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Genomic selection has a great potential in aquaculture breeding since many

important traits are not directly measured on the candidates themselves.

However, its implementation has been hindered by staggering genotyping

costs because of many individual genotypes. In this study, we explored the

potential of DNA pooling for creating a reference population as a tool for

genomic selection of a binary trait. Two datasets from the SalmoBreed

population challenged with salmonid alphavirus, which causes pancreas

disease, were used. Dataset-1, that includes 855 individuals (478 survivors

and 377 dead), was used to develop four DNA pool samples (i.e., 2 pools

each for dead and survival). Dataset-2 includes 914 individuals (435 survivors

and 479 dead) belonging to 65 full-sibling families and was used to develop in-

silico DNA pools. SNP effects from the pool data were calculated based on allele

frequencies estimated from the pools and used to calculate genomic breeding

values (GEBVs). The correlation between SNP effects estimated based on

individual genotypes and pooled data increased from 0.3 to 0.912 when the

number of pools increased from 1 to 200. A similar trend was also observed for

the correlation between GEBVs, which increased from 0.84 to 0.976, as the

number of pools per phenotype increased from 1 to 200. For dataset-1, the

accuracy of prediction was 0.71 and 0.70 when the DNA pools were sequenced

in 40× and 20×, respectively, compared to an accuracy of 0.73 for the SNP chip

genotypes. For dataset-2, the accuracy of prediction increased from 0.574 to

0.691 when the number of in-silico DNA pools increased from 1 to 200. For this

dataset, the accuracy of prediction using individual genotypes was 0.712. A

limited effect of sequencing depth on the correlation of GEBVs and prediction

accuracy was observed. Results showed that a large number of pools are

required to achieve as good prediction as individual genotypes; however,

alternative effective pooling strategies should be studied to reduce the

number of pools without reducing the prediction power. Nevertheless, it is

demonstrated that pooling of a reference population can be used as a tool to

optimize between cost and accuracy of selection.
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1 Introduction

Genomic selection (GS) is becoming a practical and effective

breeding tool for many livestock species because of the rapid

development of high-throughput genotyping technologies that

reduce genotyping costs. The potential application of GS for

aquaculture species has been studied (Nielsen et al., 2009;

Sonesson and Meuwissen, 2009), and it showed an increase in

genetic gain especially for traits that are difficult to improve by

traditional selection such as disease resistance. Therefore, it is of

particular interest in aquaculture species as most breeding goal

traits in these species are measured on sibs of the selection

candidates.

For a conventional GS breeding program, two large datasets

are required: a training set (reference population) with genotyped

and phenotyped individuals and a prediction set (selection

candidates) containing only genotyped individuals (Meuwissen

et al., 2001; Goddard andHayes, 2007). The sizes of these datasets

determine the rate of genetic improvement through influencing

components of the equation. On one hand, the prediction

accuracy relies on the size of the training set to estimate

parameters (i.e., marker effects) and the marker density at

which reference individuals are genotyped. On the other hand,

the size of the prediction set determines the selection intensity

and consequently the response to selection. However, increasing

either the training set or the prediction set increases the cost of

GS programs.

Even though the genotyping cost per individual is reducing,

implementation of conventional GS is expensive in aquaculture

compared to other livestock species because of the fact that the

number of selection candidates and their siblings to genotype is

large. Therefore, it is of interest to reduce either the number of

individuals or the number of markers to genotype without

reducing the prediction accuracy significantly. Strategies for

reducing the number of markers have been described in many

studies (Lillehammer et al., 2013; Ødegård and Meuwissen, 2014;

Dagnachew and Meuwissen, 2019; Tsairidou et al., 2020). This

study investigates the impact of reducing the number of

individuals to genotype by pooling DNA samples from a

reference population.

