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Digital scoring of welfare traits in
Atlantic salmon (Salmo salar L.) -
a proof of concept study
quantifying dorsal fin
haemorrhaging via
hyperspectral imaging

S-K. Lindberg1*, E. Durland2, K. Heia1, C. Noble3, R. Alvestad3

and G.F. Difford2,4

1Department of Seafood Industry, Nofima AS, Tromsø, Norway, 2Department of Breeding and
Genetics, Nofima AS, Ås, Norway, 3Department of Production Biology, Nofima AS, Tromsø, Norway,
4Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway
Introduction: Morphological injuries are well-established Operational Welfare

Indicators (OWIs) for farmed animals including fish. They are often scored

manually by human observers and this process can be laborious and prone to

subjectivity and error. In this study we evaluated the use of a hyperspectral

imaging system to quantify the presence and severity of external haemorrhaging

in Atlantic salmon focusing on dorsal fins as a proof of concept OWI.

Methods: Two inexperienced observers manually audited dorsal fin injuries on

234 post-smolt Atlantic salmon following a standardized protocol that scored fin

erosion on a 0-3 scale and also classified the injury as active/healed. The same

fish were then imaged with a hyperspectral camera system and the manually

scored visual assessments were compared with hyperspectral images of the

same fin. Hyperspectral images were processed to segment out the dorsal fin of

each fish and the presence of blood in the tissue was quantified by analysing the

spectral information, yielding a fin haemorrhaging index.

Results: The hyperspectral imaging platformwas robust at detecting blood in fins

and could help classify active injuries more accurately than human observers.

The agreement between human scorers and the image analysis tool for

classifying active bleeding vs healed/undamaged fins was good with a Cohen’s

kappa of 0.81 and 0.90. Accuracy between the fin haemorrhaging index and the

human observers was moderate (0.61 and 0.57) and on par with the agreement

between the two human observers (0.68), demonstrating the difficulty in

classifying injuries that result in a reduction in fin size but may or may not

result in fin haemorrhaging.
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Discussion: These results demonstrate the potential power of hyperspectral

imaging to improve welfare audits in aquaculture, especially where manual injury

classification schemes have potentially mixed traits that involve haemorrhaging.

The data also suggests that the hyperspectral camera can detect bleeding that is

not readily visible to the human eye. There is a need for further testing and

validation to integrate these tools into existing welfare auditing programs, but the

potential advantages of the automated approach include increased sensitivity,

accuracy and throughput, while producing quantitative data for researchers or

management.
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1 Introduction

Norway is the world’s largest producer of Atlantic salmon (Salmo

salar), with more than 360 million Atlantic salmon put out to sea in

2021 (Sommerset et al., 2022). A large number of salmon are also

used in research related to the industry challenges. For example, in

2020 it was reported that more than 1.7 million Atlantic salmon were

used for research purposes in Norway, which accounted for 74.5

percent of the total number of reported research animals in Norway

(Kristiansen et al., 2021; Mattilsynet, 2021). In both commercial and

research settings the assessment and monitoring of fish welfare is

increasingly important. However, the sheer number of fish in a single

production system means representative recording remains a

significant bottleneck. For instance, Atlantic salmon are cultured

commercially in marine net-pen systems with individual units

reaching e.g., 130,000 m3 and containing up to 200,000 fish (Føre

et al., 2018a; Føre et al., 2018b). This makes direct human observation

at commercial sites infeasible and obtaining representative samples of

fish a major challenge. In practice, within each production unit the

welfare is audited using a suite of Operational Welfare Indicators

(OWIs). While some of these may be assessed at a group level, many

(e.g., external injuries) are audited by manually examining a limited

number offish per group. In research settings the numbers offish per

tank or unit are generally far smaller, which eases the burden of

obtaining representative samples. However, researchers often need to

evaluate the welfare of fish before and after interventions or multiple

times throughout a study, meaning individual fish are often handled

numerous times in order to conduct a welfare audit. Fish must be

netted, anesthetized and handled in or out of water during the

auditing process and it is imperative that each part of the process is

brief and minimally stressful to ensure that the act of recording

welfare does not itself impair the welfare of the fish under study.

Currently, the majority of morphological OWI monitoring

relies on human observers assigning scores based on a

preapproved scoring scheme (see the Salmon Welfare Index

Model (SWIM) (Stien et al., 2013; Pettersen et al., 2014), or the

standardized scoring scheme in FISHWELL (Noble et al., 2018)). In

these frameworks, injuries are scored on an ordinal rating scale
02
(e.g., 0-3) where zero is little or no evidence of an injury and levels

1-3 indicate that the injury is increasingly evident and severe.

Different scoring schemes may employ different scales, and some

schemes may use different scales for different indicators (e.g. Stien

et al. (2013) and Tschirren et al. (2021)). Even with training (e.g.

