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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• FTIR is a potential tool for quantifying 
collagen in hydrolyzed proteins. 

• Results were validated both with labo-
ratory and industrial test sets. 

• With broad variation in collagen, the 
FTIR response is non-linear. 

• The non-linear behavior was improved 
using hierarchical cluster-based 
regression. 

• This is one of few examples where FTIR 
is used to quantify protein composition.  
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A B S T R A C T   

Fourier transform infrared spectroscopy (FTIR) is a powerful analytical tool that has been used for protein and 
peptide characterization for decades. In the present study, the objective was to investigate if FTIR can be used to 
predict collagen content in hydrolyzed protein samples. All samples were obtained from enzymatic protein 
hydrolysis (EPH) of poultry by-products providing a span in collagen content from 0.3% to 37.9% (dry weight), 
and the FTIR analysis was performed using dry film FTIR. Since nonlinear effects were revealed by calibration 
using standard partial least squares (PLS) regression, Hierarchical Cluster-based PLS (HC-PLS) calibration models 
were constructed. The HC-PLS model provided a low prediction error when validated using an independent test 
set (RMSE = 3.3% collagen), while validation using real industrial samples also showed satisfying results (RMSE 
= 3.2%). The results corresponded well with previously published FTIR-based studies of collagen, and charac-
teristic spectral features for collagen were well identified in the regression models. Covariance between collagen 
content and other EPH related processing parameters could also be ruled out in the regression models. To the 
authors’ knowledge, this is the first time that collagen content has been systematically studied in solutions of 
hydrolysed proteins using FTIR. This is also one of few examples where FTIR is successfully used to quantify 
protein composition. The dry-film FTIR approach presented in the study is expected to be an important tool in the 
growing industrial segment that is based on sustainable utilization of collagen-rich biomass.   
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1. Introduction 

Collagen is a class of structural proteins with a characteristic amino 
acid composition and unique physicochemical properties. For that 
reason, extracted collagen has been widely utilized in e.g., food, phar-
maceuticals, medical products, and cosmetics [1–7]. The abundance of 
underutilized collagen-rich biomass and the potential for high value 
applications have made collagen particularly interesting as a degradable 
biopolymer [8,9]. Attractive applications, ranging from medical use to 
the development of new degradable plastic-like materials, have 
increased the demand for collagen with specific qualities [3,10]. To 
meet these growing and specific demands, development of novel tech-
nologies for the extraction and use of collagen from several sources is 
necessary. Underutilized by-products from processing of meat and fish 
are in this context regarded as collagen-rich biomass with high potential 
[11]. 

In traditional production of collagen-rich products, including 
partially degraded collagen (i.e., gelatin), the collagen-rich parts of the 
animals are separated and processed. Collagen extraction methods 
typically involve solubilization of the collagen in the extraction process, 
using pH shift, heat energy, hydrolysis under alkaline or acidic condi-
tions, or proteases [3,6]. For smaller animals like poultry and fish, 
separation of collagen-rich parts is difficult and labor intensive. This can 
partly explain why collagen products, such as gelatin, mostly originate 
from bovine and porcine sources. The demand for gelatin is expected to 
increase in the years to come. As a result, there is a need for technology 
development for processing underutilized collagen sources from for 
example poultry meat production [12]. A feasible approach to overcome 
challenges related to separation of the different components in collagen- 
rich poultry materials is to use specific proteases and processing pa-
rameters to hydrolyze and solubilize the muscle proteins and collagens 
at different stages in an EPH process. This can be used as a strategy to 
separate proteins and peptides from muscle and collagen into different 
fractions [13]. 

Production of collagen peptides for high-end applications require 
effective process monitoring and quality characterization technologies. 
Fourier transform infrared spectroscopy (FTIR) is a powerful analytical 
tool that has been used for protein and peptide characterization for 
decades. FTIR can be used for this purpose since the spectra contain 
detailed structural information on proteins and peptides through nine 
distinctive infrared absorption bands (i.e., the amide bands) [14,15]. 
The sensitivity of these vibrational modes also provides a range of 
possibilities to study parameters related to protein secondary structures, 
including hydration, solvent effects, pH, degree of hydrolysis (DH%) and 
peptide size [16–21]. Several studies have also demonstrated that FTIR 
can be used to monitor proteolytic reactions [22–26], with applications 
ranging from milk protein hydrolysis to the hydrolysis of poultry-based 
substrates [27–30]. From these studies it is shown that the amide ab-
sorptions (i.e., amide I at ~1650 cm− 1), the NH3

