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A B S T R A C T   

Mushy Halibut Syndrome (MHS) is a condition that appears in Greenland halibut and manifests itself as 
abnormally opaque, flaccid and jelly-like flesh. Fish affected by this syndrome show poor meat quality, which 
results in negative consequences for the fish industry. The research community has not carefully investigated this 
condition, nor novel technologies for MHS detection have been proposed. In this research work, we propose 
using hyperspectral imaging to detect MHS. After collecting a dataset of hyperspectral images of halibut affected 
by MHS, two different goals were targeted. Firstly, the estimation of the chemical composition of the samples 
(specifically fat and water content) from their spectral data by using constrained spectral unmixing. Secondly, 
supervised classification using partial least squares discriminant analysis (PLS-DA) was evaluated to identify 
specimens affected by MHS. The outcomes of our study suggest that the prediction of fat from the spectral data is 
possible, but the prediction of the water content was not found to be accurate. However, the detection of MHS 
using PLS-DA was precise for hyperspectral images from both fillets and whole fish, with lower bounds of 75% 
and 83% for precision and recall, respectively. Our findings suggest hyperspectral imaging as a suitable tech
nology for the early screening of MHS.   

1. Introduction 

Greenland halibut (Reinhardtius hippoglossoides) is a ray-finned fish 
from the family Pleuronectidae found in the polar regions of the North 
Atlantic and North Pacific oceans (Herrmann et al., 2013). The 
Greenland halibut is a flatfish showing ambicolouration, where the eye 
side (ocular side) has a dark black, brown, or grey coloration, while the 
blind side is slightly lighter (Barkley, 2015). This species is of com
mercial interest for fisheries in Canada, Greenland, Iceland, the Faroe 
Islands, Norway, Russia, and the Barents Sea (Dwyer et al., 2016). In 
2020, the total catch volume of Greenland halibut in Norway was 
approximately 17,000 tons, with an estimated value of 446 million NOK 
(Fiskeridirektoratet, 2020). 

In recent years, there has been an increased awareness in the market 
since some individuals of Greenland halibut show muscle tissue that is 
abnormally opaque, flaccid, and jelly-like. These symptoms of the fish 
muscle are commonly referred to as mushy halibut syndrome (MHS) 
(Meyers et al., 2019). Although this condition has no negative conse
quences for human health, the inferior meat quality makes it unattrac
tive for human consumption. The condition is often not discovered until 

the fish has been filleted. The prevalence of this condition can vary 
between years and fishing grounds. Nevertheless, significant variations 
in the quality of landed fish quality can lead to complaints and down
grading of the products on the market (Sogn-Grundvåg & Zhang, 2021). 
Thus, causing a significant financial loss to the industry. MHS has been 
poorly investigated in the literature but is hypothesized to be related to 
nutritional deficiencies (Sydeman et al., 2017). 

The main problem with wild fish is that the chemical composition of 
the muscle, the sensory attributes, and shelf life are highly influenced by 
preharvest (species, sex, age, feeding, and environmental habits), har
vest (fishing tactics and gear choice) and postharvest factors (storage 
time, temperature) (Alasalvar et al., 2011; Lefevre & Bugeon, 2008; 
Petricorena, 2015; Sogn-Grundvåg et al., 2022). In the Norwegian 
whitefish industry, quality defects like parasitic nematodes, residual 
blood, discoloration, fillet gaping, and soft flesh are registered by 
labor-intensive procedures, such as candling and manual inspection. It is 
important to note that candling and manual inspection involve a sub
jective evaluation and have a high inaccuracy level (Heia et al., 2007). 
Objective instrumental and chemical methods have been applied to 
provide information about fish quality. However, these methods are 
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tedious, complex, time-consuming, and destructive to the product. Thus, 
these methods have limitations for practical use in the industry (Careche 
& Barroso, 2009; Careche et al., 2003; Liu et al., 2013; Martinsdttir et al., 
2009; Nilsen & Heia, 2009; Nollet & Toldrá, 2009; Olsen et al., 2008). 
Hence, using an objective and non-destructive instrumental method for 
rapid tissue analysis would be beneficial. 

As far as we are concerned, nowadays, no technology exists for the 
early screening of MHS. For this reason, in this work, we investigate 
hyperspectral imaging technology for the non-invasive detection of 
MHS. Hyperspectral imaging is a non-contact and non-invasive tech
nology able to measure both the spatial and the spectral information of a 
sample, providing a capability superior to the human eye for charac
terizing materials. The spectral information is related to the chemical 
composition and physical structure of the different materials in the 
sample, as every material produces characteristic light interactions in 
different spectral bands. Several approaches for measuring hyper
spectral images are distinguished by how the light interacts with the 
material. In a diffuse reflectance illumination scheme, the light is re
flected on a surface and is then measured by a hyperspectral camera. In 
diffuse reflectance, only the spectral features of the surface can be 
measured. Such surface information is usually insufficient for analyzing 
the composition of complex and inhomogeneous samples (Wold et al., 
2006; Wu & Sun, 2013). Alternatively, using interactance illumination 
(also known as transflectance), the light is able to penetrate the sample, 
and it is measured after different internal scatterings have occurred in
side the sample (Sivertsen et al., 2009). 