Kristiansen et al. (2020)), the accuracy and precision of manually

scored OWIs is inherently variable. Studies from both terrestrial

and aquatic farming scenarios indicate that, in an operational

setting, the performance of observers may be negatively impacted

by adverse work conditions, fatigue, and variable base-line

conditions of the stock under inspection (Kristensen et al., 2006;

Heuch et al., 2011; Elmoslemany et al., 2013).

Physical injuries are well-established OWIs for farmed aquatic

and terrestrial species (Noble et al., 2018; Kristiansen et al., 2020).

Many injuries can include haemorrhaging to the relevant tissue,

indicating acute mechanical trauma, infection, or other health

problems (e.g. Noble et al. (2018) and references therein). Fin

haemorrhaging, which is a common injury throughout the

production cycle of Atlantic salmon, may exhibit itself throughout

the fin area, or around a specific location such as the base of the fin

rays (Noble et al., 2012). Haemorrhaging is indicative of an active

injury which can be directly related to ongoing welfare problems in

the rearing system (see Noble et al. (2012) and Noble et al. (2018)).

Thus, accurate identification of fin haemorrhaging is a valuable tool

for fish welfare management, allowing for the identification of

current and recent welfare challenges and can help direct active

mitigation in relation to these threats. In practice, fin wounds are

often bundled into a mixed-type OWI termed “active fin damage”

that potentially includes one or more traits such as haemorrhaging,

thickening and/or splitting of fin rays (see Noble et al. (2018)).

These distinct traits are frequently coalesced into a single metric for

both speed and ease of use in farming situations. Trait “bundling”

within an OWI can also be due to difficulties in quantifying a

specific trait in operational settings due to many factors including

poor lighting conditions, fatigue and unintentional bias. Fin

haemorrhaging is one of these traits.

Advances in the sophistication and availability of under-water

cameras and image analysis tools have made machine automated
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fish OWI monitoring and documentation feasible in commercial

cages (Barreto et al., 2022). These tools may enable non-invasive

and continuous monitoring of some individual based OWIs on a

much larger proportion of the population within each production

unit. In theory, this would increase the reliability and accuracy of

welfare monitoring in fish culture, aiding farmers in making more

precise and timely decisions (Føre et al., 2018a). Currently, standard

cameras using traditional Red-Green-Blue (RGB) sensors are used

for automated lice counting, passive OWI monitoring, and remote

control of feeding in Atlantic salmon farming. However, water

turbidity and light distortion may challenge their precision and

reliability (Barreto et al., 2022). Another potential limitation to

these technologies is that only one side of the fish is evaluated when

the fish swim by the camera, and as the fish are currently not

individually identified and tracked through the production cycle so

it is not possible to link different sides to an individual fish or follow

OWI progression on individuals.

Hyperspectral imaging is a spectroscopic technique that

captures reflection of light at narrow wavelength bands with a

level of detail that exceeds the visual perception of humans and

traditional cameras. Hyperspectral cameras produce images where

each pixel contains a graph that shows the composition of the light

recorded by that pixel across a range of the electromagnetic

spectrum. The composition of the light is dependent on the

chemical and physical composition of the object being imaged,

and hyperspectral images can therefore provide more information

about an object’s composition than RGB images (Cancio et al.,

2006; Gowen et al., 2007; ElMasry and Sun, 2010). Applications of

hyperspectral imaging hitherto include food quality and safety

assessments, medical diagnostics, and measurements of vegetation

and crop parameters in forestry and agriculture (Dale et al., 2013;

Lu and Fei, 2014; Xu et al., 2017; Lu et al., 2020). In addition,

hyperspectral imaging in conjunction with automated conveyor belt

delivery has resulted in numerous inline applications of non-

destructive food grading, for instance nematode detection in

Atlantic cod or freshness in Atlantic salmon (Sivertsen et al.,

2012; Kimiya et al., 2013). Crucially, hyperspectral images can

capture the oxygenation states of haemoglobin which has

applications in an array of non-invasive measurement of injuries

such as diabetic foot ulcers (Yudovsky et al., 2011), peripheral

vascular disease (Chin et al., 2011), open wounds (Calin et al.,

2015a) and burns (Calin et al., 2015b) in humans. Recently, this

approach has been successfully adapted for the seafood industry to

measure different oxidative states of haemoglobin in Atlantic cod

fillets to detect and quantify blood (Skjelvareid et al., 2017). This

imaging approach, then, is seemingly well suited for use as a tool to

improve OWI assessments in aquaculture by enhancing our ability

to detect and quantify wounds in fish.