+ deformation (1516 
cm− 1), and the COO– stretching (1400 cm− 1) are important for predic-
tion of mass-average molar mass and DH% of hydrolyzed proteins 
[27,28,30]. FTIR has also been used to reveal protein composition in 
food matrices like milk. However, since the content of protein compo-
nents is not necessarily directly linked to the structural information of 
the different amide vibrations, reported predictive performances are 
usually not high [31]. Eskildsen et al. also showed that for FTIR analysis 
of milk, protein composition may often be closely related to the protein 
content [32]. 

Collagen contains significant amounts of the amino acids hydroxy-
proline (Hyp) and proline (Pro), which is a unique characteristic for this 
class of structural proteins, and Hyp is found almost exclusively in 
collagen. Collagens have therefore been shown to have characteristic 
features in several absorption bands in FTIR spectra. These include the 
amide I at ~1655 cm− 1, amide II at ~1560 cm− 1, and a set of three 
weaker bands that represent amide III vibrational modes centered at 
~1245 cm− 1 [33]. In denatured and partly hydrolyzed collagen, amide I 

has been shown to shift to ~1645 cm− 1 and ~1630 cm− 1, which 
therefore has been linked to Pro and Hyp vibrations [34,35]. When 
incorporated in a polypeptide chain, Pro and Hyp are tertiary amides. 
Since the side groups then restrict rotation around the axis of these 
peptide bonds, the vibrational modes are influenced, resulting in char-
acteristic patterns in the amide bands of the FTIR spectra. In this way, 
there are characteristic FTIR features that can be used to distinguish 
collagen containing muscle tissues from tissues with less collagen. 
Cheheltani et al. utilized these characteristic FTIR features when 
studying the potential of using FTIR for prediction of collagen and 
elastin in an in vitro model of extracellular matrix degradation in aorta. 
In this study, both a fiber optic probe directly on aorta samples, as well 
as microscopic imaging of corresponding aorta sections, were used, and 
moderate to good predictive performance were obtained for both com-
ponents [36]. 

Knowing that FTIR spectra contain quantitative information on 
collagen in biological tissues, it is of high interest to investigate if FTIR 
can serve as a generic tool for quantification of collagen during collagen 
solubilization and degradation. Thus, in the present study, the objective 
was to investigate if dry film FTIR can be used to predict collagen con-
tent in solutions of hydrolyzed proteins. All samples were obtained from 
EPH of poultry by-products providing a span in collagen content from 
0.3% to 37.9% (dry weight). Regression models were constructed using 
EPH samples and tested on similar but independent lab samples as well 
as samples from an industrial process. To the best of our knowledge, this 
is the first time FTIR spectra have been used to predict collagen content 
in solutions of hydrolyzed protein samples. 

2. Materials and methods 

2.1. Materials 

Poultry raw materials, i.e., turkey tendons (TT) and turkey carcasses 
(TC), were provided by Nortura (Hærland, Norway). The tendons were 
manually separated from turkey side-stream materials. Both TT and TC 
were ground using a Seydelmann SE130 grinder (Stuttgart, Germany), 
vacuum packed in 350 g packages and stored at − 20 ◦C until use. 
Proximate analysis and amino acid composition of the raw materials are 
presented in Supporting Information (SI) Table S-1. The methods used 
are described in a previously published study [13]. The stem Bromelain 
powder 1200 GDU was provided by PT. Bromelain Enzyme (Jakarta, 
Indonesia) and Endocut-02 by Tailorzyme AsP (Herlev, Denmark). 
Chemicals without further specified origin were all purchased from 
Sigma-Aldrich (St. Louis, MO, USA). 

2.2. Samples for calibration and test sets 

The calibration sample set was selected from a previously published 
study by our research group comprising 180 hydrolysate samples [13]. 
These samples were produced using two poultry raw materials (i.e., TT 
and TC), two proteases (i.e., stem Bromelain and Endocut-02), and two 
processing strategies (i.e., thermal inactivation with or without sedi-
ment). To ensure an even calibration range, the calibration set in the 
current study was restricted to samples with collagen content <40%. 
Samples with high uncertainty in collagen reference measurements (i.e. 
SD > 2%) were also excluded. Thus, from the original collection of 180 
independent hydrolysate samples, 119 samples were used as calibration 
set in the current study. Proximate analysis and amino acid composition 
of TT and TC are presented in SI (Table S-1). 

