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Unbiased prediction errors for partial least
squares regression models: Choosing a
representative error estimator for process
monitoring
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Abstract
Partial least squares (PLS) regression is widely used to predict chemical analytes from spectroscopic data, thus reducing the
need for expensive and time-consuming wet chemical reference analysis in industrial process monitoring. However, pre-
dictions via PLS by definition carry sample-specific errors, and estimation of these errors is essential for correct interpretation
of results. To increase trust in PLS regression-based predictions, reliable prediction error estimates must be reported. This
can be achieved by determining realistic sample-specific prediction errors using an unbiased mean squared prediction error
estimate. This work provides a guide for estimating sample-specific prediction errors, showing the importance of choosing an
appropriate error estimator prior to deploying PLS models for industrial applications. We reviewed recent and established
methods for estimating the sample-specific prediction error and test them through simulation studies. The methods were
subsequently applied for estimating prediction errors in two real-life datasets from the food ingredients industry, where near-
infrared spectroscopy was used to quantify i) urea in process water and ii) individual protein concentrations in ultrafiltration
retentates from a protein fractionation process. Both the simulations and real data examples showed that the mean squared
error of calibration is always a downward biased estimator. Although leave-one-out-cross-validation performed surprisingly
well in the data analysed in this work, this paper demonstrated that the appropriate choice of error estimator requires the
user to make an informed, data-centered decision.
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Introduction

Process monitoring, control, and optimization of industrial
productions are often guided by quantitative predictions of
key parameters, which should reflect the true behavior of the
production process. The prediction of these parameters is
done by applying a predictive model to process measure-
ments. However, if the measurements or the predictivemodel
do not reach a sufficient level of precision, the predicted
parameters may not reflect the true behavior of the process,
and process improvement could fail. In other words, if the
predictions carry large uncertainties, despite on average
giving good estimates, it may not be justified to react to the
perceived behavior of the process.1 Adjusting a process
based on predictions without knowing the prediction error
was referred to as tampering by Deming already in 1982,
exemplified by his famous funnel experiment2; this modus
operandi is unfortunately still all too common today.

Indirect measurement techniques such as nearinfrared
(NIR) spectroscopy are usually accompanied by advanced,
inverse regression methods such as partial least squares
(PLS). Although other regression methods exist, PLS is

especially popular within industrial use of spectroscopic
data for process monitoring and has been previously used in
applications similar to the ones targeted in the this text.3 In
these methods, model complexity and performance are
typically determined by resampling error values such as the
mean squared error of cross-validation (MSECV). These
error values are useful in model selection but should not be
interpreted as a surrogate of the expected predictive ability
towards a future observation, as this also depends on the
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location of the future sample in the distribution of the
calibration data. Furthermore, as the cross-validation error
is used for model selection, this error rate is potentially
optimistic and biased downwards.

To illustrate the issue at hand, we will show the practical
implications of using different error estimates when mea-
suring the beta-lactoglobulin concentration (%w/w) in re-
tentates from a protein fractionation process by the use of
NIR spectroscopy. Samples were measured with NIR
spectroscopy and beta-lactoglobulin was predicted with a
PLS model calibrated on samples from different batches
and fractionation steps. The beta-lactoglobulin concentra-
tion, in this case, is an indicator of the performance and
selectivity of membranes over time. Therefore, choosing
the appropriate error estimator is crucial for distinguishing
real changes in the system from background noise also
known as measurement uncertainty. An additional chal-
lenge frequently encountered in industrial production
processes is datasets with a high degree of sample clus-
tering, since samples coming from the same step of the
process will be very similar, not only regarding their analyte
content but also their entire chemical profile. This is the case
for the protein fractionation process discussed in this work,
where samples withdrawn over several days from a specific
step of the process have a near-constant characteristic
chemical profile. Consequently, the prediction error varies
depending on the location of the samples in the distribution
of the calibration data, and samples with extreme analyte
concentrations have high leverage which influences the
sample prediction accuracy.3 The need for sample-specific
prediction error estimation is a consequence of the first-
order advantage,4 namely to observe interfering species
(chemical or physical). It cannot be expected that two
samples that are equal in the constituent of interest but
different in the degree of interference are predicted equally
well. The uncertainty will increase for sample clusters if
their chemical profile has less support in the calibration
model. This is problematic when deploying the PLS model
to predict new samples from a specific phase in the process
where expected analyte and nuisance interferences are
higher compared to the calibration set.

