017).

Coastal areas are difficult to simulate for climate models due

to their complex bathymetry and their land-ocean interface, as

well as the ocean-atmosphere interface, i.e., transitions and

interconnections between terrestrial, oceanic, and atmospheric

processes that are not well quantified (Ward et al., 2020).

Therefore, the specific skills of a climate model should be vetted

against (preferably quality controlled) observations. Norway is an

appropriate case study to vet such a model for aquaculture purposes

due to the amount of aquaculture data available.

This study compared in-situ measurements of temperature and

salinity from Norwegian aquaculture farms and monitoring stations

to output from a regional ocean climate model, for three regions in
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southern Norway. The study focused on temperature and salinity,

as these variables are important for aquaculture production, and as

these are standard output variables of regional-scale climate model

projections available for the Norwegian coastline. Based on

considerations raised in the comparisons, a structured approach

for model vetting was constructed. The vetting framework can be

used to support decisions on the use of climate model projections

for aquaculture purposes.
2 Materials and methods

2.1 Study areas

For aquaculture management purposes, the Norwegian

coastline is divided into 13 production regions from south to

north (Figure 1), described at https://lovdata.no/dokument/SF/

forskrift/2017-01-16-61 and based on a suggestion by the

Norwegian Institute for Marine Research (IMR) (Ådlandsvik,

2015). The analysis focused on three of the production regions in

the south of Norway (Figure 1A); Region 1, Region 2, and Region 3.

These areas were chosen due to availability of data. It would take

more than a decade to establish and implement new long-term data
B C

A

FIGURE 1

(A) Projected sea surface August temperature change from the 2020-2029 average to 2090-2099 average for a subdomain of the NEMO downscaling of
the IPCC-SSP2-4.5 scenario. Rectangles indicate subdomains shown in panel (B, C). White lines define 13 Production Regions (PRs) used for aquaculture
management. (B) Bathymetry of model NEMO-NAA10km and locations of farms sites (filled circles) and fixed IMR stations (open circles) in Agder, Region
1. The Grid cell size of NEMO-NAA10km is around 9*9 km2, and grid cells used for comparison with farms or stations are marked with white crosses. Grid
cells with river outlets positions in the model are marked with white stars. Black lines define the boundaries of production area no 2 used for aquaculture
management. (C) As (B) but for Rogaland, Region 2 (nearshore) and 3 (offshore).
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collection programmes. So, for this study, we used existing datasets

that had been collected by aquaculture companies for farm

management purposes. In acknowledgement of the uncertainties

associated with farm datasets, data from IMR monitoring stations

was also used, which strengthened the comparisons with the

modelled variables, since the measurements were from two

independent sources.

In Region 1, data was available for 3 farms (Farm1A, Farm1B,

Farm1C), one fixed monitoring station (Lista hereafter referred to

as Station1L) and the climate model simulation was extracted from

3 grid cells (Model1A, Model1B, Model1C) best corresponding to

the geographical positions of the measured data (Figure 1B). All the

farms in Region 1 were in close proximity to each other, but Farm

1A was located on the other side of an island, whilst Farm1B and

Farm1C were next to each other. Station 1L was further south and

off-the coast.

Region 2, shown in Figure 1C, covers a large fjord. In Region 2,

data was available for 2 farms (Farm2A, Farm2B) inside the fjord

and the climate model simulations were extracted from 3 grid cells

(Model2A, Model2B, Model2C). In Region 3, also shown in

Figure 1C, there were 2 fixed monitoring stations (Ytre Utsira

and Indre Utsira, hereafter referred to as Station3Y and Station3I

respectively), and climate model simulations were extracted from 2

grid cells (Model3A, Model3B). The station measurements and

model locations from Region 3 represent locations a bit further

from the coast, but are still in close proximity to the farms and

model locations used in Region 2, to allow a comparison in model

performance for fjord and more offshore locations. In addition, for

the modelled temperature, we also calculated the regional average of

temperature in Region 2 (area outlined in Figure 1C).
2.2 Climate model and simulation

Regional climate model projections of temperature and salinity

were obtained from a 3D ocean circulation model NEMO-

NAA10km (Hordoir et al., 2022) based on the NEMO ocean

engine (Madec and The NEMO system team, 2015) forced with

atmospheric data from climate projections from the Norwegian

Earth System Model (NorESM2, Bentsen et al., 2013; Seland et al.,

2020). Model biases in the NorESM2 scenario simulations were

modified by bias correction of the inflowing Atlantic Water at the

southern boundary, and a salinity bias in the downscaled scenario

simulations has recently been reduced by improved use of

atmospheric forcing from the global model. The model domain of

NEMO-NAA10km covers the northern North Atlantic, the Nordic

Seas and the Arctic Ocean with a horizontal resolution of ~10 km,

and a vertical resolution of 75 vertical layers in the z*-coordinate

system. NEMO-NAA10km is among the highest resolution

dynamical downscaled simulations available for this area. The

model has been forced with some of the most recent IPCC future

scenarios; the ‘Shared Socioeconomic Pathways’ (SSP) climate

scenarios SSP1.2-6, SSP2-4.5, and SSP5-8-5 (Sandø et al., 2022).

These future scenarios start in the year 2015 and end in 2099. The

period 2016-2020 for SSP2-4.5 was used for evaluation of the farm

data in this study.
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2.3 Observational data

2.3.1 Farm observational data
Daily measurements of sea temperature and salinity obtained

from salmon farms in the period 2016 – 2020 were provided by

Norwegian salmon producing companies. This data was collected

for farm management purposes rather than research and did not

include information on accuracy of measurements. Visual

inspection of the data allowed identification of suspected errors

(e.g., values that were unrealistically low/high), which were then

removed. It is important to acknowledge that environmental

parameters are only recorded when fish are in the pens (i.e.,

usually between 12- and 20-month periods) and there are gaps in

the time series of several months when the farms are fallow.