In order to rigorously evaluate the technique, we constrained

this study to an audit of haemorrhaging in the dorsal fin of juvenile

Atlantic salmon. This is a particularly useful trait in this context as

haemorrhaging, especially in eroded fins, is often difficult to assess

and quantify in operational settings. Thus, the aim of this study was

to evaluate the utility of inline hyperspectral imaging to quantify

haemorrhaging as a specific OWI trait amongst a mixed trait

classification. For this purpose, the agreement between the
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hyperspectral imaging and each of two human observers was

compared with that of the agreement between two human

observers on the same fish. Although the est imated

haemorrhaging on the fins is compared to the manual fin erosion

registration, we assume that there should be a correspondence

between the two. To the best of our knowledge, this is the first

example of using hyperspectral imaging for monitoring

morphological OWIs in aquaculture.
2 Materials and methods

2.1 Terminology

In this study the following terminology will be used to describe

the status of the dorsal fins (adapted from Noble et al., 2018 and

Turnbull et al., 1996):

Undamaged: The fin has no or little evidence of visible injury

Degree of erosion: used to quantify reductions in fin size,

manually scored 0-3, with 0 = little or no evidence of erosion, 1 =

most of the fin remaining, 2 = half of the fin remaining, and 3 = very

little of the fin remaining.

Active: The fin has a visible injury (splitting, thickening) that

may include bleeding

Healed: The fin has a historic injury that is now healed (with

e.g., a smooth distal edge) and is no longer bleeding

Haemoglobin abundance: The sum of the three regression

coefficients for haemoglobin obtained by performing a regression

analysis on the signal from the hyperspectral camera using pure

haemoglobin spectra as predictor variables (see methods)

Fin haemorrhaging index: A compound index (square root of

area of wound x haemoglobin abundance/total fin area) from the

hyperspectral imaging pipeline (see methods)
2.2 Fish

The use of fish was performed in strict accordance with the

Norwegian Animal Welfare Act of the 19th June 2009, in force from

1st January 2010. The study was based on post-mortem sampling of

material from fish undergoing a growth and smoltification

experiment which included fish biopsied for gill filaments and

haematological parameters under ethical approval 19679

Forsøksdyrforvaltningens tilsyns- og søknadssystem (FOTS). The

regulation states that it is legal to sample from animals post-mortem

without a specific license.

A total of 1044 individually PIT (Passive Integrated

Transponder) tagged Atlantic salmon parr of the Benchmark

genetic strain (Benchmark Genetics AS), average weight 76.3 g,

were kept in a single freshwater flow through tank (volume = 3.2

m3, diameter = 2 m) at the Nofima Centre for Recirculation

Aquaculture at Sunndalsøra (Sunndalsøra, Nofima AS). For the

duration of the trial, the fish had ad libitum access to 3-4 mmNutria

Olympic pellets (Skretting, Norway). After a two-week acclimation

period, the fish were subjected to a standard smoltification scheme:

a 6-week short day length (12 hour light: 12 hour dark) period,
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followed by 7 weeks on a 24 hour light regime (Handeland &

Stefansson, 2001). During each of the 7 weeks of the 24-hour light

regime, groups of 60 salmon were transferred to a recirculation sea

water tank (3.2 m3) to study longitudinal variation in smoltification

parameters. The fish remained in the seawater tank for a further 18

weeks at which point the fish were euthanized with a lethal dose (20

g/L) of MS-222 (Finquel, USA) for 20 minutes. Euthanasia was

confirmed by observing a lack of eye reflex (Kestin et al., 2002).

Individual identity (PIT) and OWIs were recorded as

described below.

2.2.1 Manual scoring of OWIs
A total of 20 fish from each of the weekly experimental groups were

each assigned a unique alias number linked to their respective PIT tag

identification number. Each of the fish was then independently

manually scored by two human observers, each in a separate room

before imaging. The manual observers had a fixed work surface with

additional lighting, and themanual scoring offish was conducted as per

the standardised FISHWELL scoring scheme (Noble et al., 2018) with

the FISHWELL scoring poster within direct line of sight of each scorer.

The manual observers were naïve OWI scorers and had never used the

FISHWELL scoring scheme before. They therefore conferred on the

scoring scheme before measurement and again after the first 50 fish

were scored. The scores from the first 50 fish were then discarded from

further analysis. In total, 290 fish were scored for OWIs over two

consecutive days. Fin damage on these fish was classified according to

the degree of fin erosion (see terminology above). The scorers then

further classified each erosion category (0-3) as either active (ongoing

welfare problem) or healed (injury is no longer active and the distal

edge of the fin is smooth) according to Noble et al. (2018). The

correspondence between the two scorers, as well as each scorer and the

camera values, was then analysed for both fin size score and injury

status (active injury, healed injury or no injury) with the limitation that
Frontiers in Animal Science 04
the camera only aims to separate between active injuries vs healed or no

injury. After merging the data sources, a total of 234 fish were scored by

both human observers and imaged with the camera.

2.2.2Hyperspectral image acquisition
The imaging platform consisted of a hyperspectral line scanning

camera mounted above a conveyor belt with a custom illumination

setup (Figure 1). The hyperspectral camera was a Hyspex VNIR-

1800 (Hyspex, Norway). A 1 m focusing lens was fitted to the

aperture, and the camera was mounted at a 1 m distance facing the

nadir, which resulted in a 300 mm field of view across the conveyor

belt. This camera operates with 186 spectral bands in the spectral

range 400-1000 nm, and it has 1800 spatial pixels. This yielded a

cross-track spatial resolution of 0.17 mm. The conveyor belt was

operated at 200 mm/s, and with a frame rate of 265 frames per

second, the along-track resolution was 0.75 mm.