In the following, we briefly present basic cross-
validation and bootstrapping and show one modifica-
tion for each which will subsequently be tested through
simulations and on real-world data from two industrial
applications. For the industrial examples, the conse-
quence of choosing an appropriate MSE for the calcu-
lation of sample-specific prediction error estimates is
shown and evaluated.

Theory

The prediction error is defined here as the uncertainty as-
sociated with the prediction of a new sample (i.e. the
concentration of the analyte in the sample), from measured
explanatory variables (i.e. the spectrum for this sample). In
this work, bias is used in relation to the difference between
the estimated and true mean squared prediction error.

The random error σ2 is often approximated by the mean
squared error of calibration (MSEC; also referred to as the
apparent error) for sample-specific prediction error

estimation. While MSEC is appropriate from a theoretical
viewpoint when having large amounts of independent
samples compared to variables, this apparent error is an
optimistic (or naı̈ve) estimate of the true σ2. Finding an
unbiased estimator of the mean squared error of prediction
(MSE), i.e. an estimate of σ2, has been the topic of many
investigations. The random error can be determined in a
variety of ways (i.e. leave-one-sample-out, leave-k-fold-
out, leave-one-experimental-condition-out, etc.) but is
seldom used in lieu of MSEC for sample-specific squared
prediction error estimation.

In theory, it is possible to determine a regression model’s
true predictive performance with a test dataset consisting of
sufficient/many samples where the reference values have
been determined with high accuracy (i.e. practical elimi-
nation of the reference error). In reality, this is often too
costly or technically impossible (e.g. off-line calibration of
in-line NIR probes). Usually, a sample set of modest size is
available and from this, a model plus a good estimate of
future prediction performance must be obtained. Analog to
a large dataset, data could be split into a calibration set and
an independent test set (also known as a holdout set).
However, if the sample set is small or the experimental
domain is wide (e.g. a broad temperature or pH range) the
partitioning strategy will affect both the bias and confidence
interval, which will both increase with a smaller calibration
set.5

Consider the matrix X (N x J; samples x independent
variables) and the corresponding reference vector y (N x 1).
PLS relates X to y (both assumed column-wise centered
around zero) via the regression vector b (J x 1)

y ¼ X � bþ e (1)

where e (N × 1) contains the residuals. The MSEC, or
apparent error, can be estimated from the residuals as

MSEC ¼
PN

i¼1 e
2
i

N � r � 1
¼

PN
i¼1 ðbyi � yiÞ2
N � r � 1

(2)

Where yi is the reference value of calibration sample i (i =
1,2,..,N), N the total number of samples, byi is the predicted
value of sample i also present in the calibration dataset and r
is the model complexity or the number of components – the
most important optimization parameter in PLS regression.

For least squares linear regression, the sample-specific
squared prediction error is calculated, as suggested by Næs
and Mevik,6 using the formula

s2PEi ¼
�
1

N
þ hi þ 1

�
� σ2 (3)

where N is the number of calibration samples, σ2 is the
random error of the linear regression model and hi repre-
sents the leverage of the sample of interest calculated as

hi ¼ xTi
�
XTX

��1
xi (4)

where xi represents the measurement of interest and X
represents the measurements used for calibration.

When data compression methods like PLS regression,
where the data is represented by a few components, are
used, the sample-specific squared prediction error in line
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with equation (3) needs to include a (squared) systematic
deviation. This systematic deviation is introduced because
of a user-selected model complexity, the famous bias-
variance tradeoff. It is a consequence of how the specific
sample is located in the space spanned by the omitted (PLS)
components. This is what makes the systematic deviation
sample-specific as discussed in detail for principal com-
ponent regression by Eskildsen and Næs.7

When dealing with real data, it is in general not possible to
estimate the (squared) systematic deviation introduced by
omitted components.8 Indeed, this can be detrimental when
using under-fitted models on new samples falling outside the
calibration range. However, when the calibration data span
the future domain for prediction, this systematic deviation is
likely to be relatively small for the optimal model.7,9 A
pragmatic approach to obtain sample-specific squared pre-
diction errors in PLS regression is to use equation (3) but
substitute σ2 with MSEC and calculate leverage (Equation
(4)) with component scores rather than measurements. This
approach, which will also be followed in this paper, builds on
the error-in-variable concept for principal component re-
gression and PLS introduced by Faber and Kowalski10 and
later modified by other authors3,11

s2PEi
¼

�
1

N
þ hi þ 1

�
�MSEC (5)

The focus of this study is to find the most appropriate
squared prediction error estimate, i.e. a replacement for the
current MSE estimate, MSEC. In the following the true
(squared) prediction error will be referred to as ErrðtrueÞ,
while estimates will be denoted by the method used to
obtain them (e.g. for cross-validation we will write ErrðCV Þ).