Pooling of DNA samples and sequencing have provided a

cost-effective alternative for a wide range of genomic

applications, such as population genetics (Gautier et al., 2013),

genome-wide association studies (Sham et al., 2002), and

estimation of SNP effects for quantitative traits (Henshall

et al., 2012; Bell et al., 2017). In a theoretical way, estimation

of marker effects from a pooled DNA differs from standard

individual genotypes in some aspects. First, in pooled DNA

samples, only marker allele frequencies can be estimated,

whereas in standard genotyping, individual marker genotypes

are obtained. Second, in pooled DNA samples, marker allele

FIGURE 1
Mortality rate profiles of the datasets: (A) the number of
mortalities observed per day over the course of the challenge trial
(29 days) for dataset-1. Mortalities started 5 days post challenge
and ended 25 days post challenge with the peak mortality
observed at 12 days post challenge. (B) the number of mortalities
observed per day over the course of the challenge trial (56 days)
for dataset-2. Mortalities started 7 days post challenge and ended
21 days post challenge with the peakmortality observed at 13 days
post challenge. (C) dataset-1—the number of full-sib families
across the 273 full-sib families with a given percentage mortality.
The mortality rate ranged from 0% to 100%, with an average
mortality rate of 67%. (D) dataset-2—the number of full-sib families
across the 282 full-sib families with a given percentage mortality.
The mortality rate ranged from 0% to 100%, with an average
mortality rate of 48%.
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frequencies will normally be estimated with some degree of

technical error, unequal contribution of sequenced reads

derived among the individuals in a specific pool. Third, for

DNA pools, the quantitative trait value of each individual

cannot be assigned to a particular marker genotype, since

information is not available on individual genotypes.

However, by using the allelic frequencies at each tail to

estimate the respective genotype frequencies and by assigning

the sample average at each tail to every individual at that tail, the

problems raised by the above differences can be overcome

(Henshall et al., 2012; Gautier et al., 2013).

Sonesson et al. (2010) studied the use of DNA pooling of test

individuals in combination with communal rearing of families as

a means of reducing genotyping costs in aquaculture GS schemes

using simulation. The study reported up to 0.88 accuracy of

selection depending on the number of test individuals and the

number of markers. However, to date, the potential of DNA

pooling of a reference population for genomic prediction using

data from practical breeding work is lacking. Therefore, in this

study, we demonstrate the potential of DNA pooling for GS using

both pooled DNA samples and in-silico DNA pooling. The effect

of the number of pools and sequencing depth on the selection

accuracy is studied. The study uses datasets generated for a

breeding work to improve resistance against pancreas

disease (PD).

2 Materials and methods

2.1 Datasets

Two datasets from the SalmoBreed breeding population of

two year-classes (YC) were used for this study. Dataset-1 was

from YC 2013, and dataset-2 was from YC 2015. The trait of

interest was resistance to PD. PD is currently among the most

economically important diseases in Norwegian Atlantic salmon

production. It is caused by a salmonid alphavirus (SAV) of which

SAV2 and SAV3 variants are found in Norway. These datasets

were generated as part of the SalmoBreed’s annual challenge test

for the practical breeding work to improve host resistance against

PD. The first dataset was used for real DNA sample pooling and

the other was used for in-silico pooling.

2.1.1 Dataset-1: DNA pooling of samples
Data and tissue samples on 5,223 postsmolts belonging to

273 full-sib families from the SalmoBreed elite population

challenged with SAV3 were available. The mortality profiles

for this dataset are presented in Figures 1A and C. Mortalities

started 5 days post challenge and ended 25 days post challenge

with the peak mortality observed at 12 days post challenge

(Figure 1A). A histogram of the number of full-sibling

families across the 273 full-sib families with a given

percentage of mortality is plotted in Figure 1C. The full-

sibling mortality rate ranged from 0 to 100%, with an average

mortality rate of 67% (Figure 1C). The individuals could be

selected and grouped using survival information (early dead and/

or late survivors) from the challenge test. Hence, 855 individuals

were selected to develop four pools (i.e., M1, M2, S1, and S2 with

the initial “M” representing the pool of mortalities/dead and “S”

denoting the pool of surviving individuals).