Hyperspectral imaging and image analysis techniques have been 
proven effective technology for non-invasive food safety inspection 
(Saha & Manickavasagan, 2021, 2021zdoğan et al., 2021). Some ex
amples of successful applications of this technology are the estimation of 
the chemical composition of cured pork (Ma et al., 2019), the classifi
cation of different types of cheese (Lei et al., 2019), or the evaluation of 
ripeness in agricultural products (Pu et al., 2019), among others. 
Hyperspectral image technology has been extensively investigated in the 
literature for the quality determination of seafood products (Ortega 
et al., 2022). Several research studies have focused on the non-invasive 
determination of the chemical composition since they are used as in
dicators of their overall quality or nutritional value. Some examples are 
the estimation of fat and moisture in Atlantic Salmon (Dixit & Reis, 
2023; Zhang et al., 2020; Zhu et al., 2014) or the quantification of the 
blood content in whitefish (Skjelvareid et al., 2017). Hyperspectral 
image analysis has also been successfully demonstrated in the literature 
for the estimation of other quality parameters, such as freshness (Cheng 
et al., 2014, 2017; Khoshnoudi-Nia & Moosavi-Nasab, 2019; Sivertsen 
et al., 2011; Yu et al., 2021), the texture (Khoshtaghaza et al., 2016; Q. 
X. Wang et al., 2021; X. Wang et al., 2019), or the detection of nema
todes (Sivertsen et al., 2012). 

Other technologies could also be suitable for the detection of MHS. A 
cheaper alternative to hyperspectral imaging is basic NIR spectroscopy 
(ElMasry & Wold, 2008). Like hyperspectral imaging, it is non-invasive 
and rapid, but it is a point measurement such that the measurement is 
more vulnerable to heterogeneities throughout the fish. Similarly, 
Raman spectroscopy is another non-invasive technique to measure fat 
and water content, but like NIR, it is a point measurement and suffers 
from lower signal-to-noise, such that measurements take longer and are 
more prone to error (Afseth et al., 2005). Nuclear magnetic resonance is 
a possible alternative method to detect the syndrome. The method is 
non-invasive and can provide reliable quantification of water and fat in 
samples (Jepsen et al., 1999). However, equipment large enough to 
handle whole fish tends to be expensive, and measurements tend to be 
relatively slow (10–20 s), so it is unsuitable for high-throughput envi
ronments such as fish processing plants. The advantage of hyperspectral 
imaging over other technologies for this application is its ability to 
measure the spectral information with high throughput and the possi
bility to measure the spectral information in for the complete sample. 
The high throughput will make this technology a valid option to be 

integrated in a fish production facility in industrial conditions, while the 
possibility of measuring the spectral variations within the complete 
sample (not only in specific locations of the sample) would make it 
possible to identify the MHS event if it is only manifested in certain 
locations of the fish. 

The main goal of this research is to investigate if hyperspectral image 
technology could be used to detect Greenland halibut affected by the 
MHS. To this end, we followed two different approaches. First, we 
investigated if some of the chemical constituents of the fish (water and 
fat) can be estimated from the spectral data by using constrained spec
tral unmixing. Secondly, we targeted the automatic identification of fish 
affected by MHS using supervised classification techniques. 

2. Materials and methods 

2.1. Sample description 

Greenland halibut for this study were caught in the period from 
September 30th to October 2nd (2021) between 400 and 1500 m depth 
by a North Atlantic commercial trawler (M/Tr Havtind, length 59.75 m, 
BT 1860; HP 6100) in the West Greenland Exclusive Economic Zones 
(EEZ), at the Northwest Atlantic Fisheries Organization (NAFO) di
visions 1CD (64⁰11N-64⁰29N, 054⁰46W-055⁰51W). 

The fish were slaughtered, gutted, and their head removed. In an 
initial screening of the samples by the crew members on board the 
trawler, sixty-two Greenland halibut (2–3 kg) were collected from eight 
different trawl hauls. Thirty-five fish were not affected by MHS, and 
twenty-seven were visually evaluated as presenting MHS. All fish was 
frozen pre-rigor in blocks (25 kg) in plate freezers and finally stored 
(<− 20 ◦C). After landing the catch, the frozen samples (n = 62) pro
vided by Lerøy Havfisk LTD (Ålesund, Norway) were transported to 
Nofima LTD (Tromsø, Norway), where the fish were thawed before 
being scanned with hyperspectral imaging. 