The illumination consisted of a Teflon box with 14 conventional

halogen light bulbs of 50 W each mounted on the inside. This box

had a slit in the top for the camera field of view and an open bottom

which allowed the light to spread diffusely over the conveyor belt.

The images were transformed from digital numbers to

reflectance values by dividing by a white reference obtained by

imaging a 2 cm thick Teflon plate. Both the images and the white

reference were corrected by subtracting the dark reference (image

obtained with shutter closed) prior to the transformation. The

reflectance values (R) were transformed to apparent absorbance

(A) by the relation:

A = log
1
R

The images were spatially down-sampled in both the cross-

track direction and the along-track direction to produce square

pixels with 0.5 mm sides.
2.3 Hyperspectral analysis

The spectral analysis was done using a custom program written

in IDL version 8.7.1 (L3Harris Geospatial Solutions, Inc). The fish

were segmented from the conveyor belt background, and then

further into individual fins. The hyperspectral images were then

analysed for blood using constrained spectral unmixing as

described in Skjelvareid et al. (2017). Oxyhaemoglobin,

deoxyhaemoglobin and methaemoglobin, the three oxidation

states of blood haemoglobin, were used as reference spectra for

the blood. Water and fat were also included to account for the

absorbance in the near infrared range, as well as a selection of

pigments (astaxanthin, cantaxanthin and betacarotene) since these

can occur in farmed salmon tissue depending on the composition of

the feed. Finally, a reference spectrum for the colouration of the

muscle, excluding the blood and pigments, was included to improve

the fit of the light absorption model.

An index for dorsal fin injuries was calculated from the images

based on the apparent absorption contribution of haemoglobin and

the area of the fin as visible in the images. The estimates of the three

haemoglobin oxidation states were summed to yield one blood
FIGURE 1

Imaging setup. A conveyor belt is illuminated by halogen light bulbs
in an open-bottomed Teflon box, which produces an even diffuse
field of light. A hyperspectral pushbroom camera is mounted above
the Teflon box and scans the conveyor belt through a slit in the top
of the box. The camera is operated by a computer alongside the
conveyor belt.
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abundance value per pixel, and a threshold was set on the blood

abundance manually via a grid search at increments of 0.1 and

visual appraisal to effectively delineate areas of the fish with very

obvious haemorrhaging like those from wounds or in the fins. An

example of this is shown in Figure 2, and the manual OWI scores

for different image outputs are shown in Figure 3 for observer 1

(Figure 3A) and observer 2 (Figure 3B). For each threshold, the

mean blood abundance was multiplied with the area of the

corresponding region, and these products were then summed for

each feature (fin). These values were then averaged for each of two

images (left and right) per fish and divided by the area of the fin

calculated from the images to account for fin erosion. Finally, the

values were square-root transformed to achieve an approximation

to a gaussian distribution. We will refer to the result of these

readings and computations as the fin haemorrhaging index in order

to keep subsequent references succinct.
Frontiers in Animal Science 05
2.4 Statistical analyses

All statistical analyses were conducted using the statistical

software R (R Core Team, 2021). This included the following

packages: caret (Kuhn, 2020), dplyr (Wickham et al., 2021), ggdist

(Kay, 2022), ggplot2 (Wickham, 2016), irr (Gamer et al., 2019) and

openxlsx (Schauberger & Walker, 2019).

A presence/absence analysis was used to distinguish between

blood in active dorsal fin injuries and healed or undamaged dorsal

fins. The ground-truth presence of an active injury was defined as

any non-zero fin size score which was classified as active by the

human observers. For the automatic scoring with hyperspectral

images, the presence of an active injury was defined as a fin

haemorrhaging index higher than zero. The accuracy, sensitivity,

specificity, and Cohen’s kappa (k) were used to compare manual to

automatic scoring approaches. Accuracy was calculated as the
BA

FIGURE 3

(A) Different categories of fin erosion reproduced from FISHWELL with permission; Noble et al., 2018 distinguishing severity category as well as
active vs healed/undamaged status. (B) corresponding fin images from the present study with blood intensity visualized on a blue-red color scale
from Breeze; Prediktera 2022).
FIGURE 2

An example of the blood analysis for the dorsal fin. These RGB images were made from CIE RGB colour values calculated from the spectral data (see
e.g., Broadbent, 2004). The red areas show the parts of the dorsal fin where active haemorrhaging was detected from the image.
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overall proportion of correct binary classifications, while sensitivity

was the proportion of correctly classified true positives, and

specificity was the proportion of correctly classified true negatives.

Cohen’s k is an alternative metric to accuracy and takes into

account the number of instances of present and absent, and the

probability that the reference and prediction agree by chance (see

Cohen (1960) for details).