DNA was extracted from each selected individual, quantified

using the Quant-iT PicoGreen dsDNA assay kit, and normalized

to a standard concentration for every individual; subsequently,

equal quantities/volumes of DNA from each individual were

pooled to make a specific pool group (M1, M2, S1, and S2). The

M1 and M2 pools contained DNA representing 173 and

204 mortalities, respectively, while pools S1 and

S2 incorporated DNA from 205 and 273 surviving individuals,

respectively. The dead individuals of pools M1 and

M2 represented 28 families, while pools S1 and S2 were

represented by 35 and 34 families, respectively.

Libraries were prepared for sequencing using the Illumina

PCR-free genomic DNA sample prep kits which were sequenced

to approximately 40× depth. The sequencing was performed with

an Illumina NextGen 500 instrument to obtain paired-end

sequence reads of 150 bp. Trimmomatic software was used to

perform adaptor and quality trimming of the generated sequence

reads, and subsequently, high-quality sequence data were aligned

to the Atlantic salmon genome reference sequence (assembly

ICSASG_v2) using BWA-MEM version: 0.7.13-r1126 (Li, 2013).

SNP detection, genotype calling, and allele frequencies on each

locus were obtained using SAMtools version: 1.2. Software (Li

et al., 2009). All the individuals pooled into four pools (M1, M2,

S1, and S2) were also individually genotyped using ~57 K axiom

Affymetrix SNPGenotyping Array (NOFSAL2). The overlapping

SNPs across genotyping methods (sequencing vs. axiom array)

were identified which yielded 45812 SNPs in common that were

used for further genomic analyses.

2.1.2 Dataset-2: In-silico DNA pooling
Data from 4,115 postsmolts belonging to 282 full-sib families

from the SalmoBreed elite population challenged with

SAV3 were available. The mortality profiles for this dataset

are presented in Figures 1B and D. Mortalities started 7 days

post challenge and ended 21 days post challenge with peak

mortality observed at 13 days post challenge (Figure 1B). A

histogram of the number of full-sibling families across the

282 full-sib families with a given percentage of mortality is

plotted in Figure 1D. The full-sibling mortality rate ranged

from 0 to 100%, with an average mortality rate of 48%

(Figure 1D). From the dataset, 914 individuals (435 survivors

and 479 dead), belonging to 65 full-sib families, were selected

based on family-wide mortality rates. The dead individuals

represented 58 families, while the survived individuals

represented 60 families. The data were split into a reference

set (589 samples: 308 survivors and 281 dead) and a validation set
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(325 samples: 127 survivors and 198 dead). Splitting of

individuals into reference and validation sets was performed

randomly within a full-sib family; hence, each family was

represented in both datasets.

Genotypes for the customized NOFSAL2 SNP array with

~57 K SNPs were available for each individual. Pooled genotypes

were generated in-silico as the frequency of alleles of the

individuals in the pools and no random error was added to

the pool genotypes.

2.2 Calculation of SNP allele frequencies

2.2.1 Allele frequency in DNA pools (dataset-1)
The pools were sequenced on an average sequencing depth

of ~40× and the allele frequencies from each pool (S1, S2, M1,

and M2) were obtained using a customized script implemented

with bcftools, version: 1.10.2 (Danecek et al., 2021). The

observed total allelic depth/frequency for each discovered

variant in each pool was obtained using “INFO/AD” and the

expression “FORMAT/AD” was used to obtain the observed

frequency of the alternative allele. Moreover, the sequencing

depth of each pool was reduced to 20× by random sampling of

sequence reads followed by alignments, variants calling, and

estimates of frequencies for both reference and nonreference

alleles. The objective to reduce the sequencing depth per pool

was to test the effect on the accuracy of prediction when the

sequencing depth is reduced.

