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Abstract: Currently, one of the most common causes of death worldwide is cancer. The development
of innovative methods to support the early and accurate detection of cancers is required to increase
the recovery rate of patients. Several studies have shown that medical Hyperspectral Imaging (HSI)
combined with artificial intelligence algorithms is a powerful tool for cancer detection. Various
preprocessing methods are commonly applied to hyperspectral data to improve the performance
of the algorithms. However, there is currently no standard for these methods, and no studies have
compared them so far in the medical field. In this work, we evaluated different combinations of
preprocessing steps, including spatial and spectral smoothing, Min-Max scaling, Standard Normal
Variate normalization, and a median spatial smoothing technique, with the goal of improving
tumor detection in three different HSI databases concerning colorectal, esophagogastric, and brain
cancers. Two machine learning and deep learning models were used to perform the pixel-wise
classification. The results showed that the choice of preprocessing method affects the performance
of tumor identification. The method that showed slightly better results with respect to identifing
colorectal tumors was Median Filter preprocessing (0.94 of area under the curve). On the other
hand, esophagogastric and brain tumors were more accurately identified using Min-Max scaling
preprocessing (0.93 and 0.92 of area under the curve, respectively). However, it is observed that the
Median Filter method smooths sharp spectral features, resulting in high variability in the classification
performance. Therefore, based on these results, obtained with different databases acquired by
different HSI instrumentation, the most relevant preprocessing technique identified in this work is
Min-Max scaling.

Keywords: min-max scaling; standard normal variate normalization; median filter; hyperspectral
imaging; machine learning; deep learning; colon cancer; esophagogastric cancer; brain cancer

1. Introduction

In 2020, the World Health Organization (WHO) estimated that around 10 million
deaths were caused by cancer, where the most common were lung, colon and rectum,
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liver, stomach, and breast cancers [1]. Physicians usually perform aggressive treatments
including surgery, radiotherapy, and chemotherapy. Innovative methods are still needed to
improve the diagnosis of tumor tissue during screening and treatment of the disease.

Hyperspectral (HS) Imaging (HSI) is a technology which combines spectroscopy and
conventional imaging with the aim of obtaining simultaneously the spatial and the spectral
information of a specific object [2]. HSI can capture a very large spectral range, from
the ultraviolet to the infrared, providing abundant information that covers hundreds of
spectral bands (also called spectral channels) for each pixel of the image [3]. HS camera
sensors measure the light reflected, absorbed, and scattered by materials when they are
illuminated by a light source. The reflectance measured at one pixel consists of an almost
continuous spectrum that acts as a fingerprint (the so-called spectral signature), which can
be employed to characterize the chemical composition of the captured material in such a
pixel. The HS camera systems perform spatial or spectral scanning (depending on the type
of HSI technology employed) and produce three-dimensional (3D) HS data with spatial
and spectral components (also called an HS cube) [4,5]. The principal advantages of this
technique are that it is non-ionizing, non-contact, non-invasive, and label-free. For these
reasons, HSI is an emerging technique in the medical field [6]. It has been evaluated in
many different applications, such as histopathological or sample analysis [7,8], wound
care [9], retinal imaging [10], microcirculatory alterations [11], and tissue oxygen saturation
monitoring [12]. Furthermore, in recent years, HSI combined with Artificial Intelligence (AI)
analysis algorithms has shown promising results for cancer detection [13–17]. Several types
of cancer have been investigated using in vivo and ex vivo tissue samples, such as skin
cancer [18], head and neck cancer [19,20], breast cancer [21,22], and brain cancer [23–26].