Fish with active injuries were analysed further to test the

correlation between the severity of haemorrhaging detected in

images and the score assigned by each of the human observers.

Correlations between OWI scores and fin haemorrhaging index

values were investigated with polychoric correlation (Cox, 1974;

Shiina et al., 2018), which is useful for studying the correlation

between a discrete ordinal variable and a continuous variable since

it assumes that the discrete variable is an expression of an

unobserved latent variable.

Finally, the human scores from the two scorers were compared.

The percentage agreement, and Cohen’s k were used as measures of

inter-observer reliability. The percentage agreement is the

proportion of scores where both observers agree, while Cohen’s k,
as described above, corrects for the possibility that the scorers can

agree by chance, for which it was originally derived.
3 Results

Tables 1, 2 show the distribution of OWI scores across the

different fin size scores for the dorsal fin according to observer 1

and 2 respectively. Due to the spontaneous nature of the injuries the

score distribution is somewhat uneven across the different categories.
Frontiers in Animal Science 06
Fish with undamaged fins n=9 - 20 depending on observer, had

an overall lower length to weight ratio (Figure 4). This was It was

noted during the trial by one of the human observers that some of

these were clearly pinheaded or emaciated. This suggests that the

fish with undamaged fins might have avoided injuries due to

behavioural differences from the otherwise healthy fish.

The relationship between OWI scores and the haemorrhaging

index for all fin damage statuses is represented in Figure 5, while

Figure 6 shows the same relationship for the active injuries only,

with panel A corresponding to observer 1 and panel B to observer 2.

Fins classified by the human observers as undamaged or healed

were largely absent of detectable blood, with a few (n=15)

exceptions. We also observed a generally positive correlation

between OWI score categories and the haemorrhaging index.
3.1 Detection of active versus healed and
undamaged fins

The results of the predicted classification of fins with active

wounds versus healed and undamaged fins using the fin

haemorrhaging index against the human observers is displayed in

the confusion matrices in Table 3. Manual and automatic scoring

methods had broad agreement, with few false positives and

false negatives.

The agreement indices for classifying active versus healed or

undamaged dorsal fin injuries for the fin haemorrhaging index

between observer 1, observer 2 and the camera are contrasted in

Table 4. In general, the agreement was high between all parties with

Cohen’s kappa values in the range 0.81-0.90.
TABLE 1 Distribution of OWI scores distributed across dorsal fins with active injuries and undamaged or healed fins as scored by observer 1.

Manual fin size score

Wound category

TotalUndamaged Active Healed

0 20 – – 20

1 – 9 6 15

2 – 73 60 133

3 – 55 11 66

Total 20 137 77 234
TABLE 2 Distribution of OWI scores distributed across dorsal fins with active injuries and undamaged or healed fins as scored by observer 2.

Manual fin size score

Wound category

TotalUndamaged Active Healed

0 9 – – 9

1 – 5 5 10

2 – 79 69 148

3 – 56 11 67

Total 9 140 85 234
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3.2 Correlation analysis

The confusion matrix for fin size scores between observer 1 and

observer 2 is shown in Table 5.

The polychoric correlation between manual fin size scores and

fin haemorrhaging index was 0.61 for observer 1 and 0.57 for

observer 2. This is to be interpreted as the correlation between the

fin hamorrhaging index and a latent normal distribution that, when

partitioned into discrete scores, yields the manual fin size scores.
4 Discussion

The present study describes an innovative high throughput

hyperspectral imaging system for quantifying the presence and

severity of dorsal fin haemorrhaging as an OWI for Atlantic

salmon. By targeting spectral signatures of fish haemoglobin, we

detected active injuries with greater sensitivity than human observers

and did so with greater precision and throughput than manual

methods. Furthermore, we found that despite the inherent
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difficulties in comparing ordinal scales to quantitative data, the

overall agreement between the spectral image analysis and two

human observers is comparable to the comparison between two

independent human observers. Moreover, the increased information

provided through this approach (i.e. a haemorrhaging index rather

than a score) is expected to substantially improve welfare assessments

for salmon aquaculture.
4.1 Distinguishing active haemorrhaging
injuries from healed or undamaged fins

The handling of Atlantic salmon in research and commercial

settings is usually kept to a minimum due to the potential negative

effects handling can have upon production and welfare. As a

consequence, OWIs are often either sparsely and infrequently

recorded or recorded in very small numbers of fish (< 20) during

routine operations such as lice counting. For welfare assessments,

distinguishing between active and healed wounds is a critical task as

it can have an impact on ongoing and future welfare risk
BA

FIGURE 4

Distributions of weight to length ratios for the different fin size scores as scored by observer 1 (A) and observer 2 (B).
BA

FIGURE 5

Fin haemorrhaging index relative to manual fin size scores, colored according to injury status, for observer 1 (A) and observer 2 (B).
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assessments in relation to, for example, the choices the researcher or

farmer makes in relation to any potential fish handling events. This

information can also be linked to historical management

information to help diagnose whether the injury is likely the

result of mechanical processes (e.g., crowding or handling) or

potentially the result of pathogenic agents (Sveen et al., 2019).