2.2.2 Allele frequency in in-silico DNA pooling
(dataset-2)

The reference set was used for the calculation of allele

frequencies by in-silico pooling of the genotypes of individuals

in this set. They were pooled into different numbers of pools

(i.e., 1, 2, 4, 10, 20, 40, 100, 150, and 200) per phenotype group

(i.e., dead and survivors). Summaries of the average number of

individuals and families per pool and per phenotype group are

presented in Table 1. Allele frequencies from each pool were

calculated by sampling with replacement given the individual

genotypes. The number of times the sampling with replacement

was performed is related to the average sequence depth, and it

was done 20×, 40×, and 100×. This process was repeated

independently 60 times.

2.3 Estimation of marker effects

The main difference between individual genotypes and

pooled DNA regarding estimation of marker effects is that for

the latter, a trait value of individuals cannot be assigned to a

particular marker genotype exclusively. Therefore, marker effects

are to be estimated from marker allele frequencies calculated

from pooled DNA.

For the individual genotypes, marker effects were estimated

by fitting the marker-based genomic model (SNP-BLUP):

yind � 1μ +Xbind + e

where yind is the vector of phenotypes for the trait, μ is the overall

mean, 1 is the vector of 1s, X is the matrix of genotypes dosage for

all SNP coded as 0,1, and 2 and for all animals, bind is the vector of

marker effects and it is assumed that bind ~ N(0, Iσ2m) and e is

the vector of random residual and assumed e ~ N(0, Iσ2e) where
σ2m is the variance of marker effects, I is the identity matrix, and

σ2e is the residual error variance.

For the pools, the marker effects are estimated by fitting a

slightly modified marker-based genomic model:

TABLE 1 Summary of the number of pools and the average number of individuals and families per pool per phenotype group.

# Pools Dead pool Alive pool

# Fish/pool # Family/pool # Fish/pool # Family/pool

1 281 58 308 60

2 140.5 49.5 154 56

4 70.25 37.75 77 42.5

10 28.1 22.2 30.8 24.6

20 14.05 12.35 15.4 13.7

40 8.3 7.7 9.22 7.65

100 2.81 2.76 3.08 3.03

150 1.87 1.85 2.05 2.05

200 1.41 1.4 1.54 1.52
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ypool � 1μ + Zbpool + epool

where ypool is the vector of phenotypes of the pools for the trait, μ

is the overall mean, 1 is the vector of 1s, Z is the matrix of average

allele frequencies for all SNPs and for all pools, bpool is the vector

of marker effects estimated from allele frequencies of pools, and

epool is the vector of random residual. It is assumed that

bpool ~ N(0, Iσ2m−pool) and epool ~ N(0, Iσ2e−pool), where σ2m−pool
is the variance of marker effects estimated from the marker

frequencies of the DNA pools and σ2e−pool is the residual error

variance. The analyses for both models were done using singular

value decomposition based SNP-BLUP (Ødegård et al., 2018),

which is suitable for large-scale genomic predictions.

2.4 Estimation of genomic breeding values

Estimation of genomic breeding values (GEBVs) for the

selection candidates was performed by summing the effects of

the markers multiplied by the standardized genotypes. Two

GEBV values per individual were predicted using SNP effects

estimated using pool data and the individual genotypes.

GEBVj � ∑
m

i
Xjbi

where GEBVj is the vector of predicted GEBVs for individual j,

Xi is the standardized genotypes for individual j, and bi is the

calculated marker effects either from pools of samples or

individual genotypes.

2.5 Model evaluation

For dataset-1 DNA pooling of samples, the effect of

sequencing depth on the accuracy of selection was studied by

varying the sampling from originally available 40× to 20×. SNP

effects from the pool data were calculated based on allele

frequencies estimated from the pools and used to calculate

GEBVs as described in the estimation of GEBV section.

For dataset-2 in-silico DNA pooling, the effect of sequence

coverage on the accuracy of selection was studied by varying the

sampling times to 40× and 100×. SNP effects from the pool data were

calculated based on allele frequencies estimated from the pools and

compared with SNP effects estimated from individual genotypes.