To the best of our knowledge, there are no previous works where the 
presence of MHS has been related to the fish’s chemical composition. For 
that reason, loin sections (of about 200 g) from 23 out of the 62 samples 
(11 with no MHS and 12 affected by MHS) were sent for biochemical 
analysis (Tos Lab AS, Tromsø, Norway) to quantify the contents of water, 
fat, protein, and ash. Biochemical determination was performed 
following methods described by the Nordic Committee on Food Analysis 
(NMKL) and Norwegian Standards (NS). The gravimetric determination 
of water content was performed with the NMKL 23 method, which in
volves drying the samples at 102–105 ◦C for 16–18 h. The water content 
was measured as the mass lost after drying the sample. The fat content 
was determined using the NS 9402 method, where a loin segment is 
homogenized after removing the skin and the vertebral column, and the 
fat in the homogenate is dissolved, dried, and weighed. The fat content is 
then calculated from this weight by a given formula. The protein was 
determined with NMKL 6, a reference method for the quantitative 
determination of nitrogen in foods and feeds. This reference method 
includes block digestion, (semi) automatic distillation and titration, and 
the conventional Kjeldahl method. Finally, the nitrogen content is 
multiplied by a factor of 6.25 to obtain the protein content. The NMKL 
173 method was used for ash determination, where the samples are 
dried and ashed to constant weight in a muffle furnace at 550 ◦C. The ash 
content of a sample is defined as the inorganic residue of a sample after 
water, and organic matter have been removed. 

Table 1 
Summary of the chemical composition of the halibut samples.   

No MHS (N = 11) MHS (N = 12) Welch t-test 

Water (%) 74.99 ± 1.55 78.63 ± 6.81 t = − 1.80, p-value = 0.096 
Fat (%) 10.88 ± 1.52 7.64 ± 3.95 t = 2.62, p-value = 0.019 
Protein (%) 14.10 ± 0.73 12.54 ± 2.26 t = 2.27, p-value = 0.040 
Ash (%) 1.03 ± 0.05 1.14 ± 0.11 t = − 3.22, p-value = 0.005  
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Table 1 shows the mean value and the standard deviation of the 
biochemical components, as well as the results of a Two Sample Welch t- 
test. According to these figures, using a 95% significance level, we argue 
that the main differences between the two groups are related to fat 
content, protein, and ash. 

Fig. 1 shows the corresponding boxplots for each chemical compo
nent. The trend shows that the muscle of individuals with MHS contains 
more water and lower fat and proteins. The ash content is also higher for 
individuals with MHS. In Fig. 1c, one can observe an outlier in the 
chemical composition of one of the MHS samples, where the protein 
content is lower than the other samples. In the visual examination of the 
fish, that specific sample was flagged as presenting severe MHS, char
acterized by an extreme jelly-like flesh. 

2.2. Hyperspectral image acquisition 

The hyperspectral data were recorded using the Maritech Eye 
(Maritech Systems AS, Molde, Norway), an industrial hyperspectral 
imaging system. The Maritech Eye is composed of an interactance illu
mination system and a hyperspectral camera. As argued in the Intro
duction, the interactance illumination allows the measurement of 
absorption and scattering properties of the internal layers of biological 
tissues. 

The Maritech Eye interactance illumination consists of two focused 
halogen light lines inspired by the illumination described in previous 
research work (Washburn et al., 2017). The light lines are generated by 
different halogen lamps (900 W of electrical power) and delivered 
through fiber optic light guides to two cylindrical lenses that generate 
the parallel and focused halogen light lines. The camera field of view is 
placed in the middle of these halogen lights. The hyperspectral camera is 
a HySpex Baldur V–1024N (Norsk Elektro Optikk AS, Oslo, Norway), a 
pushbroom camera covering the spectral range from 485 to 960 nm with 
a spectral resolution of 5.5 nm (88 bands) and 1024 spatial pixels. We 
used a binning of 4 × in this experiment, resulting in 256 spatial pixels 
per line. The field of view is approximately 300 mm at a working dis
tance of 1000 mm. As it is a pushbroom camera, only the spectral in
formation of a single narrow spatial line is captured by each frame. The 

remaining spatial dimension is collected by scanning the target sample 
using a conveyor belt to create a hyperspectral cube. The speed of the 
conveyor belt was set to 400 mm/s, which is an adequate speed for in
dustrial inspection in the seafood industry. With this setup and an 
exposure time of 1.9 ms, the final pixel size of the measurements was 
approximately 1.17 × 0.76 mm. 

The aforementioned configuration for the instrumentation results in 
non-square pixels. There are two options for measuring a hyperspectral 
image with square pixels: slow down the conveyor belt speed, or reduce 
the exposure time. On the one hand, in this experiment, the conveyor 
belt speed was intentionally fixed to match the standard speed for in
dustrial inspection in the seafood industry. On the other hand, 
decreasing the exposure time negatively impacts the signal-to-noise 
ratio of the recorded data and hence can compromise the subsequent 
data analysis. Therefore, since the non-square pixels will not affect the 
mean spectra of large sample areas, we decided to use this configuration 
for the measurements. 