However, unpredictable physical perturbations can cause additive, multiplicative, and
wavelength-dependent scattering effects, altering the efficiency of the estimation by AI
models [27]. To avoid or reduce this issue, it is recommended to preprocess the HS data.
One of the most common preprocessing techniques in signal and image processing is the
application of spectral range normalization, such as Min-Max scaling and Standard Normal
Variate (SNV) normalizations. In the medical field, normalization preprocessing is also
performed when considering HS data of different body areas and patients, when the data
are acquired with different HSI systems under different external conditions. In general,
this is achieved through calibration of the devices [28–30] and by applying SNV normaliza-
tion [31,32]. There is so far no research which evaluates and recommends preprocessing
methods and measures their influences on tissue classification tasks. Therefore, this work
aims to evaluate different combinations of preprocessing techniques: (i) only calibration;
(ii) the Gaussian filter; (iii) Min-Max scaling normalization; (iv) SNV normalization; and
(v) a median filter in the spatial range. This evaluation is performed with the goal of achiev-
ing an improvement in tumor detection in three different use cases where HS data have
been captured in previous work (i.e., colorectal [14], esophagogastric [33], and brain [34]
cancers). One Machine Learning (ML) model, the Support Vector Machine (SVM), and one
Deep Learning (DL) model, a 3D Convolutional Neural Network (3DCNN), were selected
to perform the pixel-wise classification. Both models have shown promising results in
previous studies ([23,33]).

The main goal of this work is to identify the most relevant preprocessing method for
independent medical HS databases, enabling a better classification and identification of
tissues affected by the different types of tumors.

2. Materials and Methods

In this section the three HS databases (colon, esophagogastric, and brain) employed
will be described, as well as the proposed preprocessing and classification methods. In
addition, the evaluation metrics used to evaluate the results are presented.
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2.1. Data Acquisition
2.1.1. Colon and Esophagogastric Cancer Databases

The colon and esophagogastric databases are composed of 12 and 10 patients, respec-
tively, where all the patients were previously treated with chemo- and radiotherapy. For
each patient, a HS cube was acquired using the commercial push-broom TIVITA® Tissue
device (Diaspective Vision GmbH, Am Salzhaff, Germany) which covers the spectral range
from 500 to 1000 nm. The HSI images have a spectral resolution of 5 nm. The spatial resolu-
tion is 130 µm/pixel for a distance between tissue and camera of 50 cm. The acquisition
time was approximately 10 s, and the spatial size of the image was 640 × 480 pixels. The
light source includes six halogen spots of 20 W each. The study was approved by the
local ethics committee of the medical Faculty of the University of Leipzig (026/18-ek) and
was registered at Clinicaltrials.gov (NCT04230603). The HS data visualize ex vivo tissue
samples, captured under standardized conditions during the surgical procedure within
5 min after resection. The lights in the operation room were switched off and the HS camera
was positioned at the calibrated distance (~50 cm from the sample).

For the region of interest (ROI) selection, the pathologist digitally segmented the
tumors in the RGB image of the resected tissue samples using software (Gimp v.2.10).
Additionally, an ROI including areas with high probability of healthy tissue was selected.
The RGB images were reconstructed based on the HSI images. Therefore, the image sizes
were the same and the spectral data corresponding to the ROIs were easy to extract. The
pathologist performed the annotations of this database because she had experience with the
visual recognition of tumors and healthy tissue. This skill is necessary for the pathologist
to perform histological slices of the tumor [33]. With respect to the colon database, two
classes were labelled: malignant tissue and colon tissue. Regarding the esophagogastric
database, three classes were labelled: malignant tissue, stomach tissue, and esophagus
tissue. Figure 1 depicts some examples from both databases. The first row shows the
synthetic RGB images generated from the HS data and the second row shows the ground
truth, where green indicates healthy colon and esophagus tissue, pink indicates healthy
stomach tissue, red indicates tumor tissue, and yellow indicates tumor margins. However,
the last class (margin) will not be evaluated in the proposed classification scheme since it
can include both healthy and/or pathological tissues.
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Figure 1. RGB images and ground truth from the databases acquired using the TIVITA® Tissue
system. (a) Colon database. (b) Esophagogastric database. Green color indicates healthy colon and
esophagus tissue, pink color indicates healthy stomach tissue, red color indicates tumor tissue, and
yellow color indicates tumor margin area.

2.1.2. Brain Cancer Database

The system employed for the acquisition of the brain database was developed during
a European research project called HELICoiD [24]. The system was composed of a HS push-
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broom camera manufactured by HeadWall Photonics, Hyperspec® VNIR A-Series model.
The spectral range covered from 400 to 1000 nm, capturing 826 spectral bands. This type
of camera acquires the spectral information of a single narrow spatial line. The maximum
spatial size of the HS image, considering the scanning platform, is 1004 × 1787 pixels,
enclosing an area of 129 × 230 mm with a pixel size of 128.7 µm. The illumination system
comprises a Quartz–Tungsten–Halogen (QTH) lamp connected to a cold light emitter
allowing cold illumination over the brain surface. The HS data were obtained in vivo
during neurosurgical procedures [34].