Materials and methods

Datasets

Simulations. The data used in the simulations for comparing
alternative unbiased prediction variance estimates in PLS
regression was generated as follows. The signal matrix, X
(N × 100), was constructed as a bilinear combination of two
factor matrices of rank five T (N × 5), P (100 × 5), and the
reference, y, was a linear combination of the columns of T
defined by a weighting vector q (1 × 5). T, P, and q are all
drawn from a normal distribution centered around zero with
variance 1 (N(0,1))

X ¼ TPT (6)

The true (unknown) reference values, y, were con-
structed as

y ¼ TqT (7)

While the observed reference values, ~y, were obtained by
adding white noise

y~¼ yþ eΔy, eΔy, ∼Nð0; 1Þ (8)

Similarly, the observed signals, ~X , were obtained by
adding white noise

X~¼ X þ EΔX ,EΔX , ∼Nð0; 1Þ (9)

Subsequently, calibration and test data were denoted as X~cal
plus y~cal and X~test plus y~test, respectively.

The effect of the number of calibration samples (N = 32,
64, 128, 512) and the model complexity was investigated.
For all calibration dataset sizes, the complexity was set to
the known rank ropt = 5 of the system and for N = 128 two
additional runs were made with too few components or
latent variables(r = 3, deliberately under-fitting the data), as
well as too many components (r = 9, over-fitting). The split
into calibration and validation sets was done randomly.

The estimated MSE was compared to the true MSE to
evaluate the bias. The true MSE was defined as follows
(Ntest = 500), as was done in Kohavi5 (1995). First, a PLS
model is built on the observed calibration data

y~cal ¼ X~cal
bb (10)

which was subsequently used to predict the observed test set

b~ytest ¼ ~X test
bb (11)

The true MSE was defined as the mean squared dif-
ference between the predicted test samples and the noiseless
reference values

ErrðtrueÞ ¼
PNtest

i¼1

�b~ytest i � ytest i
�2

Ntest
(12)

The different MSE estimators were calculated as the
mean squared difference between the predictions obtained
from the given estimation method, and the observed ref-
erence values. Since the predictions (b~ytest) carry the refer-
ence uncertainty (e2Δy) and the true values (ytest) do not, all
MSE estimates were reduced by this reference uncertainty

Errð…Þ ¼
PNcal

i¼1

�b~ycal i � ~ycal i
�2

Ncal � r � 1
� e2Δy (13)

This is done to ensure a fair comparison between the true
and the estimated MSE. The bias of each MSE estimate was
evaluated as the difference between the estimated MSE
(from the calibration stage) and the trueMSE (based on the
test samples). This was done for each draw

Bias ¼ ErrðtrueÞ � Errð…Þ (14)

For each combination of model selection strategy and
size of the calibration set, 100 simulations were performed,
with independent datasets generated for each iteration. The
reference uncertainty (e2Δy) was equal to zero in the simu-
lations (while in real-life data it would normally be esti-
mated from e.g. duplicate reference determinations, ring-
test or Gage repeatability and reproducibility studies)16 500.

Urea data. In total 68 process-water samples, split into 32
calibration samples and 36 test samples, each with a NIR
absorption spectrum measured in transmission mode and
urea reference value are available (ppm levels). Samples
were collected from a whey protein ingredients production
plant over time and the calibration/test split is made not
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random but at a specific calendar time to emulate the end-
stage of model building followed by validation. Each sample
was measured with an ABB Bomem MB series FT-NIR
spectrometer (Quebec, QC, Canada) with a custom-made,
temperature-controlled sample flow cell from 14 285 – 4000
cm-1 (700–2500 nm) with a spectral resolution of 8 cm�1

and 128 scans averaged. Further spectroscopic and modeling
details can be found at Skou et al.3 (2017). For this dataset,
we fix calibration- and test samples and use the MSEP as the
true MSE. This NIR data presents less data clustering and a
simpler chemical background (water) than whey protein
retentate, making it complementary to the Ultrafiltration
retentate dataset.