2.3.2 Fixed ocean monitoring station data
IMR has eight fixed hydrographic stations that were installed

for long-term monitoring of the sea and climate (IMR, 2019). These

stations have been operational since their installation in the 1930s

and 1940s and data is made publicly available. Temperature and

salinity are measured at each station across multiple depths, and

after calibration, the accuracy is approximately 0.01 for both

temperature and salinity (IMR, 2019). In this study, the monthly

averages of temperature and salinity between 2016 and 2020 were

used from 4 depths (1m, 5m, 10m, 20m) at two stations, Station3I

and Station3Y, which are both in Rogaland county (see Figure 1 and

Section 2.1 for location of these stations). At Station1L, which is in

Adger county (see Figure 1 and Section 2.1 for location of this

station), the monthly averages of temperature and salinity between

2016 and 2020 were used from 7 depths (1m, 5m, 10m, 20m, 50m,

75m, and 100m).
2.3.3 Data analysis
Visual comparisons were used to look at the similarities and

differences between the observed and modelled variables

(temperature and salinity) over the seasonal cycle. Since climate

model simulations do not predict conditions for a specific date,

comparing modelled and measured temperature on any given day,

week, month, or year directly is not an adequate way of measuring

the performance of a climate model. Therefore a 5-year average

(2016-2020) for each month was calculated from the model

simulation and measured variables, and these 5-year averages

(with standard deviation as a measure for inter-annual variations)

were used for the comparisons. This 5-year average covers the initial

years of the future simulation used in this study. Although an

average over an even longer period of time would have been

desirable, decadal data sets are seldom available for aquaculture

sites. Analysis and visualization were performed using R version

4.1.2 (R Core Team, 2021).

Table 1 outlines how the farm data was used in the comparisons

and the depths of the modelled and measured variables at each

location. The measured depths were approximately 1m, 5m, 10m,

20m, 50m, 75m and 100m and these were compared with the

nearest modelled depths at 0.5m, 5.1m, 9.8m, 19.4m, 53.9m, 77.5m

and 97m. As mentioned previously, the farm data had been
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collected for farm management purposes and had some gaps, and

these gaps would affect performance of statistical tests (e.g. Stow

et al., 2009; Bennett et al., 2013). Therefore, we focused on monthly

averages and their standard deviation as well as visual analysis. This

approach is more suited to highlight why context matters in the use

of modelled projections.
3 Results and discussion

3.1 Temperature

Comparisons between modelled and measured temperatures

are shown in Figure 2 for Region 1 and Figure 3 for Regions 2 and 3.

A similar seasonal cycle in terms of phasing is visible for modelled

and measured temperatures, independent of considered depths and

sites. The minimum temperatures occur in February/March and the

maximum temperatures in August/September. The model and

measurements are typically within each other ’s standard

deviations, however across the sites, months and depths, there are

differences in how close the modelled and measured mean values

are to each other.

In Region 1, at 1m depth (Figure 2A) there are months when

there are differences between the measured and modelled average

values and their standard deviation representing interannual

variations. The largest disagreement is visible in April, where the

modelled values are 4.9 ± 1.2°C, 4.9 ± 1.1°C, and 5.2 ± 1.0°C in

comparison to the farm measurement of 6.4 ± 0.5°C (Farm1A), and

the station measurement of 6.6 ± 0.8°C (Station1L). Here, the farm

and station measurements agree well with each other despite the

station being more offshore, but the model means for all locations in

Region 1 are consistently lower than those of the measurements,

and the interannual variations are larger within the model. Similar

but smaller mismatches can be found in August, September, and

October. In some of the other months, the model-means and

measurement averages are more comparable. For example, in

June the modelled values are 13.9 ± 2.5°C, 14.2 ± 2.4°C, and 14.5

± 2.3°C in comparison to farm measurement of 14.4 ± 1.3°C, and
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station measurement of 14.2 ± 1.7°C. Still, the interannual

variations in the model appear to be larger than those of the

measurements. In autumn and winter, the average values of farm

measurements and station measurements diverge, yet the model

results for different locations diverge less and vary between being

closer to the average station measurement and that of the farm.

At 5m depth (Figure 2B), there are farm measurements

available from all three farms in Region 1, and these show similar

averages and variations of temperatures in all months as well as a

similarity to the measurements of Station1L. The model tends to

underestimate the measured temperature values, particularly in

April and October. While interannual variability is still higher in

the model, the interannual variability of model and measurement

are more similar at 5m depth than at 1m depth. At 5m depth

(Figure 2B), and at 10m depth (Figure 2C), there are some

differences between farms which could be due to the local

hydrodynamics (See Figure 1B for farm locations). Likewise, at

10m depth, the station measurements between May and September

are visibly higher than the measurements at the farm sites and this

could be because the monitoring station is further from the coast.

These results show that it is better to use data from multiple farms,

and (if available) other sources, to check whether a model is

appropriate for a particular area, as temperatures at some

farms may be highly localized and not fully representative of

other sites. We note that the difference may also be due to

limitations associated with measurements (Skogen et al., 2021), as

data gaps may have affected the calculation of averages and

standard deviations.

In Region 1, the 5-year average modelled temperatures at 10m

depth tend to be colder than those measured, which is particularly

evident for months April to June (Figure 2C). Differences of several

degrees between the modelled and measured average temperatures

are also apparent at 20m depth (Figure 2D) in the summer months

(June to September). For example, in June the measured temperature

at Station1L was 10.5 ± 1.6°C compared to 7.9 ± 0.9°C, 7.7 ± 0.7°C,

and 7.8 ± 0.5°C for the model locations. On the other hand, there are

also months (January, February, March) when the modelled

temperatures are comparable to the station measurements, e.g., in
TABLE 1 The approximate depths used for the comparisons between the measurements from the farms and fixed monitoring stations, and the
modelled variables.