An independent test set of 30 samples was produced by sampling 
upscaled reactions employing similar raw materials, similar proteases 
and performing sampling at similar timepoints as for the calibration set. 
For practical reasons, the production of the independent test set samples 
was performed approximately 1 year after production of the samples for 
the calibration set. The EPH reactions were performed by mixing 300 g 
raw material with 600 mL water. The mixture was heated to 50 ◦C over 
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40 min before 1% (w/w) protease to raw material was added. The re-
action was performed in a Reactor-Ready jacketed reaction vessel 
(Radleys, Saffron Walden, Essex, United Kingdom) as described by 
Wubshet et al. [28]. The reaction mixture was sampled and thermally 
inactivated with or without sediment as described by Kristoffersen et al. 
[13]. A second test set, subsequently denoted “Industrial test set” was 
also included. This test set consisted of samples taken after thermal 
inactivation from an industrial EPH process of poultry raw materials at 
Bioco (Hærland, Norway) and included 22 samples. For this industrial 
process, the processing settings and the enzyme used was different than 
what was used when producing hydrolysates in the laboratory. An 
overview of number of samples and variation ranges of the data sets used 
for calibration and testing is provided in Table 1. 

2.3. FTIR spectroscopy 

Lyophilized samples were dissolved in Milli-Q water (25 mg/mL) and 
stored overnight at room temperature to rehydrate. The rehydrated 
samples were stirred for 30 min at 50 ◦C and filtrated using Millex-HV 
PVDF 0.45 μm 33 mm filters (MilliporeSigma, Burlington, MA, USA). 
Aliquots of 7.5 μL were deposited on 96-well IR-transparent Si-plates 
and dried at room temperature for at least 60 min to form dry films. 
From each hydrolysate sample, five aliquots were deposited to allow for 
replicate measurements. FTIR measurements of the dry films were per-
formed using a High Throughput Screening eXTension (HTS-XT) unit 
coupled to a Tensor 27 spectrometer (Bruker, Billerica, MA, USA), as 
described by Böcker et al. [27]. 

Raw spectra of low quality were discarded based on overall absor-
bance intensity, signal-to-noise ratio, and water vapor content, as 
described by Måge et al. [37]. For each raw spectrum, a second deriv-
ative was calculated using the Savitzky-Golay algorithm with a second 
order polynomial and a window size of 13 points, followed by standard 
normal variate (SNV) normalization. Then, spectra from replicate dry- 
films were averaged to provide one single spectrum per sample, and 
the region between 1800 cm− 1 to 800 cm− 1 was used for further 
analysis. 

2.4. Hydroxyproline analysis 

The amino acid Hyp was used to quantify collagen indirectly, and 
collagen content was calculated based on the assumption that collagen 
contains 13.5% Hyp per weight [38,39]. The Hyp content of the cali-
bration samples were measured as described by Kristoffersen et al. [13]. 
The Hyp content in the independent test set and the industrial test set 
were determined using the same procedure and hydroxyproline assay kit 
(MAK008-1KT) from Sigma-Aldrich (St. Louis, Mo, USA). All Hyp 
analysis was performed in triplicates. 

2.5. Multivariate calibration 

Multivariate calibration was used to establish a model between the 
FTIR spectra and the collagen content of the samples. Partial least 
squares (PLS) regression is a well-established method for multivariate 

calibration that has been used in the domain of spectroscopy and che-
mometrics for decades [40]. The method extracts a set of latent variables 
from the spectra, with the criterion that the latent variables have 
maximum covariance with the response. 