Ultrafiltration retentate data. Seventy-two whey protein
concentrate samples were collected from different production
lines and at different steps of protein fractionation processes
at Arla Food Ingredients (Nr. Vium, Denmark). A primary set
of retentate samples was collected from randomly selected
extraction points in the protein fractionation process line of
interest, while a secondary sampling campaign was compiled
by extraction of retentate samples from a specific step of the
process. Eighteen whey concentrate samples were spiked
with whey protein powders to decrease the covariance be-
tween whey proteins concentrations present in the original
matrix and to increase the concentration span in the sample
set with a similar spiking methodology as presented in To-
nolini et al.17 NIR spectra were collected using the same
spectrometer described under Urea data. Spectra were ac-
quired in transmittancemodewith a 1mmpath length cuvette
(HELLMAMacro-Cuvette 100-QS 1 mm Quartz Glass 100-
1-40, Hellma Materials GmbH, Jena, Germany). Spectra
were measured in the range 1000–2500 nm, a total of 64
scans were recorded and averaged for each sample and the
spectral resolution was 8 cm�1. Beta-lactoglobulin concen-
tration (%w/w) was measured with RP-HPLC using in-house
routines for whey protein quantification at Arla Food In-
gredients and was used as the reference variable. NIR spectral
measurements were used as independent variables. Variable
selection and preprocessing were reproduced from Tonolini
et al.18

A dataset containing both process and spiked samples
(N = 68) was used for calibration and process samples from
a specific step in the process over different days were used
as validation (N = 32). The optimum number of components
was found for the PLS model based on 5-fold cross-
validation repeated 100 times. The prediction set’s pro-
tein concentration has a limited concentration span (4–8 %
w/w) compared to the calibration set (0–8% w/w). This
prediction set was selected to illustrate the practical
problems encountered when deploying a regression model
for process monitoring, where clusters of data with very
similar chemical profiles (due to the highly standardized
processes found in the industry) result in insufficient
support for some samples in the validation set.

Prediction error estimation strategies

K-fold cross-validation. The basic idea in cross-validation is
to leave out a part of the sample set, build a model on the

remaining sample set, and predict the left-out samples. Most
often data is divided by K-fold non-overlapping splits
where K is varied from 2, thus halving the sample set, up to
N, resulting in the leave-one-out cross-validation (LOOCV)
scheme.

Formally, for each split k of size Nk, we remove the kth

part of X, fit a model bbð�kÞ
, and predict the left-out kth part,byðkÞ. IfDk contains the indices of the measurements in the kth

split the sum of the squared prediction error for each split
becomes

ErrðCV Þk ðrÞ ¼ 1

Nk

X
i2Dk

�
yki � byki ðrÞ�2 (15)

Averaging over all K splits results in the K-fold cross-
validation error rate

ErrðCV ÞðrÞ ¼ 1

K

XK

k¼1
ErrðCV Þk ðrÞ (16)

Estimating model complexity is often done by scanning
a range of r (i.e. testing PLS with 1 to r components in the
model) to find that ropt which minimizes ErrðCV Þ.

CV corrections. Tibshirani and Tibshirani (2009) 12 report
that this minimum error rate found at ropt often is too
optimistic to function as an estimate for the true MSE. In
other words, the minimum has a downward bias, due to its
dual role in model selection, and must be corrected via the
bias-corrected cross-validation (bcCV)

ErrðbcCV Þ ¼ ErrðCV Þ
�
ropt

�þ Bias (17)

To estimate this bias, we can consider the mean squared
error of each kth part of the data, containing Nk samples, as
shown in equation (15). Assuming that all reasonable
values of r have been evaluated for all K splits of the data,
we can easily find the r-value that minimizes the mean
squared error for each kth part separately, denoted here as
rk . The concept of the correction is that the bias between
the (global) minimum MSECV – based on all K folds –
and the local kth part minimum mean squared error will
mimic the bias between the true MSE and the minimum
MSECV. We can thus obtain the bias for the MSECV as
follows

dBias ¼ 1

K

XK

k¼1

�
ErrðCV Þk

�
ropt

�� ErrðCV Þk ðrkÞ
�

(18)