The ground truth annotation was performed using a methodology which combined
the pathology assessment with neurosurgical criteria using the Spectral Angle Mapper
(SAM) algorithm [34]. The labelled pixels are obtained by using a customized labelling tool
developed for this purpose. First, the surgeon selects a reference pixel from the image for
which she is sure that it corresponds to a certain type of tissue, e.g., normal tissue, tumor
tissue, or hypervascularized areas. Once the reference pixel is selected, the SAM algorithm
is applied to the remaining pixels in the HS image to determine which are spectrally similar
to the reference pixel, and so are likely to belong to that class. Finally, the surgeon manually
modifies a threshold to include or exclude pixels similar to the reference pixel, and to
visually ensure that the selected pixels truly belong to the target class. This procedure
is explained in more detail in [34]. Regarding the tumor tissue, the label was confirmed
by the pathologist after the biopsy. Four different classes were defined: healthy brain
tissue, tumor tissue, hypervascularized tissue (mainly blood vessels), and background.
The background class involves the elements which are present in the images but are not
relevant for the identification of tumor tissue within the brain (i.e., skull bone, dura, skin,
or surgical materials).

The brain database is composed of a total of 26 HS cubes belonging to 16 patients.
Four patients (six HS images) suffered from a grade IV glioblastoma tumor. The remaining
patients were affected by other types of tumors or underwent surgery due to other diseases.
From these remaining patients, only healthy brain and hypervascularized tissue, as well
as background, were used. The study protocol and consent procedures were approved by
the Comité Ético de Investigación Clínica-Comité de Ética en la Investigación (CEIC/CEI)
of the University Hospital of Gran Canaria Doctor Negrin (CEIC code: 130069). Figure 2
shows the six HS images captured from subjects affected by grade IV glioblastomas within
this database, where the first row displays the synthetic RGB images, the second row shows
the ground truth with the four classes, and the third row illustrates the overlap of the
ground-truth with a grey scale image. Healthy tissue is represented in green color, tumor
in red, hypervascularized tissue in blue, and background in black.
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yellow circles indicate the location of the tumor.
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2.1.3. Summary Databases

Table 1 describes the three databases used, indicating the number of patients and the
HS data, as well as the number of labeled pixels per class. The colon database includes
two classes: tumor tissue (TT) and healthy colon tissue (CT). The esophagogastric database
includes three classes: tumor tissue (TT), healthy esophagus tissue (ET), and healthy
stomach tissue (ST). The brain database includes four classes: tumor tissue (TT), healthy
brain tissue (BT), blood vessel (BV), and background (BG). It is worth noticing that the data
are clearly unbalanced.

Table 1. Summary of the HS-labelled databases employed in this study.

Database Patients HS Cubes
#Labelled Pixels

TT CT/ET/BT ST/BV BG

Colon 12 12 75,588 668,927 - -
Esophagogastric 10 10 61,414 369,256 286,554 -

Brain 16 26 11,054 101,706 38,784 118,132
TT: Tumor Tissue; CT: Colon Tissue; ET: Esophagus Tissue; BT: Brain Tissue; ST: Stomach Tissue; BV: Blood Vessel;
BG: Background.

2.2. Processing Frameworks

The different preprocessing methods were evaluated in the context of a tissue-classification
task. The overall processing chain is depicted in Figure 3 and described in the following sections.
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2.2.1. HS Data Calibration

The acquired raw HS data were calibrated to remove the lighting noise and the effects
of dark currents from the HS sensors, according to Equation (1), where C is the calibrated
HS data, R is the raw HS data, and Dre f and Wre f are the dark and white reference HS
data, respectively. The white reference image was acquired using a material which reflects
99% of the incoming light. The dark image reference was acquired by keeping the camera
shutter closed.

C = 100·
R− Dre f

Wre f − Dre f
(1)

2.2.2. HS Data Preprocessing

The data preprocessing applied to the calibrated data consisted of several steps shown
in Figure 4 and described below.