The accuracy of selection was calculated as the correlation

between predicted GEBVs and phenotypes and weighted by the

square root of the heritability (h2 = 0.3).

Accuracy (rcorr) � ρ(GEBV, y)��
h2

√

Where ρ is the Pearson moment correlation coefficient, GEBV is

the estimated GEBVs, y is the adjusted phenotype, and h2 is the

heritability of the trait.

3 Results

3.1 Accuracy of allele frequency
estimation

Sequencing of DNA pools from individuals gives estimates

of allele frequencies at SNPs. For dataset-1, the observed

number of alleles at each locus for the sequenced pools

provided the estimates of allele frequencies. The accuracies

of marker allele frequency calculated from the in-silico DNA

pools using three sequencing depths (i.e., 20×, 40×, and 100×)

are presented in Figure 2. The accuracies were calculated as the

Pearson correlation coefficients between the true allele

frequencies (i.e., calculated from the individual genotypes)

and frequencies calculated using in-silico pools. The figure

shows that the accuracy of allele frequency estimation is

affected by the number of pools and the average sequence

depth coverage. As the number of pools increased from one

pool, where all individuals represent one pool, to the maximum

number of pools where each individual denotes a pool, the

accuracy of allele frequency calculation has improved

significantly, especially with low average sequence coverage

(Figure 2). For example, for the sequencing coverage 40×,

the Pearson correlation coefficients between DNA pool- and

individual-based allele frequency estimation increased from

0.892 when only one DNA pool is considered to 0.99 when

10 DNA pools are used (Figure 2). Similar trends were also

observed for the different sequencing coverages (Figure 2). As

can be also seen from the figure, increasing sequence coverage

FIGURE 2
Accuracy ofmarker allele frequency calculated from different
numbers of in-silico DNA pools and sequencing depths. Accuracy
was calculated as the Pearson correlation coefficient between the
true allele frequencies (“Tfreq”) (i.e., calculated from the
individual genotypes) and frequencies calculated using in-silico
DNA pools (“Pfreq”) (n = 1, 2, 4, 10, 100, and 914). There were
914 individuals, and the maximum number of pools (n = 914)
represents one individual per pool.
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depth also improved the accuracy of allele frequency

estimation, particularly when the number of pools is small

(Figure 2). When a single pool per individual was used (i.e., no.

of pools = 914), the correlation between allele frequencies

calculated using individual genotypes and the pool is equal

to 1, regardless of the sequencing coverage.

Differences in SNP frequencies between survivor and dead

in-silico DNA pools are presented in Figure 3. The plotted allele

frequency differences in the figure are absolute values of the

frequency differences calculated from 100 pools per phenotype

group. It shows that there are larger differences in frequencies

between dead and survivor pools for the SNPs located at

chromosome 3.

3.2 Correlation between SNP effects

The correlations between SNP effects estimated from

individual genotypes and based on allele frequencies

calculated from the in-silico DNA pools are presented in

Figure 4. The correlation increased from 0.3 to 0.898 and

from 0.311 to 0.912 for the 40× and 100× sequence coverage

respectively, when the number of pools increased from 1 to

200 per phenotype group (Figure 4). Overall, it was observed that

the impact of sequencing coverage on the correlation between

SNP effects is limited; however, its importance increases when

the number of pools is decreasing. Exception from the general

trend was observed when 1 pool per phenotype group was used,

FIGURE 3
Manhattan plot of allele frequency differences between alive and dead pool for each SNP. The plotted allele frequency differences were
calculated from 100 pools per phenotype group. Chromosome 30 represents markers belonging to unknown chromosome(s).

FIGURE 4
Correlation between SNP effects estimated from individual genotypes and in-silico DNA pool genotypes.
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where no difference in SNP effects correlation was observed for

40× and 100× (Figure 4).