The estimated bias for the model is the average differ-
ence in MSE obtained at the global minimum (ropt) and at
the local minima (rk) for all K splits. Note that the dBias is
expressed in the same unit as the variances, following the
theory of Tibshirani & Tibshirani (2009) 12 and that this bias
contribution for all resampling trials could (theoretically) be
zero

cErrðbcCV Þ ¼ ErrðCV Þ
�
ropt

�þ dBias (19)

In this paper, we use the bcCV method to obtain unbiased
MSE estimates, rather than decide the complexity of the
model and estimate the expected error. This means that the
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bias is not estimated as the average difference between the
minimum MSE and MSEk, but the MSE at the chosen
number of components and minimum MSEk.

Bootstrapping. The bootstrap methodology is well described
in several publications including the seminal work An In-
troduction to the Bootstrap.12–15 Just like cross-validation,
bootstrapping is based on a resampling strategy. When
performing bootstrap estimates, the uncertainty of a pa-
rameter is mimicked by creating p new bootstrap sample
sets with N samples each, drawn from the original dataset,
with replacement. For each bootstrap sample a model is
built and a prediction error estimate, e.g. MSEC, is cal-
culated thus providing p estimates of the prediction error
estimate. The uncertainty can be assessed from this in-
formation (by e.g. taking the mean of the p MSEC esti-
mates). This procedure is also known as the naı̈ve bootstrap
due to the simple nature of the procedure, only relying on
the (often unrealistic) assumption that the samples are in-
dependent and equally relevant.

A variation on the naı̈ve bootstrap is the leave-one-out
bootstrap14,15 or bootstrap smoothed cross-validation16

estimate. Assume we draw p bootstrap samples from a
sample size of N; for each build a model on that draw and
predict the – on average (1�1/N)⋀ N = 0.368%1 - samples
not included in the draw. Let ei contain the residual of theNp

(size of the bootstrapping data split) predictions for sample
i. Note that Np may be different across the original (full)
sample set, but will by definition be between zero and p.
Taking the mean squared error per sample and averaging
this across all samples gives the leave-one-out bootstrap
estimate, ErrðLOOBSÞ

ErrðLOOBSÞ ¼ 1

N

XN

i¼1

1

Np

XNp

p¼1
e2i, p (20)

0.632 bootstrapping. Efron (1983)14 argues that while the
apparent error – or in this case the MSEC – underestimates
the trueMSE (since the predicted samples are also part of the
calibration set), the leave-one-out bootstrap, in turn, over-
estimates the true MSE because a given sample has a
probability of 63.2% of ending in the training set. To correct
for this (upward) bias he proposes to compute a weighted
average of the apparent and bootstrapped mean squared error

Errð0:632Þ ¼ 0:368 �MSEC þ 0:632 � ErrðLOOBSÞ (21)

0.632+ bootstrapping. Efron & Tibshirani (1997)12 remark
that the 0.632 bootstrap estimates will be downward biased
when using severely over-fitted models such as in nearest-
neighbor classification. To counter this, they propose the
0.632+ bootstrap estimator, which implements a weighting
regime to the estimator so that it can compensate if over-
fitting occurs. Over-fitting is evaluated here as the differ-
ence between the apparent error and the leave-one-out
bootstrap mean squared error estimate. To adjust the
over-fit model error correctly, the so-called no-information
(squared) error must also be determined.

The no-information (squared) error, γ, is the expected
(squared) error for the model based on the original dataset

given that there is no relation between X and y. This can be
determined by predicting all samples with a global model
and calculating the (squared) error for all (correct and in-
correct) combinations of the reference and the prediction,
normalized by the number of entries, subtracting the
combinations that are truthfully related (hence, where i = j)
by subtracting MSEC

γ ¼
PN

j¼1

PN
i¼1

�
yi � byj�2

N 2
�MSEC (22)

A relative over-fit, F, is now defined as

F ¼ ErrðLOOBSÞ �MSEC

γ
(23)

which in turn is used to define a weight, ω:

ω ¼ 0:632

1� 0:368 � F (24)

The 0.632+ estimator is then defined as

Errð0:632þÞ ¼ ð1� ωÞ �MSEC þ ω � ErrðLOOBSÞ (25)

If the relative over-fit rate is zero, the 0.632+ estimator
coincides with the 0.632 estimator.