First, the spectral bands at the edges of the spectral range were removed because they
included noise due to the low performance of the sensors for these wavelengths. Therefore,
the filtered spectral ranges were 550–950 nm for the colon and esophagogastric databases,
and 440–902 nm for the brain database.

The second step was only applied to the brain database. The spectral bands of the HS
data were sub-sampled from 826 to 128 with an interval step of 3.61 nm. It was demon-
strated in [23] that by reducing the number of bands to 128, the overall classification
accuracy was not significantly affected by the spectral subsampling; in fact, it was even
proven that the sensitivity of the tumor classification was slightly higher than when employ-
ing the original data (826 bands) as a consequence of some noise reduction. Additionally,
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with spectral subsampling the execution time showed a speed-up factor of ~48× with
respect to the classification time of the original data.
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The third step consisted of removing the glare from the HS data of the colon and
esophagogastric databases. First, we manually selected a threshold to identify the glare
pixels. Then, the techniques of erosion and dilation were employed to allow the removal of
pixels with small white noise, as well as those in their vicinity, to avoid outliers.

The fourth step involved filtering the noise in the spatial and spectral ranges indepen-
dently. A Gaussian smoothing filter was applied in the spectral range for Min-Max scaling
and SNV HS data preprocessing, while a median filter was applied in the spatial range for
the MedFilter HS data preprocessing.

The last step was the normalization of the HS data using the Min-Max scaling and SNV
methods. Min-Max scaling is a technique in which a pre-defined boundary is set, usually
in the range [0, 1], where 0 is the lowest value and 1 is the highest value of a pixel in the HS
cube, as can be seen in Equation (2), where Ci is the calibrated pixel of the HS cube. The SNV
method consists of subtracting the mean spectral value from each spectral signature and
dividing it by its own standard deviation; see Equation (3), where Ci,j is the calibrated HS
pixel, i represents the pixel’s elements, j represents the spectral bands, Ci is the mean value
of the spectral signature of the pixel i, and L is the number of spectral bands [35]. Steps 1 to
3 were always performed according to the database used. We have tested the following
combinations of preprocessing, including noise filtering and data scaling/normalization
(steps 4 and 5): (1) no noise filtering or scaling/normalization (noted “Calibrated” in the
following); (2) spatial and spectral smoothing (“Filtered”); (3) spectral smoothing and
Min-Max scaling (“Min-Max”); (4) spectral smoothing and SNV normalization (“SNV”);
and (5) spatial smoothing and normalization (“MedFilter”). The normalization performed
in the median filter was SNV since, as discussed in Section 1, it is one of the most widely
used standardizations for HS data in the medical field.

CMin−Max
′ =

Ci −min(C)
max(C)−min(C)

(2)

CSNV
i,j

′ =

(
Ci,j − Ci

)
√

∑L
j=1(Ci,j−Ci)

2

L−1

(3)
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Figure 5 shows that the signature of a pixel’s changes depending on the preprocessing
technique employed. It can be observed that, except for MedFilter, the spectral signature of
the same structure looks homogeneous.

Sensors 2022, 22, x FOR PEER REVIEW 7 of 19 
 

 

The second step was only applied to the brain database. The spectral bands of the HS 
data were sub-sampled from 826 to 128 with an interval step of 3.61 nm. It was 
demonstrated in [23] that by reducing the number of bands to 128, the overall 
classification accuracy was not significantly affected by the spectral subsampling; in fact, 
it was even proven that the sensitivity of the tumor classification was slightly higher than 
when employing the original data (826 bands) as a consequence of some noise reduction. 
Additionally, with spectral subsampling the execution time showed a speed-up factor of 
~48× with respect to the classification time of the original data. 

The third step consisted of removing the glare from the HS data of the colon and 
esophagogastric databases. First, we manually selected a threshold to identify the glare 
pixels. Then, the techniques of erosion and dilation were employed to allow the removal 
of pixels with small white noise, as well as those in their vicinity, to avoid outliers. 

The fourth step involved filtering the noise in the spatial and spectral ranges 
independently. A Gaussian smoothing filter was applied in the spectral range for Min-
Max scaling and SNV HS data preprocessing, while a median filter was applied in the 
spatial range for the MedFilter HS data preprocessing.  