Depth

Region 1 Region 2 Region 3

Farm
1A

Farm
1B

Farm
1C

Station
1L

Model
1A

Model
1B

Model
1C

Farm
2A

Farm
2B

Model
2A

Model
2B

Model
2C

Station
3Y

Station
3I

Model
3A

Model
3B

1m T, S – – T, S T, S T, S T, S T,S S T, S T, S T, S T, S T, S T, S T, S

5m T T, S T, S T, S T, S T, S T, S T,S T,S T, S T, S T, S T, S T, S T, S T, S

10m T T T T, S T, S T, S T, S T,S – T, S T, S T, S T, S T, S T, S T, S

20m – – – T, S T, S T, S T, S – – – – – T, S T, S T, S T, S

50m – – – T – T – – – – – – – – – –

75m – – – T – T – – – – – – – – – –

100m – – – T – T – – – – – – – – – –
frontie
The modelled variables were from the nearest depth layers to the measurements: 0.5m, 5.1m, 9.8m and 19.4m, 53.9m, 77.5m and 97m. T indicates temperature values were compared at this
depth, and S represents salinity.
The symbol – means there was no data or modelled variables at that depth for the location.
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January the measured temperature at Station1L was 6.9 ± 1.1°C,

compared to 6.2 ± 1.5°C, 6.6 ± 1.0°C, and 6.9 ± 0.8°C from the model

locations. These results suggest that in the examples for Region 1,

there were differences in how the model was able to simulate

temperatures across the year. Thus, although the model simulated

the phasing of the seasonal cycle well, the model underestimated the

summer temperatures on average, particularly at 20m depth.

In Region 2, at 1m depth (Figure 3A), average farm

measurements are within the standard deviation of that simulated

by the model in winter months, while the model underestimates the

average temperature for months April to September. In May, the
Frontiers in Marine Science 06
modelled values were 8.7 ± 2.3°C, 8.8 ± 2.3°C, 8.7 ± 2.3°C in

comparison to 9.9 ± 0.7°C at the farm. In Region 2, the model

simulates larger interannual variations than measured for all

months and depths (Figures 3A, C, E). For Region 3, the model

results are close to, or are underestimating the average temperature

for all depths considered and most months of the year, but are

typically within each other’s standard deviations at 1m, 5m and

10m depth (Figures 3B, D, F). Although at 20m depth some months

(e.g., May, June, September) showed some differences between

modelled and measured values (Figure 3G). These findings show

that it is difficult to generalize the differences between modelled
B

C

D

A

FIGURE 2

Comparison of modelled temperature versus temperature for the individual farms and stations in Region 1; 5-year monthly average (with standard
deviation represented in error bars) for 2016-2020. The rows represent the four depths. The order is as follows: (A) Farm1A, Station1L, Model1A,
Model1B and Model1C for 1m depth, (B) Farm1A, Farm1B, Farm1C, Station1L, Model1A, Model1B and Model1C for 5m depth, (C) Farm1A, Farm1B,
Farm1C, Station1L, Model1A, Model1B and Model1C for 10m depth, (D) Station1L, Model1A, Model1B and Model1C for 20m depth. Locations are as
shown in Figure 1.
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projections and measurements, indicating that the usability of a

model is dependent on the region, location, depth, and/or time

of year.

One question that aquaculture users may have is whether to use

projections from individual grid cells or a spatial average, i.e. an

average over multiple grid cells for a region of interest. One of the

main reasons for choosing a spatial average is that individual cells

represent only a small part of the fine-scale dynamic environmental
Frontiers in Marine Science 07
field in the area, thus selecting variables from just one cell may lead

to unrepresentative values. This is especially a concern at the coastal

interface due to complexities of modelling such areas (e.g., lack of

topographic wind effects in fjords and narrow straits due to the use

of global atmospheric forcing, coarse topography, or lacking or

poorly modelled coastal processes such as river runoff). Figure 4

shows a comparison of modelled and farm temperatures at 5m

depth for Region 2, alongside the regional average of the projected
B
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A

FIGURE 3

Comparison of modelled temperature versus temperature for the individual farms and stations in Region 2 and Region 3; 5-year monthly average
(with standard deviation represented in error bars) for 2016-2020. The columns represent the three regions and the rows represent the four depths.
There is no comparison in Region 2 (depth 20m) as farm measurements were not available. The order is as follows: (A) Farm2A, Model2A, Model2B
and Model2C for 1m depth, (B) Station3I, Station3Y, Model 3A and Model3B for 1m depth, (C) Farm2A, Farm2B, Model2A, Model2B and Model2C for
5m depth, (D) Station3I, Station3Y, Model 3A and Model3B for 5m depth, (E) Farm2A, Model2A, Model2B and Model2C for 10m depth, (F) Station3I,
Station3Y, Model 3A and Model3B for 10m depth, (G) Station3I, Station3Y, Model 3A and Model3B for 20m depth. Locations are as shown in Figure 1.
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temperature for Region 2 (Model2R). Since the station

measurements and model locations from Region 3 are still within

close proximity to Region 2, they were also included to represent

locations further from the coast. The results show that the

temperature averages for the individual model grid cells are more

similar to each other and the regionally averaged model

temperatures than they are to those of the farm and station

measurements. In some months (e.g, May, September, October),

the simulated temperatures for the individual model grid cells are

mostly within the error bars of the regionally averaged model
Frontiers in Marine Science 08
temperatures, suggesting that the modelled conditions are