The results indicated that a regular PLS regression was non-optimal 
due to groupings among the samples (see section 3.2). An approach to 
overcome this challenge is to use Hierarchical Cluster-based PLS (HC- 
PLS) regression [41]. The method consists of the following steps: 1) 
Build a global PLS model, 2) Perform a cluster analysis on global score 
vectors, and 3) Build separate PLS models for each cluster. Using this 
approach, new samples are predicted by first projecting them onto the 
global PLS model in step 1 (obtaining the score values), then classifying 
them to one of the clusters defined in step 2, and finally predicting the 
response value based on the cluster specific PLS model in step 3. There 
are several options for the HC-PLS algorithm, see Tøndel et al. for details 
[41]. In this work the clustering was performed on a reduced rank (3 
components) global model, using Fuzzy C-Means clustering with 
Euclidian distance and fuzzifier = 2. 

In PLS calibration, the only parameter to optimize is the number of 
latent variables. In HC-PLS on the other hand, the number of clusters 
need to be set first, and then the number of latent variables in each 
cluster must be optimized independently. In this study, two clusters 
were selected based on visual inspection of the PLS scores and the fact 
that the number of samples is limited. Cross-validation with ten random 
segments was used to select the number of PLS components in all 
models. After parameter optimization, the predictive performances of 
the models were assessed by an independent test set. Plots of predicted 
versus reference values as well as the root mean squared error (RMSE), 
the Bias, and the bias-corrected Standard Error of Prediction (SEP-b) 
were reported. The RMSE is an estimate of the expected difference be-
tween predictions and reference values for new samples. The RMSE can 
be split into contributions from bias (mean offset) and bias-corrected 
prediction error (SEP-b,), giving additional insight into sources of pre-
diction error. The relation between them is RMSE2 = Bias2 + SEP-b

2 . All 
the multivariate data analysis were performed in MATLAB Release 
2021a (The MathWorks, Inc., Natick, MA, USA). 

3. Results and discussion 

3.1. Collagen content and FTIR profiling 

All FTIR analysis was performed using the dry film FTIR approach. 
This sampling technique was used since the water bands otherwise 
would be expected to overlap important information found in the amide 
I region [30]. The samples included in this study had a collagen content 
ranging from 0.3% to 37.9%. An overview of samples and collagen 
variation ranges of the data sets used for calibration and testing is pro-
vided in Table 1. 

Fig. 1A shows the amide I region of second derivative FTIR spectra of 
three selected EPH samples containing 1.4%, 26.9% and 55.3% 
collagen, respectively. The second derivative spectral region from 1750 
cm− 1 to 1550 cm− 1 of an EPH time series produced from turkey tendons 
is displayed in Fig. 1B [13]. The collagen content of the samples in 
Fig. 1B ranged from 23.9% to 37.9%. 

A gradual shift towards a sharper ~1645 cm− 1 peak of the amide I 
band can be observed in the FTIR spectra of the time series. By 
comparing the second derivate spectra in Fig. 1A to the time series in 
Fig. 1B it is evident that the observed shift may be related to an increase 
in collagen content. An increase in the amount of collagen fragments and 
peptides in a sample will result in an increase in the amount of the amino 
acids Hyp and Pro which are found in high concentrations in collagen. 
Polypeptides with a high Hyp and Pro content similar to what is found in 
collagen have been thoroughly studied using FTIR. Lazarev et al. 
observed three distinct amide I component peaks (i.e., ~1665 cm− 1, 
~1645 cm− 1, and ~1630 cm− 1) related to collagen-like polypeptides 
[42]. Another report using FTIR to study rat skin collagen and calf skin 

Table 1 
Overview of collagen content (%) in all data sets used for calibration and testing.  

Data set  Number of 
samples 

mean std min max 

Calibration set All 119  16.0  8.9  0.3  37.9 
Cluster 1 55  8.5  5.5  0.3  23.9 
Cluster 2 64  22.4  5.7  14.4  37.9 

Independent test 
set 

All 30  14.6  8.4  2.6  35.8 
Cluster 1 22  10.8  5.3  2.6  21.9 
Cluster 2 8  25.3  5.9  15.8  35.8 

Industrial test set All / 
Cluster 2 

22  26.2  3.4  22.0  33.7  
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gelatin identified three component absorption peaks within the amide I 
band at 1660 cm− 1, 1643 cm− 1, and 1633 cm− 1. These peaks were 
common to the spectra irrespective of the degree of triple helical content 
of the samples, and a shift towards the 1633 cm− 1 were observed with 
increasing denaturation levels [34]. The amide I band of samples con-
taining protein fragments and peptides with less Hyp and Pro will not 
have the same characteristics. Changes in the amide I band related to 
collagen content are thus expected, and similar features can be observed 
in both Fig. 1A and 1B. 