The last step was the normalization of the HS data using the Min-Max scaling and 
SNV methods. Min-Max scaling is a technique in which a pre-defined boundary is set, 
usually in the range [0, 1], where 0 is the lowest value and 1 is the highest value of a pixel 
in the HS cube, as can be seen in Equation (2), where 𝐶௜ is the calibrated pixel of the HS 
cube. The SNV method consists of subtracting the mean spectral value from each spectral 
signature and dividing it by its own standard deviation; see Equation (3), where 𝐶௜,௝ is 
the calibrated HS pixel, 𝑖  represents the pixel’s elements, 𝑗  represents the spectral 
bands, �̅�௜ is the mean value of the spectral signature of the pixel 𝑖, and 𝐿 is the number 
of spectral bands [35]. Steps 1 to 3 were always performed according to the database used. 
We have tested the following combinations of preprocessing, including noise filtering and 
data scaling/normalization (steps 4 and 5): (1) no noise filtering or scaling/normalization 
(noted “Calibrated” in the following); (2) spatial and spectral smoothing (“Filtered”); (3) 
spectral smoothing and Min-Max scaling (“Min-Max”); (4) spectral smoothing and SNV 
normalization (“SNV”); and (5) spatial smoothing and normalization (“MedFilter”). The 
normalization performed in the median filter was SNV since, as discussed in Section 1, it 
is one of the most widely used standardizations for HS data in the medical field. 

Figure 5 shows that the signature of a pixel’s changes depending on the 
preprocessing technique employed. It can be observed that, except for MedFilter, the 
spectral signature of the same structure looks homogeneous. 

 
Figure 5. Spectral signature after applying different preprocessing techniques. (a) Calibrated 
preprocessing technique; (b) Filtered preprocessing technique; (c) Min-Max preprocessing 
technique; (d) SNV preprocessing technique; (e) MedFilter preprocessing technique. 

2.2.3. Summary Data Preprocessing 

𝐶ெ௜௡ିெ௔௫ᇱ = 𝐶௜ − 𝑚𝑖𝑛 (𝐶)𝑚𝑎𝑥(𝐶) − 𝑚𝑖𝑛 (𝐶) (2) 𝐶௜,௝ௌே௏ᇱ = (𝐶௜,௝ − �̅�௜)ඨ∑ (𝐶௜,௝ − �̅�௜)ଶ௅௝ୀଵ 𝐿 − 1  
(3) 

Figure 5. Spectral signature after applying different preprocessing techniques. (a) Calibrated pre-
processing technique; (b) Filtered preprocessing technique; (c) Min-Max preprocessing technique;
(d) SNV preprocessing technique; (e) MedFilter preprocessing technique.

2.2.3. Summary Data Preprocessing

Table 2 summarizes each of the preprocessing methods to be evaluated in this work.
Calibrated data are those without any preprocessing, where only the extreme spectral
band removal step (to avoid the noise generated by the HS sensors in such bands, due
to low performance) and the glare removal step (to avoid including these pixels in the
classification step) have been applied. As for the Filtered data, a Gaussian filter is applied
for noise reduction. Min-Max scaling and SNV data are normalized to obtain a more
uniform spectrum. Regarding the MedFilter data, a median filter is applied to homogenize
pixels having different intensities.

Table 2. Summary of data preprocessing steps.

Name Preprocessing Steps Brief Comment

Calibrated Extreme band removal + Glare removal Calibration required for standardization of spectral
signatures concerning equipment and illumination

Filtered Calibrated + Gaussian smoothing filter Application of a Gaussian filter for noise
reduction in HS data

Min-Max Filtered + Min-Max scaling Reduces the range of values to [0, 1]
to improve classification

SNV Filtered + SNV normalization
SNV seeks to ensure that all spectra are comparable in terms

of intensity. All spectra must have a mean of 0 and a
standard deviation of 1.

MedFilter Calibrated + Median filter spatial
smoothing + SNV normalization Homogenizes pixels with different intensities.