relatively homogenous in that area at those times. For example, in

May, the average modelled temperature from the individual model

points were 8.1 ± 1.9°C for Model2A, 8.2 ± 1.9°C for Model2B, 8.2 ±

1.9°C for Model2C and the regional average (Model2R) was 8.2 ±

1.8°C. These were also similar to the modelled temperatures for the

individual model points in Region 3, which were 8.2 ± 1.9°C for

Model3A and 8.1 ± 1.8°C for Model3B. The homogeneity is not

seen as clearly in the measurements, as the station measurements

further from the coast were colder than the farm measurements in
FIGURE 4

Comparison of modelled temperature versus temperature at 5 meter depth; 5-year monthly average (with standard deviation represented in error
bars) for 2016-2020 for Farms in Region 2 (Farm 2A, 2B), Stations in Region 3 (Station 3Y, Station3I), climate model points in Region 2 (Model2A, 2B,
2C) and Region 3 (Model 3A, Model 3B), and the regional average for production region no 2. Locations are as shown in Figure 1.
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the fjord between April and July. This suggests the model may be

unable to correctly reproduce small scale processes in the area at

those times. However, in December to March, there is a clear

distinction between higher average temperatures for the model

locations that are further from the coast (Model 3A, 3B) and at

the mouth of the fjord (Model 2B), compared to simulated lower

average temperatures in the fjord (Model 2A, 2C). This difference

between warmer average temperatures in open waters and colder

average fjord temperatures in winter is also seen between farm

measurements in Region 2 (which are in the fjord) and the station

measurements in Region 3 (which are outside the fjord in more

open waters). This suggests a misrepresentation of spatial

temperature gradients in summer months for the model. For

most of the winter months when there is less homogeneity, the

average temperature for Model2R is more similar to Model2B

(mouth of the fjord) and Model3A and Model3B (outside the

fjord) than Model2A and Model2C (inside the fjord). These

findings show that it is useful to compare the regional average

and several individual grid cells as part of a model vetting process.

In comparison to other aquaculture production regions in Norway

(Figure 1A), Region 2 is small and covers an open fjord system. In

other regions, there may be greater differences between individual

model grid cells and regional averages.

Depending on the intended use of the climate model projection,

it may be appropriate to consider the vertical profile rather than

single depths. Figure 5 shows the monthly vertical profile (five-year

average with standard deviation) down to 10m depth, of modelled

and farm measured temperature for Farm1A and Model1A in

Region 1. The model and measurements show similar seasonal

values throughout the water column for most months, with both

model and measurements indicating a seasonal thermocline. The

farm measurements show that there can be differences of several

degrees between different depths. For the month of December, the

farm measurements were 6.5 ± 1.0°C at 1m depth, 8.1 ± 0.7°C at 5m

depth and 8.5 ± 0.8°C at 10m depth, whilst in June the farm

measurements were 14.4 ± 1.3°C at 1m depth, 13.2 ± 1.6°C at 5m

depth and 11.0 ± 1.5°C at 10m depth. The modelled temperatures

for December were relatively similar across the depths, with

temperatures of 7.2 ± 1.5°C at 1m depth, 7.3 ± 1.6°C at 5m

depth, and 7.6 ± 1.5°C at 10m depth. However, the average

modelled temperature for June did show more difference through

the water column with 13.9 ± 2.5°C at 1m depth, 12.6 ± 2.2°C at 5m

depth, and 10.0 ± 2.1°C at 10m depth. It is important to evaluate

how the model simulates conditions at different depths throughout

the year since salmon move vertically in the pen due to

environmental preferences and behavioral responses (Oppedal

et al., 2007), and thus may be positioned at different depths

depending on the site, conditions, and time of year. Likewise,

stratification influences conditions in the farm (Johansson et al.,

2007), and could then influence growth, health, welfare, and overall

production in the farm. Therefore, depending on how the

aquaculture users intend to use the climate model projections,

they may need to consider multiple depth layer(s) from the

model and evaluate how the model simulates the site conditions

for each depth layer. Most climate models have a refined vertical

resolution near the surface, for example the NEMO-NAA10km
Frontiers in Marine Science 09
used in this study has 8 depths available in the upper 10m, but

datasets of farm measurements for multiple depths tend to

be limited.

Furthermore, whilst it is important to consider the conditions

within a net-pen farming environment, it may also be desirable to

consider future farming systems. For example, there is increasing

interest in offshore and submerged aquaculture (Sievers et al., 2022),

therefore studies may have to consider conditions at greater depths

than those used for traditional net-pens. Farm data was only available

to 10m depth, but comparison of the temperature at 100m depth

from model with the fixed monitoring station shows clearer seasonal

stratification (Figure 6). The average temperature profile of model

andmeasurements are similar in winter months, but there are notable

differences in summer months. In summer, the model suggests on

average a much steeper thermocline than the station measurements.

For example in June, the station measurements were 14.2 ± 2.4°C at

1m depth, 13.6 ± 2.6°C at 5m depth, 12.5 ± 2.6°C at 10m, 10.5 ± 2.1°C

at 20m, 7.5 ± 0.6°C at 50m, and 7.3 ± 0.2°C at 100m, and the

modelled temperatures were 14.2 ± 2.4°C at 1m depth, 13.0 ± 2.0°C

at 5m depth, 9.5 ± 1.8°C at 10m, 7.7 ± 0.7°C at 20m, 7.5 ± 0.5°C at

50m, and 7.4 ± 0.4°C at 100m. Stratification is complicated and

depends on site characteristics and hydrodynamics, e.g., whether a

site is in the open ocean, along the coastline, or in a fjord (Stigebrandt,

2012; Asplin et al., 2014), and therefore requires site specific context

when considering use of climate models. Understanding variable

conditions across depth profiles is also important for future

development of production technology, as climate projections can

also help inform what conditions the farming systems will have to

tolerate. To support such assessments there is a need for more high

quality, long-term in-situ observations at a range of depths and

locations aiding the vetting of considered climate models.
3.2 Salinity

Modelled salinity and measured salinity are shown in Figure 7

for Region 1 and Figure 8 for Regions 2 and 3. A seasonal cycle with

a summer minimum is seen in the modelled salinity, although the

station measurements indicate that the summer minimum of the

model is too low in the depths of 1m and 5m. The modelled values

are generally similar to the station measurements at 10m and 20m.