In order to take into account the color variation within the halibut 
skin, scans were performed on both sides of the whole fish. After scan
ning both sides of the whole fish, the fish was filleted and scanned again. 
In summary, four hyperspectral images were acquired for each halibut 
using this instrumentation: one image from each side of the whole fish 
(ocular side and blind side) and one image for each fillet (two fillets per 
sample). The images of the fillets were measured from the flesh side. 

2.3. Hyperspectral image processing 

The image analysis proposed in this work is shown in Fig. 2. This 
workflow was applied independently to both the whole fish and the fillet 
hyperspectral images. In this work, we targeted two different goals. 
Firstly, we sought to estimate the biochemical composition of the 
different halibuts by using constrained spectral unmixing, specifically 
the fat and water content. The second goal was to automatically identify 
Greenland halibut affected by the MHS by exploiting their spectral 
information. 

After hyperspectral image acquisition, the images underwent a 
standard flat field calibration using white and dark references. The 

Fig. 1. Boxplots corresponding to the different biochemical components in halibut samples. (a) Water content (b) Fat content (c) Protein content (d) Ash content.  
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white reference was taken from a PTFE (Teflon) target plate of 25 mm 
thickness. A reflectance peak of 95% characterizes the diffuse reflec
tance of the PTFE target at 410 nm with a monotonically decreasing 
trend with wavelength, presenting approximately 80% reflectance at 
1000 nm (Tsai et al., 2008). The dark reference was captured with the 
camera lens blocked. After the flat field calibration, the images were 
segmented to separate the pixels into two classes: those that belong to 
the background (corresponding to the conveyor belt) and those corre
sponding to the fish sample. Then, two different branches to process the 
images were proposed. 

In Section 2, we analyzed the differences in chemical composition 
between individuals affected or not by the MHS. Motivated by those 
chemical differences, we proposed to investigate if it is possible to es
timate the chemical composition of the Greenland halibut from their 
spectral data. To this end, we explored the use of constrained spectral 
unmixing. The use of constrained spectral unmixing for estimating 
chemical compounds in fish samples was previously demonstrated to be 
accurate for the quantification of the concentration of blood in cod fillets 
(Skjelvareid et al., 2017). The spectral mixing model is inspired by the 
interaction between light and matter, and assumes that the measured 
spectrum in each pixel of a hyperspectral image can be modeled as the 
linear combination of pure spectra of components, weighted by their 
relative abundance. The pure spectral components are called endmem
bers, and the constrained spectral unmixing model aims to estimate their 
abundances for each pixel of the hyperspectral image. In this work, the 
endmembers corresponding to blood constituents (oxygenated hemo
globin, deoxygenated hemoglobin, and methemoglobin), fat, and water 
were used for the spectral mixing model. The absorption spectra of 
water, lipids, and hemoglobin in its different oxygenation states in the 
visible and near-infrared regions of the electromagnetic spectrum have 
been widely characterized in the literature (Khodabux et al., 2007; 
Wilson et al., 2015). In the spectral region we used in this experiment 
(486–960 nm), the main absorption peaks are related to oxygenated 
hemoglobin (543 and 577 nm), deoxygenated hemoglobin (556 nm), 
and lipids (930 nm). The absorption peak of water (970 nm) is beyond 
the spectral region covered by our instrumentation. However, there are 
other spectral features of water in the visible spectral range (Pope & Fry, 
1997). In addition to these endmembers, a second order polynomial 
term was included in the linear mixture model to consider the effects of 
the light scattering in tissue. In this work, we evaluate the use of 

constrained spectral unmixing for estimating fat and water from the 
hyperspectral images of Greenland halibut. 

Secondly, the goal was to predict if a sample is affected or not by the 
MHS from the spectral data information. To this end, a supervised 
classification approach is followed, where the spectral features extracted 
from the sample were used as predictors. In this case, the classification 
problem is binary, and the classes describe whether a sample is affected 
by the MHS. We used Partial Least-Squares Discriminant Analysis (PLS- 
DA) to perform the classification. 

A data partition strategy was followed to address the classification 
performance evaluation adequately. The dataset (n = 62) was split into 
three disjoint sets: train, validation, and test. The training samples were 
used for the PLS-DA modeling, while the validation set was used to 
evaluate the model performance when different types of pre-processing 
techniques, different spectral regions, and the different number of 
components for the PLS-DA modeling were used. Finally, when the 
optimal combination of these parameters was found for the validation 
set, the test samples were used to measure the classification perfor
mance. The evaluation metrics for the supervised classification were 
overall accuracy, precision, and recall. The overall accuracy is the rate of 
correctly classified instances in the entire dataset. High precision in
dicates the ability of the classifier to avoid the prediction of false posi
tives, while high recall indicates the capability of the classifier to avoid 
the prediction of false negatives. In this context, a false positive means 
that the classifier detects MHS in a sample without MHS, while a false 
negative means that the classifier cannot detect MHS in an affected 
sample. 