3.3 Correlation between genomic
breeding values

Two sets of GEBVs for the validation dataset were calculated

based on SNP effects estimated from individual genotypes and

in-silico pooled DNA. Pearson correlation coefficients between

these two sets of GEBVs are presented in Figure 5. The figure

shows that the number of pools is the determining factor as the

correlation increased from 0.84, when only a single pool is used

per phenotype, to 0.976 when the number of pools increased to

200 for 40× sequencing coverage (Figure 5). These correlations

are barely affected by the sequence coverage.

3.4 Genomic prediction accuracy

For the validation dataset in dataset-2–in-silico DNA

pooling, genomic prediction accuracies were calculated as the

Pearson correlation coefficients between true phenotypes and

predicted GEBVs and weighted by the inverse of the square root

FIGURE 5
Correlation between genomic breeding values (GEBV) estimated from individual genotypes and in-silico DNA pool genotypes.

TABLE 2 Accuracy of selection of dataset-2–in-silico DNA pooling.

No. of pools Accuracy of prediction % Decreased

Individual 40× 100× 40× 100×

1 0.712 ± 0.005 0.574 ± 0.006 0.575 ± 0.006 19.38 19.24

2 0.574 ± 0.004 0.575 ± 0.002 19.382 19.24

4 0.575 ± 0.003 0.575 ± 0.002 19.242 19.24

10 0.576 ± 0.003 0.576 ± 0.001 19.101 19.10

20 0.581 ± 0.005 0.581 ± 0.002 18.54 18.40

40 0.594 ± 0.008 0.596 ± 0.006 16.57 16.29

100 0.642 ± 0.009 0.641 ± 0.011 9.83 9.97

150 0.667 ± 0.012 0.671 ± 0.011 6.32 5.76

200 0.684 ± 0.012 0.687 ± 0.012 3.93 3.51

Accuracy of prediction using in-silico DNA pools of the reference population for different numbers of pools and sequencing coverage. The % decreased is the decrease in accuracy of

prediction in % for the 40× and 100× compared to the individual genotype. The presented accuracies are the mean of 60 replicates and the standard errors are the standard deviation of

60 replicates.
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of heritability of PD (Table 2). The result showed that the

prediction accuracy for the individual genotypes was

0.712 and for the in-silico DNA pools, it ranged from

0.574 to 0.687 when the number of pools increased from 1 to

100. Table 2 also presents % decreased, the decline in accuracy for

the DNA pools compared to the individual genotypes. Regardless

of the sequencing coverage, approximately a 20% decline in

accuracy was observed for in-silico DNA pools when less than

10 pools per group were used. However, the loss in accuracy was

reduced to less than 10% when 100 pools per phenotype group

were used. Furthermore, less than a 4% loss in accuracy was

observed when up to 200 pools were used. The difference

between 40× and 100× sequencing coverage with respect to

prediction accuracy was limited (Table 2).

The accuracy of prediction values for dataset-1–DNA

pooling of samples and individual SNP chips are shown in

Table 3. The accuracy of prediction was 0.737 for the

individual SNP chip data, and 0.716 and 0.700 for pooled

data when sequencing coverage was 40× and 20×, respectively.

This is up to ~5% higher accuracy for the individual SNP

chip data.

4 Discussion

Implementation of a conventional GS in aquaculture species

is very expensive because of the very large number of selection

candidates and test-sibs to be genotyped. In recent years, cost-

efficient GS design approaches either to minimize the number of

individuals or the number of markers to genotype, without

significantly reducing the accuracy of selection, have been

given emphasis (Lillehammer et al., 2013; Dagnachew and

Meuwissen, 2019; Tsairidou et al., 2020). This study

investigates the potential of DNA pooling for creating a

reference population for genomic prediction of PD resistance

(binary observation) in salmon. It demonstrated that SNP effects

in a reference population can be estimated from SNP allele

frequencies that are calculated from DNA pools and then the

GEBVs for selection candidates can be economically computed

with acceptable accuracies.