The results show that there are challenges in using the modeled

salinity for near-surface conditions at aquaculture sites that are in

coastal areas and fjords.

Region 1 at 1m depth shows the largest differences between

modelled and measured average salinity values when considering

the farm measurements of Farm 1A (Figure 7A). Farm

measurements and model show opposing seasonal cycles with

average minimum salinity in June (model) in contrast to average

minimum salinity in February (farm measurements). In June, the

measured salinity was 20.6 ± 2.2 at Farm1A, and the modelled

salinity was 22.5 ± 2.2, 21.9 ± 1.9, and 22.6 ± 1.9. In February, the

measured salinity was 10.6 ± 2.1 for Farm1A, and the average

modelled salinity was 32.4 ± 1.5, 32.8 ± 1.3, and 33.3 ± 0.9. At 5m

depth (Figure 7B), measurements from Farm 1B and 1C are

available, which show some differences in average salinity to the
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modelled results, with a general overestimation of salinity in the

model and an overestimation of the amplitude for the seasonal

cycle, but no signs of a reversed seasonal cycle as seen for Farm 1A

for 1m depth. Across all depths, the modelled salinity is more

similar to the station measurements. The reason for the differences

between the farm measurements and the station measurements is

likely due to their locations. The farms in Region 1 are in coastal

locations, whereas the station is further from the coast. Compared

to the open ocean, coastal areas and fjords have complex salinity

profiles as there is a greater likelihood of influence from riverine

inputs and runoff (Aksnes et al., 2009; Frigstad et al., 2020). Local-
Frontiers in Marine Science 10
scale river runoff are not considered within the climate model, but

freshwater is released at collocated sites along the coast, see Figure 1

for examples from Region 1-3. This simplified modelling approach

does not capture all of the runoff points that would influence

salinity at local-scale so it is unsurprising that there were

differences between modelled and measured salinity.

In Region 2 at 1m and 5m depth (Figures 8A, C), the measured

average salinity at the farms shows a weaker seasonal cycle than the

model with the model overestimating average salinity for most of

the months. At 10m depth (Figure 8D), the modelled and measured

average salinity values are comparable for May, July, and
FIGURE 5

Monthly vertical profile (five-year average is shown with the line and points with standard deviation represented by shaded area) down to 10m depth,
of modelled (Model1A) and farm (Farm1A) measured temperature for Region 1.
frontiersin.org

https://doi.org/10.3389/fmars.2023.1198451
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Falconer et al. 10.3389/fmars.2023.1198451
September, yet the model overestimates the average salinity for

most of the months including March when the measured salinity

was 29.8 ± 3.0 for Farm2A and the modelled salinity was 32.9 ± 0.7,

33.4 ± 0.7, and 33.2 ± 0.7.

The differences between the modelled and measured salinity at

farm sites are important since salinity is one of the main

environmental factors that contributes to some of the most

serious health challenges in salmon aquaculture; Ameobic Gill

Disease (AGD) (Clark and Nowak, 1999) and sea lice infection

(Bricknell et al., 2006; Crosbie et al., 2019). Crosbie et al. (2019)

showed that sea lice (Lepeophtheirus salmonis) prefer high seawater
Frontiers in Marine Science 11
salinity and nauplii avoid salinities below 30ppt. Therefore, use of

modelled salinity that suggests a site is more brackish than it

actually is (or vice versa) could affect disease management and

site selection.

There were challenges in obtaining sufficient salinity data for

assessments at aquaculture farms as it is not a variable that is

routinely recorded at all sites, and fixed monitoring stations are only

available in certain locations. Although not focusing on

aquaculture, Poste et al. (2021) found that monthly monitoring

was insufficient to capture variability and extreme events, and they

recommended more frequent monitoring in more locations in the
FIGURE 6

Monthly vertical profile (five-year average is shown with the line and points with standard deviation represented by shaded area) down to 100m depth, of
modelled (Model1B) and station (Station1L) measured temperature for Region 1.
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Norwegian land-coast interface to understand how climate change

is affecting these areas, particularly regarding the spring

snowmelt floods.
3.3 Challenges in comparing modelled
projections and observations

Comparisons between climate model projections and

measurements must be considered with several caveats. This

study focused on a 5-year time period (2016 -2020), as this was

the starting period of the climate model simulation and it
Frontiers in Marine Science 12
overlapped with the available observational data. However, these

years may be influenced by the climate change scenario used, and

thus not fully representative of present-day conditions. As climate

projections simulate conditions based on assumptions that may or

may not come true, comparisons of this overlapping period are

limited to the early years of the projections. Climate models often

have a historical run or hindcast that simulates past and present-day

conditions and could be compared to long-term datasets from

institutional monitoring programs over multiple decades, but

historical data is limited for most farms.

It is difficult obtaining sufficient farm-level data of high enough

quality that can be used for a comparison with models. Some
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FIGURE 7

Comparison of modelled salinity versus measured salinity for Region 1; 5-year monthly average (with standard deviation represented in error bars)
for 2016-2020. Note that different scales are used. The rows represent the four depths. The order is as follows: (A) Farm1A, Station1L, Model1A,
Model1B and Model1C for 1m depth, (B) Farm1B, Farm1C, Station1L, Model1A, Model1B and Model1C for 5m depth, (C) Station1L, Model1A, Model1B
and Model1C for 10m depth, (D) Station1L, Model1A, Model1B and Model1C for 20m depth. Locations are as shown in Figure 1.
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countries, such as Norway, have long-term monitoring stations in

their coastal waters that are extremely useful for studying long-term

trends and changing conditions (Albretsen et al., 2012). However,

since aquaculture involves holding the farmed species in a fixed

position, it is the conditions at that location that are of interest, and

this may not be within the vicinity of a monitoring station.