Independent test set. Finally, the predictive performance of
an independent test set is quantified. If instead of resam-
pling the calibration data a truly independent set of samples
is set aside and used for testing different models the squared
prediction error will be reported as the mean squared error
of prediction (MSEP), here from a test set of I samples

MSEP ¼
PI

i¼1 ðbyi � yiÞ2
I

(26)

Results

Simulations

The simulation results were evaluated as the difference
between the true and estimated MSE, where the true MSE
was based on 500 test samples. We presume that if the
difference is zero, the MSE estimator is unbiased. If the
difference is positive it underestimates the MSE and is
therefore optimistic, while if the difference is negative it
overestimates and gives a pessimistic estimate of the MSE.

The simulation study representing the simplest situation -
namelywhere the complexity of themodel is known - is shown
in Figure 1. Naturally, the spread around the difference between
true and estimatedMSE decreased as the number of calibration
samples increased. This is true for all MSE estimators. The
MSEC was optimistic across all calibration set sizes and the
leave-one-out bootstrap slightly pessimistic. Unexpectedly, the
0.632 and 0.632+ bootstrap procedures were optimistic. Re-
garding the K-fold cross-validation strategies, 2-fold CV (also
known as split-half) was too pessimistic, but this reduced with
increasingK, eventually leading to unbiased estimates at 8- and
16-fold CV. The bias correction applied to the K-fold CV
turned out to increase in size when increasing the number of
splits and generally makes the estimates pessimistic. LOOCV
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turned out to provide on average an unbiased estimate of the
MSE, as was reported previously in the literature.5,15

In Figure 1(c), the PLS model complexity was intentionally
set too low (r = 3) and too high (r= 9) compared to the true rank
of the system (ropt=5). Thiswas done to investigate the effect of
under- and over-fitting. Note that also ErrðtrueÞ is calculated
from an under-fitted and over-fitted model when investigating
the effects of too low and too high complexity, respectively.
When over-fitting the models, the pattern is similar to when
models are fitted with correct complexity, but this is more
pronounced in the case of over-fitting. MSEC is too optimistic,
and the leave-one-out bootstrap was also slightly optimistic
while the K-fold CV estimates were close to unbiased. The
correction methods for the 0.632 and 0.632+ bootstrap reduce
the pessimism and resulted in far too optimistic estimates. The
bias corrections to the K-fold CV methods were too large
leading to slightly pessimistic results. It is surprising to see
LOOCV gave unbiased MSE estimates when the theoretically
more pessimistic leave-one-out bootstrap turns out optimistic
for severely over-fitted models. In the case of under-fitting the
models, all Errð…Þ were unbiased and the spread around zero
(no bias) is relatively small (Figure 1(c)). It is important to be
aware that the under-fittedmodels in general perform better than
models fitted with the correct complexity. Hence,

ErrðtrueÞr¼3 < ErrðtrueÞr¼5 < ErrðtrueÞr¼9 , indicating that PLS overshoots
with components 4 and 5 for this specific simulated dataset.
However, Figure 1(c) solely shows that the spread in differences
between the true and estimated MSE is smaller for under-fitted
models.

Urea data

The alternative prediction error estimation strategies suggested
in the theory section were applied to the urea dataset. Two

model complexities are evaluated, namely five PLS com-
ponents as used in the original investigation,3 and seven
components as suggested by computing the median of the
lowest error rate of 100 iterations of a random 5-fold cross-
validation on the calibration data. Interestingly, the MSEP
obtained from the fixed validation set were almost iden-
tical (<1 ppm apart) for the two model complexities tested,
indicating the same prediction ability. The comparison of
estimated MSEs is shown in Figure 2. Usually, the par-
simony principle will compel the user to choose the
simpler model. However, by choosing the simpler model
in this case the MSEC underestimates the MSE (too op-
timistic), while all the alternatives overestimate it by a
considerable margin. Instead, if the more complex model

Figure 1. Simulation - (a) 32, (b) 64, (c) 128, and (d) 512 calibration samples used to simulate MSE estimates and comparing with 500 test
samples when the complexity (ropt = 5) of the system is known. For the simulation with (c) 128 calibration samples also model over-fitting
(r = 9) and under-fitting (r = 3) is shown. The shaded area covers 90% of the simulations and the solid line represents the mean. The y-axis is
relative to the reference uncertainty.