The datasets used in this study were generated as part of the

SalmoBreed’s practical breeding work to improve host resistance

against PD. PD is currently one of the most economically

important diseases in the Norwegian production of Atlantic

salmon (Jansen et al., 2010). The disease is caused by SAV, of

which at least three distinct genotypes have been identified

(Hodneland et al., 2005; Fringuelli et al., 2008). Mortality

rates vary widely from PD outbreaks; survivors may

eventually die because of secondary infections and increased

parasitism and suffer reduced growth and degraded product

quality (Lerfall et al., 2012). Moderate heritabilities have been

reported from field outbreak data (Norris et al., 2008) and

through controlled challenge testing using different challenge

models (Gonen et al., 2015). Considerable efforts have beenmade

in mapping genes for PD resistance for use in marker-assisted

selection and a QTL for PD resistance was mapped to Atlantic

salmon chromosome 3, using both fry and smolt challenge test

data from two populations (Gonen et al., 2015; Hillestad et al.,

2020). The difference in SNP frequencies between survivors and

dead in-silico DNA pools (Figure 3) shows that there are larger

differences in frequencies between dead and survivor pools for

the SNPs located at chromosome 3. This validates that SNPs in

that region are associated with some biological mechanisms

which are likely to be influencing resistance to PD.

A sequence of DNA pools from individuals gives estimates of

allele frequencies at SNPs with small or no loss in accuracy for a

considerably lower cost compared to individual genotyping.

Estimation of marker effects relies heavily on the accuracy of

allele frequencies calculated from DNA pools. The accuracy of

allele frequency estimation from pooled DNA samples depends

on some experimental design parameters (Gautier et al., 2013),

such as the number of individuals merged in a pool, the

sequencing coverage, and the possibility of unequal

contribution of each individual genome to the final

sequencing read. The effects of the number of individuals

merged in a pool were studied by varying the number of

individuals in the pools (Table 1). However, the effect of

sequencing coverage was studied by changing the number of

sampling times (i.e., average sequencing coverage) for the in-

silico pools and varying the sequencing coverage for pooled DNA

samples. However, the effect of unequal contribution of

individuals is not assessed in this study. It is important to

note that accurate equimolar pooling of each genomic DNA is

important for equal distribution of reads (Konczal et al., 2014)

and the number of pooled samples should be balanced for

accurate allele frequency estimation (Gautier et al., 2013;

Konczal et al., 2014) and consequently, the implication of

unequal DNA contribution for genomic prediction accuracy

should be investigated.

For allele frequency calculation and SNP effects estimation,

the importance of sequencing coverage decreased as the number

of DNA pools increased (Figures 2 and 4). Given a fixed number

of samples, as the number of pools increased, the number of

individuals per pool reduced (Table 1), and thus the effectiveness

of high sequencing coverage has diminished. This observed

pattern is in agreement with that of Rellstab et al. (Rellstab

TABLE 3 Accuracy of prediction for dataset-1–DNA pooling of
samples.

Dataset No. of SNPs Accuracy of prediction

SNP chip 51646 0.737 ± 0.006

Sequence 40× 44538 0.716 ± 0.004

Sequence 20x 45812 0.700 ± 0.003
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et al., 2013), who reported that higher sequencing coverages

(>50) have no significant effect on allele estimation accuracy and

only very low coverages (below 20×) would substantially reduce

the precision. In the current study, an exception from the general

trend was when 1 pool per phenotype group was used, where the

advantage of sequencing coverage was visible for allele frequency

accuracy (Figure 2) but not for the correlation of SNP effects

(Figure 4). Furthermore, the SNP effect correlations were poor

for both 40× and 100× coverage.

The accuracy of GS is expected to increase as the number

of genotyped and phenotyped animals in the reference

population increases for any trait, in particular, for lowly

heritable traits (Solberg et al., 2008). Our results showed that

SNP effects correlation, GEBV correlations, and prediction

accuracy increased as the number of pools increased from

1 to 200 per phenotype group (Figures 4 and 5; Table 2).