Station1L is less than 20km from Farms 1A, 1B, and 1C, but the
Frontiers in Marine Science 13
station is located off the coast in exposed conditions, compared to

the farms which are more sheltered and closer to the land. Hence, it

is unsurprising that there were differences in measured variables

such as salinity. Additionally, in an aquaculture context, the spatial

context also refers to the vertical position in the water column. In

agreement with Jansen et al. (2016), this study has shown the

importance of obtaining farm measurements over multiple depths.
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FIGURE 8

Comparison of modelled salinity versus measured salinity for Region 2 and Region 3; 5-year monthly average (with standard deviation represented in
error bars) for 2016-2020. The columns represent the three regions and the rows represent the four depths. Note that different scales are used.
There is no comparison in Region 2 (depth 20m) as farm measurements were not available. The order is as follows: (A) Farm2A, Farm2B, Model2A,
Model2B and Model2C for 1m depth, (B) Station3I, Station3Y, Model 3A and Model3B for 1m depth, (C) Farm2A, Farm2B, Model2A, Model2B and
Model2C for 5m depth, (D) Station3I, Station3Y, Model 3A and Model3B for 5m depth, (E) Farm2A, Model2A, Model2B and Model2C for 10m depth,
(F) Station3I, Station3Y, Model 3A and Model3B for 10m depth, (G) Station3I, Station3Y, Model 3A and Model3B for 20m depth. Locations are as
shown in Figure 1.
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Long-term good quality data collected at individual farms is

essential for characterizing conditions and quality checking climate

model projections at local-scale, especially in coastal environments.

As this study has highlighted, even in areas where aquaculture has

long been established, it can be difficult to obtain the type and

volume of desired measurement data. Measurements of

environmental variables are collected and recorded for a range of

different purposes, but there is a lack of standardization and

consistency in how data is collected. It is strongly recommended

that efforts are made to address data gaps and encourage

continuous, high-qualitive in-situ monitoring over long time

periods at aquaculture sites, making it possible to characterize

conditions and gain insight through measured data in how the

farm environments are changing. Data gaps or lack of observational

data are not unique to aquaculture and similar challenges have been

highlighted in other studies (Jones et al., 2016; Dorigo et al., 2017;

Mottram et al., 2021). In addition, measurements do not necessarily

represent true conditions as there can be representativity issues as

well as inconsistencies and errors during data collection and

analysis (Sampaio et al, 2021; Skogen et al., 2021), and it is

important to also consider the context of how measurements are

used in any model evaluation process. Many aquaculture datasets

have relied on manual data collection and recording, with data

availability and quality affected by many factors, including

challenging weather conditions, monitoring equipment, lack of

common protocols, and differences in how people collect and

store the data. Increasing use of automated sensors and

digitalization of the sector offers opportunities for the collection

of more in-situ measured data (O’Donncha and Grant, 2019), and

there would be benefits from industry-wide cooperation to

standardize how data is collected and stored.

In comparing models and observations, it is important to be

realistic. Whilst well-performing climate models may provide a

decent large-scale description of the environment, perfect match in

space and time between low-resolution model output and site-specific

measurements should not be expected. Model evaluation depends on

the intended use of the climate projection and it is not possible to apply

simple rules or thresholds to infer good or bad fit (Knutti, 2018). Of

course, there are many different approaches and statistical tests that can

be used to evaluate climate model projections (Baumberger et al., 2017;

Knutti, 2018), and some may be more appropriate than others under

given circumstances. A more robust approach may be to use a

combination of evaluation methods, including knowledge from those

familiar with the model, area, and the precision required in any

subsequent analysis. There is no single definitive way of establishing

if a model is acceptable for use for aquaculture generally or at a specific

site, especially as there will bemany different potential applications, e.g.,

investigating species growth potential, risk of mortalities, possible

spread of disease, or location of future farms, all of which require

different levels of information and precision. Acceptance of a model

will depend on the user’s own judgements (Bennett et al., 2013), and

that requires appreciation of contextual factors behind the modelled

and measured values, as well as the farm characteristics and intended

use of the information.

It is not the intent of this paper to direct users of climate models

to a certain method or approach, but rather to raise awareness that
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models, measurements, and purpose must be thoroughly

considered. The present study used one scenario and one climate

model, and it is highly likely that other climate models, or (multi)

model ensembles, would have different results due to model

uncertainty, separated into structural uncertainty (inability to

understand and/or describe a process) and parametric uncertainty

(many small-scale processes need to be empirically described rather

than resolved due to lack of knowledge) (Knutti et al., 2010).

Furthermore, this study focused on a monthly comparison due to

availability of data and visualization purposes, but it is important to

acknowledge that many aspects of the health, welfare and behavior

of aquatic species are influenced by the temperature of their

surrounding environment at a much shorter time scale. Hence,

for aquaculture purposes, and for variables like temperature, time

averages can mask conditions that challenge the fish (Sampaio

et al., 2021).
3.4 Model vetting framework

The term vetting is used here to refer to the process by which

aquaculture users can determine whether they can use climate

model outputs for their specific purpose. Users should be mindful

that a comparison of historical or present-day conditions provides

context for the model but does not necessarily mean that the model

will perform well for the future scenario. A simple vetting

framework is outlined in Figure 9. There are several stages, and as

model vetting progresses there may be a need to revisit earlier steps

and try alternatives. At each stage of the vetting process,

communication between aquaculture users (e.g. researchers,

aquaculture producers, other industry stakeholders) and climate

modelers would enhance unders tanding and c lar i fy

misunderstandings. We are using the term aquaculture users to

cover a wide range of groups as there are many different people

within the aquaculture sector who could make use of climate

projections in addition to researchers. For example, timeseries of

future temperatures could be used by aquaculture producers to

assess risks to existing and future sites, but they could also be used

by feed manufacturers to help identify future feed strategies, or by

veterinary pharmaceutical companies to evaluate long-term efficacy

of existing treatments. Furthermore, although this study used

examples from Norwegian salmon farms as illustrations of some

of the considerations, the findings are relevant to other types of

marine aquaculture and the vetting framework can be used for other

species and farms.