We found that the classification of active and healed or

undamaged wounds on dorsal fins using hyperspectral imaging

was highly effective with an accuracy of 0.95 and 0.91 for observer 1

and 2 respectively. This is a slight improvement to the same

assessment by two human observers who classified injuries as

active or healed/undamaged with an accuracy of 0.91. The very

high agreement between automatic and manual classifications was

also robust, even accounting for random probability and the
Frontiers in Animal Science 08
disparity of numbers across classes (k = 0.90 and k = 0.82) which

was on par with that of the two human observers (k = 0.81) (Landis

and Koch, 1977). Notably, hyperspectral imaging also identified

several cases where measurable blood was detected that was not

observed by the human scorers. This adds to the evidence base that

manual detection and scoring of fin haemorrhaging is a difficult

task. It appears that this is true even in experimental settings where

there can be substantial agreement between human observers, and

where OWI auditing conditions can often be more stable than those

encountered in the field.

Unexpectedly, human observers identified several fish with

undamaged dorsal fins. In smoltification trials, such as the one

conducted here, completely ndamaged dorsal fins are rare. It was

observed, however, that the mean length to weight ratio for these
BA

FIGURE 6

Fin haemorrhaging index for active fin injuries across differing fin size scores by manual observer 1 (A) and manual observer 2 (B).
TABLE 3 Confusion matrices for distinguishing active injuries from healed or undamaged dorsal fins between dorsal fin haemorrhaging index and
human observers, as well as between human observers.

Observer 1

Camera prediction Active Healed & Undamaged Total

Active 136 10 146

Healed & Undamaged 1 87 88

Total 137 97 234

Observer 2

Camera prediction Active Healed & Undamaged Total

Active 133 13 146

Healed & Undamaged 7 81 88

Total 140 94 234

Observer 2

Observer 1 Active Healed & Undamaged Total

Active 128 9 137

Healed & Undamaged 12 85 97

Total 140 94 234
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fish was notably lower than the rest, supporting the findings of

MacLean et al. (2000) who suggested that smaller Atlantic salmon

parr in larger groups can have less dorsal fin damage than their

conspecifics by adopting feeding strategies that reduce feed intake

and avoid potential injuries caused by feeding competition.

To the best of our knowledge this is the first study to report the

classification of active and healed wounds and undamaged fins in

any aquaculture species from hyperspectral image analysis or

human observers, which makes comparisons from the existing

literature challenging. However, the detection of wounds in

salmonids for product quality grading on e.g., a fillet processing

line using image-based systems is not new. Balaban et al. (2011)

imaged 16 fillets from red salmon (Oncorhynchus nerka) and

investigated bruising and bloods spots using a camera system but

did not report agreement metrics like accuracy or Cohens kappa.

Sture et al. (2016) used a 3D camera system to classify winter ulcers

and deformities in 105 Atlantic salmon, and while their system

detected winter ulcers with an accuracy of 0.82, we retrospectively

calculated the Cohen’s kappa at 0.62. There are also multiple
Frontiers in Animal Science 09
examples of computer vision-based classification of both binary

behavioural traits and health traits in livestock. For instance,

Denholm et al. (2020) classified the presence of bovine

tuberculosis with an accuracy of 0.78 – 0.95 using pseudo-images

derived from milk infrared spectra by training a deep learning

algorithm. Likewise, our values are higher than those reported for

detecting digital dermatitis using hoof images in dairy cattle

(accuracy = 0.71-0.88, Cohen’s kappa 0.36-0.51) (Cernek et al.,

2020). Our findings are also comparable to ongoing work in swine,

where drinking, feeding and nursing behaviour were classified from

video images with accuracies of 0.98, 0.95 and 0.88 respectively

(Yang et al., 2020).

The largest body of comparable work in human biomedical

research relies on binary or multiclass classification of wounds.

Goyal et al. (2020) classified ischaemia vs non-ischaemia wounds

and infected vs non-infected wounds with accuracies of 0.90 and

0.73 using a variety of machine and deep learning methods in the

public RGB image diabetes foot ulcer (DFU) dataset. Similarly,

Alzubaidi et al. (2022) used transfer learning and convolutional
TABLE 4 Measures of performance in classifying active versus healed or undamaged dorsal fins using hyperspectral imaging as compared to two
human observers.

Hyperspectral vs Observer 1 Hyperspectral vs Observer 2 Observer 1 versus Observer 2

Accuracy 0.95 0.91 0.91

Positive predictive value 0.93 0.91 0.93

Negative predictive value 0.99 0.92 0.88

Sensitivity 0.99 0.95 0.91

Specificity 0.90 0.86 0.90

Cohen’s Kappa 0.90 0.82 0.81
TABLE 5 Confusion matrices for fin size scores between the two human observers for 234 post-smolt Atlantic salmon.