Henshall et al. (012) showed that a large number of smaller

pools would estimate allele frequency more accurately than

small numbers of large pools. As the number of pools

increased, the accuracy of allele frequency estimation

increased (Figure 2) and the prediction accuracy also

increased (Table 2). Moreover, for a larger number of

pools, it is observed that there are very little or no

differences in SNP frequency accuracies and SNP effects

correlation among different sequencing coverages (Figures 2

and 4). Similar trends were reported (Henshall et al., 2012;

Bell et al., 2017) when there are a large number of pools.

Furthermore, the high correlations between GEBVs

estimated from individual genotype and DNA pools,

particularly for the large number of pools (Figure 5),

evidenced that there is limited to no reranking of

individuals.

The accuracy of breeding values using pedigree information

for dataset-2 (only using phenotypes of 914 individuals and

their pedigree) was 0.48 (the result is not presented). This

accuracy was significantly improved by the use of genomic

information from the pools, which is in agreement with other

reports (Sonesson et al., 2010; Dagnachew and Meuwissen,

2019; Kriaridou et al., 2020; Tsairidou et al., 2020), especially

for the large number of pools. The loss of accuracy for the use of

DNA pools compared with the individual genotypes was

minimal for dataset-1 (0.74 vs. 0.71, Table 3). However, the

prediction accuracy difference was substantial for dataset-2

(0.71 vs. 0.57, Table 2) for the same number of pools. One

explanation is that for dataset-1, the prediction accuracies were

obtained for the same individuals in the pools (i.e., reference

and validation were the same individuals). On the other hand,

for dataset-2, the validation individuals were different from the

reference population. Furthermore, computer simulation of

DNA pooling provides an approximation and might fail to

capture some parameters.

Results from using DNA pooling for genomic prediction

are lacking. Our results show a trade-off between the number

of DNA pools and the loss of prediction accuracy. A

reduction in prediction accuracy means a reduction in

genetic gain. This has a cost implication that is complex to

quantify as it is determined by the trait, the breeding goal, and

other specifics of the breeding industry. Assuming

$20 genotyping cost per individual and $300 cost of

sequencing per sample for a 40× sequencing depth, the

annual genotyping cost for 5,000 individuals

(1,000 candidates and 4,000 informant sibs) is $100,000.

However, for the DNA pool scenario, where only

1,000 candidates are genotyped and the reference siblings

are pooled, the cost of genotyping varies from $20,600 to

$140,000 for a single pool per phenotype to 200 pools per

phenotype, respectively. Increasing the number of pools also

increases the cost of sequencing and hence an appropriate

pooling strategy should strike an optimal balance between

cost-effectiveness and accuracy. Furthermore, in the present

study, we have presented the prediction of allele frequencies

from the pools of DNA using sequencing of the pools.

However, calculation of allele frequencies from pooled

DNA does not necessarily require sequencing of the pools.

It has been reported that allele frequencies from DNA pools

can also be calculated by SNP genotyping of the pools using

light intensities (Reverter et al., 2014); hence, the cost

associated with sequencing of the pools can be avoided.

As it is presented in the study, DNA pooling of a reference

population can serve as a cost-effective GS approach, but with

a potential limitation in that the identity of individuals would

be lost and therefore individual characteristics and

environmental factors could not be adjusted in genomic

modeling, which may result in a loss in accuracy and a

biased estimate of a genetic effect. In the current study,

pooling within phenotype groups was done randomly;

however, Henshall et al. (2012) suggested that pooling

strategies within contemporary groups and fitting

contemporary group in the model would eliminate some of

these limitations. For example, in the studied datasets, pooling

within sex and full-sib families would address these

limitations.

5 Conclusion

DNA pooling of a reference population can serve as a cost-

effective GS approach, but with some potential limitations.

Results showed that a large number of pools are required to

achieve as good genomic prediction accuracies as individual

genotypes; however, alternative effective pooling strategies

should be exploited to reduce the number of pools without

reducing the prediction power. Nevertheless, it is

demonstrated that pooling of a reference population can be

used as a tool to optimize between cost and accuracy of

selection.
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