3.4.1 Establish the context
Aquaculture users must decide what they intend to use the

climate model for. This will determine the information they require

and help establish what contextual information will be required.

Aquaculture site characteristics vary considerably between farms so

there is a need to understand the area under investigation and

identify potential factors that may be difficult for models to

incorporate, e.g. unpredictable freshwater inputs or other external

influences. Likewise, climate change could affect many different

aspects of aquaculture (Falconer et al., 2022), and it is important to
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establish what the climate model outputs would be used for. At this

stage, aquaculture users and climate modellers should start

discussions on what is desired and what is possible. Aquaculture

users should provide information on the site(s) they are interested

in using climate information for. As this study has highlighted,

relevant characteristics would include whether the site is in a fjord

or open ocean, is in a shallow or deep location, and if there are

nearby river or runoff points. Any contextual information about the

site, and factors that may influence the variables of interest should

be highlighted by the aquaculture users. The climate modellers

should explain what climate models are available for the specific

location and what projections or simulations can be provided.

In this study, we used temperature and salinity projections from a

regional model downscaling, but aquaculture users will have to

identify what model projections are available for their area of

interest. There are many climate models available, for example, the

sixth and latest phase of the coupled model intercomparison project

(CMIP6) (Eyring et al., 2016) includes 312 experiments (Petrie et al.,

2021) and anticipated output-data from at least 100 models hosted by

40 modelling centers (Balaji et al., 2018), though not every model

participated in every experiment. Additionally, several regional ocean

models have run one or more climate change scenarios from the

CMIP6-framework without providing their output to the CMIP6-

database. There are different routes to which the aquaculture

community can access climate model information, either through

the CMIP6 database or through personal communication with a
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climate modelling center. It is important that aquaculture users have

an appreciation of some of the key aspects of the model, such as the

model resolution, if and how the variable of interest is calculated, and

how well the chosen model can represent the variable of interest. This

serves as a starting point as aquaculture users will have to decide

whether they use e.g. a global model or a higher-resolution regional

downscaling (if available).

Depending on the experience level of the aquaculture user, the

climate modeller may have to provide some background

information and context about climate models and scenarios to

assist discussions on choice of models. In this study we used climate

projections from one SSP scenario, SSP2-4.5 as an example, but

when investigating the future, aquaculture users will usually want a

range of potential future scenarios.

Climate models often have a hindcast simulation forced by an

observed atmospheric forcing (reanalysis) that results in a

variability in oceanic variables that is comparable to observed

timeseries. However, though hindcasts often go back decades, it is

rare to have farm records of climate parameters over such a long

period. On the other hand, the CMIP6 SSP scenarios start in the

year 2015, so there is a relatively recent time period available for

comparison with measurements, as used in this study. We note that

climate projections of SSP scenarios are usually built upon a

historical simulation such that it is also possible to use, for

example, years 2000-2014 from the historical simulation and

years 2015-2020 from the considered SSP scenario.
FIGURE 9

Overview of the climate model vetting framework for aquaculture users.
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3.4.2 Define goals and select criteria
With an understanding of the aquaculture site(s) and

information requirements, as well as the model capabilities, the

aquaculture user can define goals and select desired climate model

criteria. This includes selecting the variable(s), areas, times and

depths of interest. Available variables will depend on the model(s),

and some are more commonly simulated than others, e.g.

temperature is always available. At this stage, aquaculture users

should work with climate modellers to identify what is available,

and how it could be used. Since many of these choices depend on

the intended use of the climate projections and what can be

provided by the model, there may be trade-offs involved that

could lead to a need to revisit the scope of the application.

3.4.3 Comparison between model outputs and
in-situ measurements

The present study has highlighted the importance, and

challenges, of comparing model outputs with in-situ measurements.

The results of the comparisons showed that it is difficult to generalize

differences across time of year, depths, variables, and locations within

and between regions. Consequently, where possible, each variable,

area, time, and depth that is intended for use should be evaluated, as

model outputs may be appropriate for one but not another location

and variable. Aquaculture users can also work with climate modellers

to do the comparison, and then interpret and discuss the findings.

This study is not suggesting a strict protocol for comparisons as

it will be highly dependent on the availability and quality of in-situ

data and will also depend on the intended use of the climate

projections. However, there are several considerations that

aquaculture users must think about. First, the aquaculture user

must identify what data is available. Since long time-series are

required for comparison, in many cases the aquaculture user will be

reliant on existing datasets as generation of new data would take too

long. Farms routinely measure variables such as temperature,

although data may not be stored or archived for long-term use.

There can be inconsistencies in data collection and storage, and

there are usually gaps in recorded variables when the farm is not

stocked, which introduces complications. In the case of

uncertainties with datasets it is advisable to use multiple

independent data sources, as done in this study with the station

and farmmeasurements. The results of this study have shown that it

is also important to consider which form of model output to use in

the model-observation comparison, in order to find a representative

climate projection for the site in question. In a comparison it is

advisable to use simulations from multiple individual grid cells

within the proximity of the farm site(s), and if relevant, a spatial

average may be included as well.