3.2. Multivariate calibration 

The spectral region between 1800 cm− 1 to 800 cm− 1 of the second 
derivative FTIR spectra was used to establish the relationship between 
FTIR spectra and the corresponding collagen content. A calibration set 
consisting of 119 samples with a collagen content from 0.3% to 37.9%, 
was used for model building and parameter optimization. An 

independent test set, consisting of 30 samples with a collagen content 
from 2.6% to 35.8%, was used to validate how well the model predicts 
new samples. 

The global PLSR model, with five latent variables, had a cross- 
validated prediction error (RMSECV) of 3.2% collagen and a test set 
prediction error (RMSEtest) of 3.9% collagen. Predicted versus reference 
values from cross-validation and test set are plotted in Fig. 2A and 2B, 
respectively. Even if RMSEtest is just slightly higher than RMSECV, Fig. 2B 
shows that samples containing less collagen are systematically over-
estimated while collagen-rich samples are slightly under-estimated. This 
is an indication of non-linear relationships between the spectra and the 
response. 

Closer inspection of the scores and loadings from the global PLS 
model (See SI Fig. S-1) revealed that the first latent variable spanned a 
variation mainly present in samples with collagen above approximately 
15%, related to several peaks in the area 1700–1550 cm− 1 and around 
1400 cm− 1. This is an indication that the relationship between FTIR and 

Fig. 1. A) The second derivate FTIR spectra from 1750 cm− 1 to 1550 cm− 1 of a) EPH sample (1.4% collagen), b) EPH sample (26.9% collagen) and c) EPH sample 
(55.3% collagen). The latter sample was added for illustration purposes and is not part of the calibration set. B) The second derivate FTIR spectra from 1750 cm− 1 to 
1550 cm− 1 of an EPH time series produced using turkey tendons. 
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Fig. 2. Predicted versus measured collagen: A) cross-validation, global PLS model, B) test set, global PLS model, C) cross-validation, HC-PLC model, and D) test set, 
HC-PLS model. 
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collagen is different for samples containing low and high amounts of 
collagen, which may explain the challenges in predictive performance 
illustrated in Fig. 2B. It is also important to note that during EPH of 
collagen-rich raw materials, there are several processes going on 
simultaneously: 1) A gradual solubilization of protein components, and 
2) A gradual breakdown of the solubilized proteins and peptides. The 
calibration sample set used in the present study has different mass- 
average molar mass and DH% values, ranging from low to relatively 
high, see Kristoffersen et al. [13]. Samples with similar collagen content 
may therefore exhibit different spectral fingerprints due to differences in 
degradation degree (i.e., DH%). When the mass-average molar mass 
value of a sample is low (at high DH%) most of the ordered secondary 
structure of the protein fragments and peptides are broken down. This 
shows that different processes will affect the spectral information re-
flected in amide bands of the samples. 

To overcome these challenges, an HC-PLS model was built, clustering 
the samples into two groups based on the first three latent variables from 
the global PLS model. The two clusters consisted of 55 and 64 samples 
with a collagen content ranging from 0.3% to 23.9% (Cluster 1) and 
14.4% to 37.9% (Cluster 2). Comparing the mass-average molar mass 
and DH% data of the two clusters, cluster 1 had on average lower mass- 
average molar mass and higher DH% values relative to cluster 2 [13]. 
The optimal PLS calibration model for cluster 1 had four latent variables, 
while the model for cluster 2 had six latent variables. The RMSE, SEP-b 
and Bias for the cross-validation and the independent test set is given in 
Table 2 and predicted versus measured plots are shown in Fig. 2C and 
2D. It is clear from Fig. 2 and Table 2 that predictions of the samples in 
cluster 1, i.e., low collagen, low mass-average molar mass and high DH 
%, is improved by the cluster-based model, mainly due to reduced bias 
but also slightly lower SEP-b. Samples in cluster 2, on the other hand, 
have a larger bias in the cluster-based model while the SEP-b is unal-
tered. Note that there are only eight test set samples for cluster 2, so 
these numbers are highly uncertain. This shows that in future develop-
ment of an FTIR calibration, emphasis have to be put on making the 
cluster 2 range more robust by e.g. extending the sample size in this 
region. 