The image analysis in this work was performed using the Breeze 
software for hyperspectral image analysis (Prediktera AB, Umeå, 
Sweden). 

3. Results 

3.1. Estimation of the chemical composition using spectral unmixing 

In Section 2.1, we demonstrated that the Greenland halibut’s 
chemical composition could be used to differentiate between individuals 
affected or not by the MHS. In this section, we evaluate whether some of 
the Greenland halibut’s chemical constituents can be estimated non- 
invasively using hyperspectral image analysis and constrained spectral 

Fig. 2. Flowchart describing the image processing approach.  
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unmixing. We used 23 samples for this analysis. In this case, only the 
water and fat content were estimated using this methodology, as the 
pure absorption spectra (endmembers) for protein and ash are not 
available in the literature. As stated in Section 2.3, the spectral linear 
model used in this study assumes that the endmembers (pure elements) 
forming the spectra of a Greenland halibut are the main blood constit
uents (oxygenated hemoglobin, deoxygenated hemoglobin, and methe
moglobin), fat, and water. The constrained spectral unmixing was 
applied to the three types of images available: whole fish (ocular side 
and blind side) and fillets. 

In this study, we were interested in analyzing the strength of the 
relationship between the reference chemical composition values of the 
samples and the abundance estimation using constrained spectral 
unmixing. To evaluate this relationship, we used Pearson’s correlation 
and the 95% confidence interval of Person’s correlation since a wide 
confidence interval indicates that it is impossible to extract robust 
conclusions about the strength of the relationship between the variables 
(Schober et al., 2018). The relationship between the chemical compo
sition of the samples and their estimations using constrained spectral 
unmixing is shown in Table 2. We found a moderate positive correlation 
for the estimation of water using the spectral data extracted from the 
fillets, and a strong positive correlation for the fat estimation from the 
spectral data of both fillets and whole fish (blind side). As already 
mentioned, a wide 95% confidence interval indicates no evidence to 
support the strength of the correlation between the estimation of the 
chemical composition and its actual value. The 95% confidence interval 
was found wide for the water estimation of whole fish (both ocular side 
and blind side) and the fat estimation of the ocular side. For this reason, 
the estimation of water for whole fish (both sides) and fat estimation for 
the ocular side cannot be considered relevant. 

In addition to calculating correlation coefficients, we represented the 
measured chemical composition and the estimations calculated from the 
constrained spectral unmixing models using scatterplots in Fig. 3. We 
also included the 95% confidence ellipses to provide a graphical intui
tion about the relationship between the variables, i.e., reference data 
and estimations. These ellipses can be interpreted as confidence areas 
where the data lie with a certain confidence level. Furthermore, the 
ellipses can be used as a visual indicator of correlations, being less 
eccentrical when the variables under study are uncorrelated. Although 
we found some data samples outside the 95% confidence ellipses, most 
of the data is within those ellipses. These graphical representations are 
coherent with the conclusions extracted from the correlations shown in 
Table 2. In Fig. 3, it is possible to observe that the ellipses corresponding 
to the estimation of fat are more elongated than those corresponding to 
the estimation of water, suggesting a stronger correlation for the fat 
estimations. Similarly, the ellipses corresponding to the fillet estima
tions are more elongated than the ellipses corresponding to whole fish. 
Finally, an example of uncorrelated variables can be observed in the 
estimation of water using the hyperspectral data from the ocular side 
(Fig. 3a), which is revealed by the circular shape of the 95% confidence 
ellipse. 

In summary, two major trends can be observed in the results for the 
estimation of the chemical composition (water and fat) of Greenland 

halibut using constrained spectral unmixing. First, there is a difference 
in the correlation coefficient between the different types of images, 
where a lower correlation is found when the linear unmixing is applied 
to whole fish (both ocular and blind side) compared to fillets. Second, 
the correlation coefficient for estimating fat abundance is higher than 
the correlation for water abundance. 

3.2. Detection of MHS based on spectral data 

In this section, we present the results of the automatic detection of 
Greenland halibut affected by MHS by exploiting the spectral informa
tion. The number of samples in this study was 62, where 35 were 
affected by the MHS (56%) and 27 were not affected by the MHS (44%). 
Therefore, this is a binary classification problem with a balanced data
set, i.e., the number of instances of each class is similar. The classifica
tion framework was applied to the three types of hyperspectral images 
available in the dataset: whole fish (ocular and blind sides) and fillets. 
The processing framework was performed using the spectral information 
of the entire sample and the spectral information from a region of in
terest (ROI) located in the loin of the fish. The data partition was per
formed by randomly dividing the samples into three independent 
subsets: training (~73%, 45 samples), validation (~7%, 4 samples), and 
test (~20%, 13 samples). Different combinations of pre-processing 
techniques and different spectral regions were evaluated to optimize 
the classification performance in the validation set. Standard pre- 
processing techniques for spectral data were evaluated in this study, 
namely SNV (standard normal variate), centering, and first and second 
derivatives. 