Observer 2

TotalObserver 1 0 1 2 3

0 8 4 7 1 20

1 0 1 13 1 15

2 1 5 106 21 133

3 0 0 22 44 66

Total 9 10 148 67 234

Overall statistics

Accuracy: 0. 68
Cohen’s kappa: 0.42

Statistics by class

Fin size score 0 1 2 3

Sensitivity 0.89 0.10 0.72 0.66

Specificity 0.95 0.94 0.69 0.87

Positive predictive value 0.40 0.07 0.80 0.67

Negative predictive value 1.00 0.96 0.58 0.86
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neural networks for binary classification of normal and abnormal

ulcers from the DFU dataset and achieved accuracies in the range of

0.77 - 0.88. Rostami et al. (2021) extended classification from binary

to multiclass wound categories (surgical, diabetic and venous

ulcers) in the DFU dataset and used ensemble deep convolutional

neural networks, achieving accuracies in the range 0.88 - 0.92. From

the above-mentioned comparisons, it becomes clear that binary

classification of wounds from images is highly effective across

species and systems and that our results are firmly in alignment

with recent developments in human biomedical research.
4.2 Determining the size and severity of
active dorsal fin injuries

Determining the severity of injuries is a challenging task for

computer vision and human observers alike. Whilst binary or

multiclass classification of different kinds of wounds are

increasingly prevalent in human biomedical research, research

into classifying severity within wound classes where there is an

implicit order to classes is very scarce (Anisuzzaman et al., 2022). In

general, the challenge lies in finding a suitable gold standard or

reference method from which to train and evaluate classifiers, which

in many cases relies on trained human observers to score severity.

As reviewed by Aeffner et al. (2017), human observers have their

own inherent fallibility. This is known as the gold standard paradox

and is particularly challenging in digital imaging. For instance, van

Netten et al. (2017) found poor validity and reliability of clinicians

scoring DFU in foot images. Even the most accurate digital method

of measurement will compare poorly to an imperfect gold standard.

When human observers are naïve or untrained, this comparison can

become even more problematic. In the present study we use the

comparison between hyperspectral imaging and human observers

versus a comparison between the two human observers to gauge the

agreement that can be expected if the human observers were to be

cautiously used as a benchmark. Whilst observer experience does

not always correlate with improved scoring reliability (Meagher,

2009), it must be explicitly stated that each of the observers were

naïve users of the scoring scheme and received just 60 minutes

training and joint discussions before undertaking the OWI scoring

audit and once again after 50 fish were scored. The FISHWELL

scoring scheme is aimed at widespread use and standardisation of

OWI scoring by non-expert users, and the results herein are thus

well within the operational ranges expected when this scheme is

used in practice.

The causes of fin erosion or wounds is a very active field of

research and can be linked to numerous effects such as disease,

genetics, behaviour and management interventions (See Ellis et al.,

2008 for an in depth review). When classifying fin wounds in

Atlantic salmon several scoring schemes are available, but one that

is receiving increased traction in both research and commercial

settings is the FISHWELL scoring scheme (Noble et al., 2018),

recently updated by Nilsson et al. (2022). In the FISHWELL scoring

scheme, fin size/erosion is classified according to a 0-3 scale (0 =

little or no evidence of fin erosion, 3 = very little of the fin
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remaining). Each size category is then classified as having an active

injury or being healed. However, the active injury classification

includes a number of mixed traits e.g., fin splitting between the fin

rays, thickening of the fin tissue or focal or diffuse haemorrhaging

within the fin (see Noble et al., 2018). This is challenging if an

observer wishes to elucidate specific traits within the injury

classification. By defining the fin haemorrhaging index as the

abundance of haemorrhaging per unit surface area of the fin, a

positive association was detected with increasing fin erosion. Whilst

the agreement between two human observers was 0.42 (Cohen’s

kappa), the polychoric correlation between fin haemorrhaging

index and manual fin size scores was 0.61 for observer 1 and 0.57

for observer 2. These findings are congruent with a recent study

classifying wound severity into three classes in DFU, (venous leg

ulcers, pressure ulcers and surgical wounds) using deep neural

networks which achieved overall accuracies in the range of 0.69

(Anisuzzaman et al., 2022). Further demonstrating the difficulties in

achieving high accuracies of classification of wound severity.

However, the use of the fin haemorrhaging index achieves

comparable agreement with a human observer as between two

human observers as well as comparable accuracies to literature

classifying wound severity.