Figure 2. MSE (Variance) estimates for the urea calibration with
the reported complexity (r = 5) and the complexity decided by
5-fold cross-validation (r = 7).
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is chosen, the MSEC underestimates even more – which is
in line with the simulation study – but now the alternative
methods 0.632, 0.632+, LOOCV, 5-fold CV, and its bias
corrected cousin give acceptable results.

The results of applying the sample-specific prediction
intervals1 for the predicted urea values, with the standard
error computed via equation (5) for the seven component
PLS model with either MSEC or LOOCV as MSE esti-
mator, are shown in Figure 3 (plotted as a function of
production time). Using the optimistic MSEC for the
sample-specific 95% confidence intervals does not provide
the needed coverage (Figure 3(a)) while utilizing LOOCV
provides sufficient coverage (Figure 3(b)).

Ultrafiltration retentate data

The importance of applying the correct or relevant mean
squared prediction error is highlighted by the application of
the previously described methods on a dataset made of
industrial samples. A PLS model for prediction of beta-
lactoglobulin was calibrated on samples from different
batches and fractionation steps (Figure 4(a)). Beta-
lactoglobulin concentrations were predicted in samples
drawn from a specific loop of a protein fractionation pro-
cess, collected over several days. The prediction set’s
protein concentration has a limited span (4–8 %w/w)
compared to the calibration set and a characteristic

Figure 3. The difference between using (a) the mean squared calibration error (MSEC) or (b) the leave-one-out cross-validation mean
squared error estimate for measurement-specific prediction error estimates for test samples with a 7 component PLS model for
predicting urea concentration in process water in ppm. Predictions, open circles; reference values stars. Vertical lines show 95% sample-
specific prediction intervals and the dashed vertical line indicates the calibration and validation data split.

Figure 4. Prediction error intervals for a PLS model predicting Beta-lactoglobulin from NIR spectra using MSEC (0.03 %w/w) as variance
estimator (a) entire calibration and (b) zoomed on a selected interval selected interval, the red dotted square highlights the concentration
range of interest for the prediction set. (c) Actual versus predicted beta-lactoglobulin content for calibration and test data and (d) the raw
NIR spectral range colored according to calibration and validation set.
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chemical profile, as a result the model accuracy and pre-
cision are worse for high protein concentration samples
(Figures 4(b) and (c)).

Here, MSE was estimated using the previously de-
termined complexity, namely four PLS components,
but also by computing the median of the lowest error
rate of 100 iterations of random 5-fold cross-validation
on the calibration data, which turned out to suggest six
PLS components. The MSEP obtained from the fixed
validation set was lower for the more complex model
indicating a better prediction ability (Figure 5). Similar
to the Urea data, if the higher model is selected, the
MSEC underestimates the prediction error even more.
Using the optimistic MSEC for the sample-specific 95%
confidence intervals does not provide the needed
coverage for either of the model complexities, as shown

in Figures 5 and 7. The alternative methods leave-one-
out bootstrap and 0.632 bootstrap give acceptable re-
sults (Figure 5). Using LOOBS as prediction error
provides better coverage than the MSEC (Figures 4(a),
(b) and Figure 6) and the selected prediction error al-
lows for 96.0% (a) and 94.5% (b) of the prediction
confidence intervals to intersect with the reference-
versus-predicted diagonal. The same prediction esti-
mate (LOOBS) was selected as a prediction error es-
timator for interpreting a process control chart where
predictions of beta-lactoglobulin concentrations over
9 days are used to monitor the state of the process
(Figure 7(b)). The figure shows that days 8 plus 9
(correctly) and day 6 (incorrectly) are convincingly
outside of the specification limits for this process
sample point, justifying a control action. Day 2 is
borderline off-spec, while process adjustments on days
1, 3, 4, 5, and 7 would classify as tampering under
Deming’s definition (Figure 6).

Table 1 summarizes the results obtained for both dataset,
showing the results in error percentages instead of the
respective units.