The classification results obtained when applying the processing 
framework to the samples in the test set are shown in Table 3. The final 
pre-processing chain selected to generate these results consists of the 
first derivative of the spectral data followed by centering. Additionally, 
different spectral ranges were optimal for each type of hyperspectral 
images. The optimal range for the ocular side classification was found as 
the combination of the spectral bands from 486 to 588 nm and 907–955 
nm. For the blind side classification, this range was 491–659 nm. 
Finally, the optimal range for the classification of fillets was 486–670 
nm. The number of latent variables used in the PLS-DA models was 4, 3, 
and 5 for the ocular side, the blind side, and the fillets, respectively. 

The results of the PLS-DA classification of halibuts with MHS were 
accurate both for fillets and whole fish. On the one hand, for the fillet 
samples, all the test set instances were correctly classified (100% of 
precision and recall). In the fillet samples, using an ROI in the loin part 
of the sample does not provide any improvement in the classification 
results compared to using the spectral information from the entire 
sample. On the other hand, although the classification results for the two 
types of whole fish images (ocular side and blind side) are precise, the 
predictions show some false positives and false negatives. We observed 
an improvement in the classification results in the whole fish samples 
when the spectral information of the ROI located in the loin of the 
sample was used. Comparing the results between the classification for 
the ocular side and the blind side, the results shown in Table 3 suggest 
that a higher recall characterizes the predictions for the ocular side, 
while the results for the blind side show higher precision. The inter
pretation of these results indicates that the PLS-DA model for the ocular 
side is more likely to produce false positive predictions, while the model 
for the blind side is more likely to produce false negative predictions. 
However, the results can be considered promising since the number of 
misclassifications is low (a single sample in the test set is misclassified 
for both the ocular side and the blind side). 

In Fig. 4 we show some score plots corresponding to the different 
PLS-DA models, where an intuition about the model behavior can be 
observed qualitatively. The red color is used for the MHS class and blue 
for the non-MHS class. These score plots show a clear separation be
tween the two classes under study for all types of hyperspectral images. 
The latent factors used in these score plots were selected to maximize the 

Table 2 
Pearson correlation and 95% confidence intervals (CI) for the chemical 
composition of Greenland halibut and abundances from the constrained spectral 
unmixing model.  

Chemical 
component 

Type of 
image 

’Pearson’s 
correlation 

’Pearson’s correlation 
95% CI 

Water Ocular side 0.019 (-0.396, 0.427) 
Blind side 0.519 (0.136, 0.767) 
Fillet side 0.602 (0.378, 0.760) 

Fat Ocular side 0.642 (0.313, 0.834) 
Blind side 0.747 (0.484, 0.886) 
Fillet side 0.812 (0.682, 0.892)  
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visual clustering between the two classes in a 2-D representation. 
In addition, we analyzed the corresponding loadings to provide in

sights into the PLS-DA models. The loadings are calculated by maxi
mizing the covariance between the projected predictor and response 
variables and provide information about which variables (in this case 
which spectral bands) contribute most to the projection to latent vari
ables in the models. In Fig. 5a, we can observe that the most relevant 
variables for the spectral data from the ocular side are 486 nm (P1 and 
P2), 492 nm (P3), 513 nm (P3), and 588 nm (P1 and P2). In the case of 
the spectral data from the blind side (Fig. 5b), the most important 
spectral bands for the projection are 486 nm (P1 and P2), 492 nm (P2), 
513 nm (P2), 524 nm (P2), 545 nm (P2 and P3) and 583 nm (P2 and P3). 
Finally, for the fillets (Fig. 5c) the most relevant variables are 524 nm 
(P1 and P2), 540 nm (P4), 545 nm (P2 and P3), 567 nm (P2 and P3), 583 

nm (P1 and P2), and 605 nm (P4). 
According to the analysis of the PLS-DA models, the spectral infor

mation relevant to the identification of MHS is in the visual spectral 
range, specifically from 486 nm to 605 nm. The most relevant spectral 
bands differ for the types of hyperspectral images. However, there are 
some similarities. First, all the models use a spectral feature in the 
580–590 nm range. Secondly, the spectral bands 513 nm and 605 nm, 
used in the models for whole fish and fillets, correspond to the shoulders 
of the water absorption spectra (514 nm and 605 nm) (Pope & Fry, 
1997). The models corresponding to whole fish imaging (ocular side and 
blind side) share relevant features in the spectral bands 486 nm and 492 
nm. Since those bands are not relevant for fillet classification, the 
spectral features on those wavelengths may be related to the skin, but 
this fact should be further investigated to be proved. The models 

Fig. 3. Scatterplots showing the correlation between the chemical composition and the results from the spectral unmixing model. (a) Water content, ocular side (b) 
fat content, ocular side (c) water content, blind side (d) fat content, blind side (e) water content, fillets (f) fat content, fillets. 
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corresponding to the blind side and the fillets also highlight the spectral 
features in the bands 540 nm, 545 nm, and 583 nm. Those bands are 
close to the secondary absorption peaks of oxygenated hemoglobin (543 
nm and 577 nm). However, there is no supporting chemical analysis to 
provide evidence about the relationship of oxygenated hemoglobin and 
the presence of MHS. Since the MHS is characterized by decoloration in 
the fish flesh, there may be other specific pigments affecting the spectral 
signature of the Greenland halibut in the range of 486 nm–605 nm. 