The regression coefficients for the three models are plotted in Fig. 3. 
The global model and the cluster 2 model generally follow the same 
pattern, but the cluster 2 coefficients have slightly higher intensities in 
the amide band regions of the FTIR spectra related to collagen. This 
might explain why the cluster 2 model performs poorer on the test set as 
large intensities in the regression coefficients make the model more 
sensitive and thereby less robust to small changes in the spectra related 
to secondary structures. Also, since the global and cluster 2 models are 
very similar, it is natural that the global model is more universal since it 
is based on a larger calibration set. 

The regression coefficients for the cluster 1 model deviate from the 
cluster 2 model in several spectral regions, and differences in the regions 
associated with both amide bands and the NH3

+ and the COO– bands can 
be observed. The characteristic absorption bands for collagen seems to 
be important for all the three models. However, the differences seen 
between the regression coefficients of clusters 1 and 2 can indeed be 
related to differences in collagen content and DH% of the samples. The 

samples in cluster 1 contain less than 23.9% collagen and their DH% 
values are in most cases relatively high compared to cluster 2. As pre-
viously discussed, due to the composition (i.e., muscle proteins and 
peptides relative to collagen proteins and peptides) and differences in 
protein degradation, the amide I absorption band will be different when 
comparing FTIR spectra from the two clusters. Some of these differences 
are shown in Fig. 1A where sample a and b have a stronger absorption 
bans between 1700 and 1670 cm− 1 and lower between 1670 and 1630 
cm− 1 compared to sample c (which contains the most collagen). Similar 
differences are also seen in the regression coefficients of Fig. 3. 

3.3. Cage of covariance 

The amount of collagen in a hydrolysate is inevitably connected to 
reaction time, and it is therefore expected to covary with other time- 
dependent parameters such as DH% and mass-average molar mass 
[13]. Previous work has shown that several “reaction time” dependent 
parameters can be identified in FTIR spectra [29,30,43]. Within a time 
series collagen content usually increases with increase in DH% and 
decrease in mass-average molar mass caused by protein digestion. As a 
result the FTIR spectra of a time series will contain changes associated 
with secondary structure, increase in N-terminals (NH3

+, ~1516 cm− 1) 
and C-terminals (COO–, ~1404 cm− 1) and distinct peaks associated with 
increase in tertiary amides (~1630 cm− 1) [27,28,33,36]. In such cases, 
there is a risk that a calibration model performs well due to indirect 
correlations instead of chemical signals caused by the desired response 
itself. This phenomenon is referred to as the cage of covariance [44,45]. 

The studied calibration set was deliberately designed to create 
variation in collagen independent of DH% and mass-average molar mass 
by using raw materials with very different collagen content, different 
proteases, and thermal inactivation with or without sediment [13]. The 
correlation between collagen content (%) and DH% within the same raw 
material and with separation of the water phase before inactivation, was 
positive (0.6 and 0.8 for tendons and carcass respectively). Correlation 
among samples that were inactivated with sediment was negative (-0.6). 
The overall correlation in the full calibration set was − 0.5 (see SI Fig. S- 
2). 

To investigate this further, a new model was fitted using a subsample 
of our calibration set with an almost constant DH% but with varying 
collagen content. The subset contained 42 samples that spanned the full 
range of collagen but only a narrow range of DH% and mass-average 
molar mass (see SI Fig. S-2). The regression coefficients were very 
similar to those from the global model, and the RMSE for the test set was 
3.4% collagen (see SI Fig. S-3). Based on these observations it was 
concluded that the calibration model for collagen is not caused by in-
direct correlations with DH% or changes in mass-average molar mass. 

3.4. Prediction of collagen content in industrial test set samples 

The calibration model developed was tested on 22 samples collected 
from an EPH factory that processes poultry by-products. The collagen 
content in these samples varied from 22.0% to 33.7%. They were all 
classified to cluster 2 in the HC-PLS model. The RMSE were 4.5% and 

Table 2 
Model performances from cross-validation (CV), test set validation, and on the industrial test set. The statistics are the Root Mean Squared Error (RMSE), the bias- 
corrected Standard Error of Prediction (SEP-b) and the bias. The CV and test set statistics correspond to Fig. 2, while industrial test set predictions are plotted in Fig. 4.    