Discussion

The simulations show that the mean squared error of cal-
ibration is always a downward biased estimator. The im-
proved 0.632+ bootstrap procedure turns out not to make
any meaningful difference compared to the original 0.632
for our (simulated) regression task. They differ in that the
former adds a correction for over-fitting. In our simulation
study with over-fitting, the improved procedure does
however not correct for the optimistic MSE estimate.
0.632+ was developed as a method to handle severely over-
fitting models such as k-nearest neighbors’ type

Figure 5. MSE (Variance) estimates for the ultrafiltration
retentate calibration with the simpler complexity (r = 4) and the
complexity decided by 5-fold cross-validation (r = 6).

Figure 6. Prediction error intervals for a PLS model predicting Beta-lactoglobulin fromNIR spectra using LOOBS variance estimator (0.07
w/w) (a) entire calibration and (b) selected interval.

Table 1. MSE (Variance) estimates for the both urea and ultrafiltration data expressed as error % of respective calibration ranges.

Dataset #LVs MSEC LOOBS 0.632 0.632+ LOOCV CV-5fold bcCV-5fold

Urea 5 5.45 11.25 9.53 9.66 9.83 9.92 9.63
7 4.03 9.36 7.83 7.92 7.78 7.80 7.60

Ultrafiltration 4 2.36 2.68 2.57 3.10 2.44 2.84 4.19
6 1.69 2.70 2.38 3.10 1.75 2.01 2.02
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classification models15 and evidently, the over-fit in the
problems presented here is not severe enough. It is worth
recalling that LOOCV turned out less sensitive towards
over- and under-fitting of the data in the simulation study.
This fact together with the observations made above make
LOOCVa very attractive alternative to MSEC in obtaining
unbiased prediction uncertainties for PLS regression
models, as was the case for the Urea data presented.

The ultrafiltration retentate dataset is far less homogenous
than the presented simulation data and the urea data. It was
made from clusters of samples coming from different steps in
a production line, which can be viewed as different segments
or groups. These groups have similar chemical characteristics
that can however differ from one grouping to another,
therefore, some groups of data (in our case the higher protein
concentration samples) are less well predicted than others.
Such sample-group categories (in our case process steps) can
be identified in PLS models by inspecting the individual sets
of scores inX and y (typically done via T vsU score plots over
different components/dimensions, the so-called inner-
relation). Some latent variables will (primarily) model
which grouping a given sample belongs to instead of im-
proving y-predictions. This in turn means that an unlucky
resampling draw can underrepresent or even overlook a group
entirely. It seems that optimisticMSE estimates are common in
this design-scenario, probably due to the small calibration set
size and the experimental design implying poor calibration
data support for some of the data clusters. In principle, a
stratified resampling could (partly) eliminate this grouping
issue. In an industrial setting though many (known and un-
known) potential grouping-causes might be present in the data
(feeding material clusters, alternative measurement points,
production days/regimes, etc.). Based on the results in
Figure 7, the resampling used in the bootstrap procedures
seems to be appropriate to partly compensate for this im-
balance. In the case of underrepresentation, we speculate that
the bias-corrected k-fold CV will also be able to compensate
for this problem simply due to the internal resampling. Both
dataset showed that the MSEC underestimates the prediction
error (Table 1) and other estimators are more similar to the
MSEP and thus more appropriate for reporting the model
results.

Conclusions

When constructing reliable, sample-specific prediction in-
tervals from PLS models MSEC, or the model fit, is too
optimistic a statistical metric. Several improvements are
available from the literature and a selection has been tested
here using simulations complemented by spectroscopic
datasets from an industrial process. In these cases, different
methods of calculating the prediction error can lead to
variation in sample-specific prediction intervals and
eventually influence how the process monitoring itself is
interpreted. Simulations and spectroscopic examples show
that there is no one-size-fits-all solution and some meta-
aspects of the data should be taken into consideration.

An informed decision is essential for the successful
implementation of an indirect method (such as NIR) for
routine quality control analysis in the industry. Overall, if
there is considerable grouping (clustering) in the cali-
bration sample set that cannot be resolved by pre-
processing, bias-corrected k-fold cross-validation and
bootstrapping methods are favorable. If clustering is not
present, simple leave-one-out-cross-validation performs
surprisingly well. To conclude, this work presents and
explains the main prediction error calculation strategies
present in literature, while proving the need to integrate a
data-centered decision for the calculation of a prediction
error whenever a PLS model is developed and deployed
for process monitoring.
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