Finally, Fig. 6 shows the classification maps when the PLS-DA models 
are applied to the Greenland halibut hyperspectral images. The hyper
spectral images were first divided into superpixels of size 5 × 5 pixels 
and then the classification was applied to the average spectrum of the 
superpixels. The results are shown for fillets (Fig. 6a and b) and whole 
fish (Fig. 6 c-d). The superpixels classified as MHS are represented using 
red, and the superpixels classified as non-MHS are presented in blue. The 
white color represents superpixels whose class is uncertain. The per
centage of superpixels belonging to each class is also shown as a per
centage bar. From these classification maps, it can be observed that the 
number of superpixels correctly classified is higher for the fillet samples, 
with a significant difference between the number of superpixels corre
sponding to each class. In the case of the whole fish classification, the 
number of superpixel misclassifications is higher. 

4. Discussion 

In this research work, we have studied MHS, a condition that appears 
in Greenland Halibut. MHS has no consequences for human health, but 
the inferior meat quality of fish affected by this syndrome produces a 
negative economic impact on the fish industry. The research community 
has poorly investigated MHS, and its causes are still unknown. For this 
reason, we first analyzed if the chemical composition of the Greenland 

halibut flesh allowed the differentiation between individuals affected or 
not by MHS. According to our analysis, the fat content, the protein 
content, and the inorganic content (measured as the ash content) present 
statistically significant differences between samples affected or not by 
MHS. Additionally, we observed that the protein content of a sample 
showing an extreme jelly-like flesh was much lower than the rest of the 
samples, which may indicate the relevance of protein deficiency for 
identifying MHS. Nevertheless, the number of samples (n = 23) used to 
characterize the differences in chemical composition between the two 
groups was low, and data from a larger population should be used to 
reinforce our findings. 

Nevertheless, the main goal of this research was to use hyperspectral 
image technology for the early identification of MHS. Two different 
alternatives for data processing were proposed to reach this goal. First, 
we evaluate the estimation of the chemical composition of the 
Greenland halibut by using constrained spectral unmixing. Secondly, we 
investigated the use of supervised classification to detect MHS using the 
spectral data as predictors. In all our experiments, we used three types of 
hyperspectral images, the two sides of the whole fish before filleting 
(ocular side and blind side) and hyperspectral images of the fillets. 

The first goal of this research was to apply constrained spectral 
unmixing for the non-invasive estimation of the water and fat content in 
the halibut samples. The quality of this chemical estimation was quan
tified by using the Pearson correlation coefficient between the reference 
chemical composition of the samples and the abundances estimated 
using the spectral mixing model. The results from this analysis indicate a 
correlation between the estimated and the actual fat content but not the 
water content. The low correlation of water estimation can be caused 
because the spectral range used for the measurements (486–960 nm) 
does not cover the main absorption peak of water on the near-infrared 
(970 nm). For this reason, the quality of the water content estimation 
could be improved if an extended spectral range is used for the hyper
spectral sampling. 

Additionally, the estimation of the chemical content showed higher 
correlations for the images from the fillets compared to the whole fish 
images. This may be due to the optical properties of the skin. We hy
pothesize that the skin attenuates the light from the sample and weakens 
the signal recovery from the sample flesh, where the reference chemical 
composition was measured. It is also possible to observe differences 
between the estimation quality and the skin type on each side of the fish. 
The correlation was shown to be higher for the blind side (lighter skin) 
compared to the ocular side (darker skin). It is worth mentioning that 
the outcomes of the spectral unmixing analysis are affected by which 
endmembers are used to model the light interaction with tissue, as well 
as the spectral bands used and the assumptions for modeling the scat
tering of light in tissue. The estimation of fat and water content using 

Table 3 
Classification results on the test data. TP (true positives), TN (true negatives), FP 
(false positives), FN (false negatives). Positive class: MHS (n = 6). Negative class: 
No-MHS (n = 7).   