All samples Cluster 1 Cluster 2   

RMSE SEP-b bias RMSE SEP-b bias RMSE SEP-b bias 

Global PLS CV 3.2 3.2 0 2.9 2.9 0 3.5 3.5 0 
Test set 3.9 3.9 − 1.8 4.1 3.0 − 2.8 3.4 3.4 1.1 
Industry set 4.5 3.0 3.5    4.5 3.0 3.5 

HC-PLS CV 2.8 2.8 0 2.2 2.2 0 3.2 3.2 0 
Test set 3.3 3.2 1.1 2.6 2.7 0.2 4.7 3.4 3.4 
Industry set 3.2 2.7 1.9    3.2 2.7 1.9  
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3.2% in the global and cluster specific model, respectively (See Table 2 
and Fig. 4). The improvement in prediction error by the HC-PLS model is 
mainly caused by a lower bias (− 3.5 versus − 1.9). It is not surprising to 
observe a large Bias in this case, since the majority of the raw material in 
the industrial EPH process originated from chicken while the calibration 
set is based on turkey only. The factory also uses a different protease, 
which is known to affect the protein degradation pattern observed in the 
FTIR spectra [29]. Including relevant industrial samples in the calibra-
tion is therefore expected to improve the prediction performance, but 
the current results still indicate the industrial potential of using FTIR to 
predict collagen content in hydrolyzed protein samples. 

3.5. General discussion 

Extracted collagen can be used for many applications dependent on 
the extract’s quality. Collagen source and processing are important 
factors influencing the physicochemical properties of extracts [3,6]. 
Variation in the composition of the collagen-rich by-products that are 
used as a collagen source will also influence the quality of the extracts 
making it challenging to keep a stable product quality for specific ap-
plications. An example is shown in a previous publication demonstrating 
that collagen from poultry by-products is solubilized to some extent 
during an EPH process and that the thermal inactivation step is a critical 
step in solubilization and extraction of the collagen [13]. It was 
concluded that separation of the water and lipid phase prior to thermal 
inactivation could be a strategy to separate collagens from muscle pro-
teins in industrial EPH processes. This approach will make it possible to 

tailor the composition of the hydrolysates with regard to collagen con-
tent of the hydrolysates. The challenge, however, is that variation in the 
composition of the collagen-rich material can affect collagen solubili-
zation during the EPH process. Therefore, development of tools to 
monitor the amount of collagen dissolved in the water phase during an 
EPH process will be critical for implementing this strategy in industry. 

The presented study demonstrates the possibility of using FTIR-based 
prediction of collagen content in EPH samples from poultry, which is a 
collagen source with high potential for several applications, including 
gelatin production [12,46]. But it is expected that an FTIR approach also 
will find use in applications where other collagen-rich raw materials are 
processed, like e.g. marine by-products. It is also important to note that 
the reference methodology used in the current study, i.e., Hyp analysis, 
is associated with high estimation errors [13], highlighting the prom-
ising FTIR results of the study. Thus, together with previous studies on 
collagen quantification using FTIR, the methodology developed here is 
expected to be applicable for EPH-based processing of collagen-rich 
materials in general. Since the dry film FTIR technique used also can 
generate FTIR spectra with only a few minutes delay when applying 
quick drying methods described by e.g. Ayvaz and Temizkan [47], dry 
film FTIR is clearly a promising tool for monitoring and controlling 
collagen content in protein hydrolysates from EPH processes. 

4. Conclusion 

The present study shows the potential of FTIR for prediction of 
collagen content in solutions of hydrolyzed poultry proteins. With the 
dry-film FTIR approach, the characteristic spectral features of collagen 
and collagen peptides is revealed in the spectra, enabling sound quan-
titative regression models for collagen content measurements. Since the 
calibration set contained samples with a relatively large collagen con-
tent range, nonlinear effects were revealed. By employing an HC-PLS 
model the prediction performance of samples with lower collagen con-
tent improved significantly. However, for samples with higher collagen 
content the prediction performance remained similar to the global PLS 
approach. To the authors knowledge, the current study is one of few 
examples where FTIR is successfully used to quantify protein composi-
tion. Based on previously published studies and the presented work, the 
dry film FTIR approach is expected to be an important tool in the 
growing industrial segment that is based on sustainable utilization of 
collagen-rich biomass. 
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