A range of approaches are available to compare models and

measurements, and these have been discussed by others (e.g. Stow

et al., 2009; Bennett et al., 2013). Choice of approach will depend on

several factors, including data availability, data quality and how the

comparison will be interpreted. This study used comparisons of 5-

year monthly averages (and standard deviations), but monthly

averages could miss conditions relevant to aquaculture

production (Sampaio et al., 2021). Decisions on temporal
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resolution will be constrained by what data is available, but it is

important not to forget the overall goal. Therefore, aquaculture

users should discuss their expectations with climate modellers, who

can use this information to help identify appropriate approaches to

assess model skill. At this point, aquaculture users should also

highlight potential time-critical factors (e.g. if they are using the

model to simulate changes in stocking date).

Statistical tests for comparisons may also be limited by a lack of,

and/or inconsistent monitoring of, environmental data. In the

present study, a visual comparison was used. Whilst this may

seem like a simple approach, in many cases visual evaluation and

consultation with industry experts familiar with the area is useful in

model vetting and can provide a platform for aquaculture users and

climate modellers to discuss if and how climate models can be used

for the intended goal. In other situations, studies have shown that

local knowledge can provide important context for climate

information (Clifford et al., 2020; Streefkerk et al., 2022).

Accordingly, even if statistical tests are used for comparisons,

then there is still value in providing a visual representation as well.

3.4.4 Decision
The model vetting framework provides a structured and

objective approach to understanding the context in model use

and application within aquaculture. However, model vetting will

still involve some subjective judgements of how generated results

would be used to make decisions and whether this is appropriate.

Consequently, the final step is for aquaculture users to decide

whether the model output is appropriate for their intended use.

This could mean using the model output directly, or calibrated in

some way, e.g. as highlighted in Falconer et al. (2020). However, as

illustrated in the surface salinity example in Region 1, it is important

to recognize that there may be cases when models cannot be used

for a particular purpose, or the aims need refinement. Climate

models are not intended to simulate the exact atmospheric/oceanic

conditions that were measured at a certain time, but rather a mean

climactic state of a certain period, and so there will be some

aquaculture questions that are outwith the scope of model

possibilities. Discussions with climate modellers can help

aquaculture users come to a decision on the use of climate models.
3.5 Wider implications

Quantifying differences in modelled variables compared to

farm-level measurements is useful for aquaculture, as it may

reveal important implications for how climate models can be

used. Other studies have considered approaches to calibrate

global and regional-scale models to farm-level (Falconer et al.,

2020; Fuentes-Santos et al., 2021; Stavrakidis-Zachou et al., 2021),

but aquaculture users also need to consider the way in which they

are interpreting the climate projections. For example, thresholds are

a common way of translating climate model projections into

potential impact. If modelled values are above or below a

threshold value, then they are categorized as a risk or opportunity
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for a particular aspect of aquaculture. Yet, this interpretation is only

rational for a specific farm if the considered model has been shown

to simulate the considered variable at the farm level

dynamically well.

Climate information is generally underutilized by practitioners

and policymakers (Lemos et al., 2012; Kirchhoff et al., 2013), but as

shown in the present study, interpretation of climate projections for

aquaculture can be supported and improved by model vetting,

assuming model skill in simulating present-day climate conditions

are related to confidence in future projections. If such approaches

are included in impact assessments, this will increase transparency

by providing a clearer understanding of how accurate the climate

model projections may predict the future aquaculture environment.

It is then up to users to make their own judgements on the usability

of the information for their particular context. Furthermore, there

are clearly many potential applications of climate information in the

aquaculture sector, but, as in all sectors, lack of knowledge over the

needs of potential users and misguided expectations can be a barrier

to effective use of climate information in decision-making (Dilling

and Lemos, 2011). To increase usability of climate information and

model projections, Lemos et al. (2012) recommend taking steps to

improve communication and co-operation between the producers

and users of climate information. The presented results support this

statement, as collaborative research initiatives between climate

modelers, researchers, industry, and policymakers would increase

understanding across all parties, improve confidence in the results

generated, and hopefully encourage more real-world applications of

climate information within the aquaculture sector.
4 Conclusions

The present study demonstrates why it is important for

aquaculture researchers, practitioners, and stakeholders to consider

how they are using climate information. The results from the

Norwegian farm sites and monitoring stations revealed that a

model may perform well under one set of conditions, but not at

another (e.g. differences between locations, depths, time of year, and

variables). For temperature, in some highlighted cases there were

differences of 3 degrees between the 5-year averages of measured and

modelled values. Whilst some differences between modelled and

measured values are expected, drawing conclusions from modelled

temperatures 3 degrees lower than they should be would potentially

be misleading for many aspects of fish physiology. The results also

showed that modelled salinity at some sites was considerably different

to measured salinity as the model did not capture the localized river

inputs, thus the model 5-year averages were above 30 (seawater),

whilst the measured 5-year averages were below 20 (brackish

conditions). However, in other cases, for both temperature and

salinity, there were very similar modelled and measured values.

Therefore, the key recommendation is that aquaculture users need

to carefully consider how they are using climate model information

and check whether the application is appropriate for their site or if

any further processing is needed, for example, bias-correction of

temperature. To support this recommendation, we developed a

vetting framework that provides a more structured approach for
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aquaculture users and climate modellers to work together to improve

use of climate models in aquaculture.

In many cases decisions on whether climate models are

appropriate for use will still involve some subjective judgements

and considerations of how the generated results would be used to

make decision. There are difficulties in obtaining long-term datasets

of in-situ measurements of sufficient quality to allow robust

comparisons, and efforts to improve data collection should be

encouraged. Furthermore, there are challenges associated with

facilitating model output at local scale and assessing the model

skill under present day local conditions. However, even if a

comparison is limited or equipped with many caveats, it can

provide valuable information to support decisions on model use

and interpretation of results. Vetting model results to real-world

context offers a more transparent approach than blindly using

climate models without any vetting.
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