Whole Fish ROI Loin 

Ocular 
side 

Blind 
side 

Fillets Ocular 
side 

Blind 
side 

Fillets 

Accuracy 84.6% 83.3% 100% 92.3% 92.3% 100% 
Precision 75% 83.3% 100% 85.7% 100% 100% 
Recall 100% 83.3% 100% 100% 83.3% 100% 
TP 6 5 7 6 5 7 
TN 5 6 6 6 7 6 
FP 2 1 0 1 0 0 
FN 0 1 0 0 1 0  

Fig. 4. Score plots for the PLS-DA modeling for the classification of MHS (red) and non-MHS (blue). (a) Ocular side, (b) Blind side, (c) Fillets. (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 5. Loadings for the PLS-DA models. (a) Ocular side, (b) Blind side, (c) Fillets.  
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hyperspectral imaging and spectral unmixing may be improved using a 
more sophisticated model for modeling the tissue in the halibut samples, 
e.g., using additional endmembers to model the light interaction with 
the different skin types. Furthermore, according to the analysis of the 
chemical composition of the samples, the protein and the ash contents 
were shown to be relevant for differentiating between affected or not by 
the MHS. However, one limitation of our study is the lack of reference 
endmember spectra for protein and ash, which makes it impossible to 
perform an estimation of ash and proteins. 

The second goal of the hyperspectral image analysis was to perform 
an automatic identification of the MHS. To this end, we used a PLS-DA 
for the binary classification of the samples by exploiting their spectral 
information. The PLS-DA classification was proven to be more accurate 
in fillets (with no misclassifications) compared to the data classification 
using whole fish hyperspectral images. However, the results on whole 
fish are also precise, with competitive precision and recall. The results 
were also improved when the spectral information from an ROI located 
in the loin of the sample was used, compared to the use of spectral 

Fig. 6. Classification maps generated using the PLS-DA models over the entire sample. The red color is used to represent the class MHS, while the blue color is used 
for the non-MHS class. The bars below each figure indicate the percentage of superpixels assigned to each class. (a) MHS fillet (b) Non-MHS fillet (c) MHS whole fish 
(d) Non-MHS whole fish. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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information from the entire sample. Identifying Greenland halibut 
affected by MHS before they have been filleted could benefit the in
dustry since the cost of processing the fish affected by MHS could be 
avoided. 

For this reason, we can conclude that hyperspectral imaging is a 
technology that can be used for the non-invasive identification of MHS. 
However, the proposed approach presents some limitations. Firstly, the 
PLS-DA models for each type of hyperspectral image (ocular side, blind 
side, and fillets) were found to be optimal using different spectral 
ranges. For the industrial use of this model, this means that is necessary 
to identify which side of the Greenland halibut is being imaged before 
the classification model is applied. Additionally, the interpretation of 
how the models were related to the information about the sample’s 
chemical composition to perform the classification is not straightfor
ward. Secondly, the annotations of the samples in this study were per
formed only using two categories: MHS and non-MHS. A more complex 
annotation strategy could be followed to consider the different degrees 
of severity of the MHS in each sample, enabling a more accurate sorting 
of the fish. Finally, this research was performed in a limited set of data, 
where only 13 samples were used to evaluate the PLS-DA models. For 
this reason, in future works, the identification of MHS using hyper
spectral data must be proven with a larger sample size. 

Finally, it should be mentioned that our experiments were carried 
out on Greenland halibut that were frozen and thawed before the image 
acquisition. This method should be evaluated in fresh fish, just after 
their capture and before rigor mortis, to prove its potential as a practical 
industrial application. 

5. Conclusions 

MHS is a common phenomenon that leads to economic losses for 
fishermen and food industry producers. To date, this syndrome has not 
been carefully investigated, either from the biological point of view or 
for the use of novel technologies for its detection. This research aimed to 
evaluate hyperspectral imaging as a suitable technology for the char
acterization and early identification of MHS. The potential advantage of 
hyperspectral imaging over other technologies that may also be useful 
for identifying MHS is to be non-contact, non-invasive, and adequate to 
be used in industrial conditions. In this study, we proposed two alter
natives to exploit spectral information to identify MHS: the estimation of 
the chemical composition and the automatic classification of the 
samples. 

The results for estimating the chemical composition using con
strained spectral unmixing present some limitations. Fat estimation with 
a strong correlation with the reference data is possible under certain 
circumstances, i.e., only in fillets and the blind side images. However, 
the other chemical components relevant to the characterization of the 
MHS cannot be estimated. For that reason, additional research should be 
performed to improve the retrieval of the chemical composition from the 
spectral data to characterize the MHS. 

However, detecting Greenland halibut affected by MHS was proven 
possible without using information about the chemical composition of 
the samples but using spectral data in the PLS-DA supervised classifi
cation. The results of those classifications showed a perfect classification 
of the hyperspectral images of the fillets. Furthermore, the classification 
using the whole fish (before filleting) was also accurate, with high 
precision and recall. The supervised classification results suggest that 
hyperspectral imaging could potentially be used in industrial environ
ments to screen MHS, allowing an accurate grading of the seafood 
products, improving the product sorting according to their quality, and 
thus preventing economic losses. 
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