Hoyle et al. (2007) reported a Cohen's kappa inter-observer

agreement on scoring fin erosion of rainbow trout (Oncorhynchus

mykiss) into six categories by three trained observers as either 0.41

(moderate) or following a 6 month break and further training, as

0.64 (substantial). Interestingly, the trained observers in the Hoyle

et al. (2007) study also manually recorded fin haemorrhaging with a

Cohen’s kappa agreement of 0.39 and 0.40 respectively (both fair),

suggesting that agreements between observers during the manual

scoring of haemorrhaging did not improve following additional

training. Inter-observer agreement between these three trained

observers was higher than in our study, and as mentioned earlier,

this may have been because the observers in our study received

limited training before welfare auditing the fish. However, there can

always be discrepancies between observers when using manual

scoring schemes (e.g., Meagher, 2009; Pfeifer et al., 2019) and this

is sometimes not improved by training, but generally, to improve

the reliability of manual welfare scoring, detailed operational and

research-based training should be undertaken (Meagher, 2009;

Weirup et al., 2022).

This, in sum, suggests that hyperspectral imaging tools for

detecting haemorrhaging in fin injuries can identify fin erosion

with a reliability comparable to human observers by targeting

bleeding in the fins. This offers the possibility for rapid

determination of fin status in Atlantic salmon for an objective

and continuous measurement of OWIs.
4.3 Implications beyond classification of
active dorsal fin injuries and severity

The present study focused on quantifying haemorrhaging

injuries to the dorsal fin as a proof of concept since dorsal fin

damage is a common injury in juvenile Atlantic salmon (e.g.,
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Turnbull et al., 1996) and haemorrhaging to the fins is fairly

challenging to audit (e.g. Hoyle et al., 2007). The variation in

human scorings for this trait was sufficiently large and

encompassing all fin size categories. Importantly, it takes

variation to explain variation and in the case of OWIs this cannot

be factored into the experimental design since the injuries occur

spontaneously during the experiment. In this case the distribution

of scores of the active injuries is heavily skewed towards the upper

end of the scale with many of the scores being moderate to severe

class 2 and class 3. Future investigations should include other fins

and bodily injuries encompassed in welfare scoring schemes. The

automatic scheme presented here is conceptually simple and can be

improved by considering the shape in addition to the size of the fin

in order to quantify fin splitting and erosion. The imaging setup can

be modified to capture the spatial properties of the fin by keeping

the fish stationary while the camera moves. This would allow for the

fin to be fixed such that its whole surface area would be visible.

Overall, the relationship between automatic readings and

human scores reinforced the compatibility of the spectral method

for this task even if the relationship between the two data types was

not completely harmonious. If automatic injury assessment is to be

adopted in future studies or applications, and translated to the

standardized classification categories, appropriate thresholds will

need to be determined to do so and the repeatability should be

verified. One approach would be to evaluate the distribution of the

fin haemorrhaging index per human score category in relation to

the underlying distribution of the latter. Thresholds could then be

proposed which minimize the overlap of fin haemorrhaging index

values in two categories across the entire range (e.g., 0-3). Since any

such cutoffs are dependent on the available data, special care should

be taken to account for external factors that could influence

variability in human scores, including inter-observer reliability

and biological status of the fish (e.g., life stage and wound type)

which may skew analyses to suit specific conditions. Hyperspectral

imaging itself presents many additional opportunities to quantify

morphological traits in fish, from lesions to scale loss, snout damage

and deformities. These and many additional traits could be

potentially quantified with the setup described in this study.

The use of hyperspectral images may have applications that go

beyond detection of active fin injuries and classification of their

severity. Yudovsky et al. (2011) used hyperspectral images of DFU

using blood oximetry to develop an index that was similar to the fin

haemorrhaging index in the present study to record foot ulceration in

a longitudinal study. They were retrospectively able to predict the risk

of ulceration development with a sensitivity and specificity of 0.95

and 0.80 respectively, 58 days before ulceration was detected by the

human eye. In the present study non-zero values of the fin

haemorrhaging index were detected in fins where human observers

could not detect active wounds. This implies that there is scope for

hyperspectral imaging to not only be used as a diagnostic and

retrospective management tool, but also to infer future

management decisions to prevent the development of fin injuries in

Atlantic salmon and further impairment of welfare.
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In the present study the limiting factor to measurement speed

was the concurrent scoring by human observers who managed to

score 290 fish over two days, whilst the hyperspectral setup recorded

the entire cohort of 1050 salmon in the same amount of time. In the

present study measurements were taken post-mortem to comply with

ethical animal research licenses. However, successful non-invasive

live measurements have been taken on Atlantic salmon under

anaesthesia (Heia et al., Personal communication). This opens up

the possibility to record large numbers of Atlantic salmon before and

after managerial interventions such as delousing, crowding and

grading as well as harvest.
5 Conclusion

Automated hyperspectral measurement of haemorrhaging in

the dorsal fin by targeting haemoglobin is a highly accurate method

of distinguishing between active and healed or uninjured dorsal fins.

The total haemoglobin abundance per unit surface area of the fin

has some agreement with manual human scoring of operation

welfare indicators. The use of rapid automated hyperspectral

measurements of haemorrhaging in fish holds promise for a

high throughput method of recording OWIs in Atlantic

salmon. However, future work should be extended to encompass

other body parts, and better comparisons to ground truth

measurements are required to help overcome the challenges of

using human observer-based scoring schemes.
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