2.2.4. Machine Learning (ML) Model

SVM is the traditional ML model employed for the classification of HS data. It
was successfully evaluated in previous work on the brain database [23]. SVM has been
demonstrated to obtain remarkable results for highly unbalanced datasets [36]. It is a binary
classification algorithm, which aims to find a hyperplane capable of separating the data
with the widest possible margin [37]. The SVM implementation was carried out using
MATLAB 2021a, using the linear kernel and a 0.5 classification threshold. Concerning
the hyperparameters, the box constraints, cost, and weights were set to 1, and the prior
probability was activated. This model was computed on an Intel(R) Core (TM) i7-4790K
CPU (Central Processing Unit).

2.2.5. Deep Learning (DL) Model

The 3DCNN is a DL algorithm which has obtained significant results using unbalanced
data [38]. CNNs work by dividing the HS cube into sub-cubes, called patches, where
each of them is processed independently. The 3DCNN employed was developed by



Sensors 2022, 22, 8917 8 of 19

Hamida et al. [39]. They designed four different models; their model D is employed
in this study, with an architecture of 8 layers and 5 × 5 networks. The inputs of the
model are patches of the HS data with a size of 5 × 5 × L, where L is the number of
spectral bands. Inspired by SqueezeNet [40], the 3DCNN was decomposed into three
sequences of 1DCNNs (1D Convolutional Neural Networks), where the last layer was
connected with N output neurons, N being the number of classes. In the case of the colon
database, optimal thresholds were calculated for two classes, while for the multi-class
databases (esophagogastric and brain databases) a default threshold was employed, as
can be observed in Table 3. These values are obtained due to the imbalance of the dataset.
However, they also preserve a balance between sensitivity and specificity. This model was
already successfully evaluated on the colon and esophagogastric databases [33], and it was
implemented in Python 3.7 using the Tensorflow 2.4 and Keras 2.3 libraries on an AMD
EPYC 32 core processor CPU and 2 RXT2080TI GPUs.

Table 3. Optimal threshold calculated for each database performed by 3DCNN.

Models Colon
Threshold

Esophagogastric
Threshold

Brain
Threshold

3DCNN

Calibrated 0.001 0.5 0.5
Filtered 0.0037 0.5 0.5

Min-Max 0.0189 0.5 0.5
SNV 0.0028 0.5 0.5

MedFilter 0.0081 0.5 0.5

2.2.6. Data Partition

A leave-one-out cross-validation was performed. This method performs an inter-
patient classification, where the samples of an independent patient are used for the test,
while the training group includes all the patients’ samples except the ones to be tested.
In addition, for the ML approach, a reduction of the training dataset was performed to
shorten the high execution time per patient. Martinez et al. [23] demonstrated that in
some cases, the labelled data may contain redundant information, increasing the execution
time and even worsening the classification performance. This study showed that for
the brain cancer database, by reducing the training dataset to 1000 pixels per class, the
performance results were equivalent to or slightly better than using all the labelled pixels.
Moreover, the execution time involved for the training of the SVM model was drastically
reduced. The data-reduction methodology was based on the employment of the K-Means
algorithm, which was applied in each group of labelled pixels (each class) with the objective
of obtaining 100 different clusters per labelled group. Thus, 100 centroids that relate to a
specific class were obtained. To reduce the training dataset, such centroids were used to
recognize the most representative pixels of each class by using the SAM algorithm [41]. For
each centroid, the ten most similar pixels were selected, obtaining a total of 1000 pixels
per class.

In this study, the number of clusters employed remains the same as in [23], i.e.,
100 clusters per class. However, the number of similar pixels per class has been adapted
according to the evaluated database. With respect to the colon database, 10 pixels per
centroid were initially selected, having a total of 1000 pixels per class. The results were not
sufficiently efficient, so 20 pixels per centroid were selected, obtaining 2000 pixels per class,
4000 in total. The same applied to the esophagogastric database: the results were not good
enough when selecting only 10 pixels per centroid, so 20 pixels per centroid were selected
instead, obtaining a total of 6000 pixels for the three classes. Finally, for the brain database
we employed the same numbers as in [23], 10 pixels per centroid, obtaining 1000 pixels per
class and a total of 4000 pixels. In this case it was not necessary to increase the number of
pixels per centroid since in [23] it is demonstrated that with this number of pixels, good
results are obtained.
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2.2.7. Evaluation Metrics

Since the test dataset was unbalanced in each database, the following quantitative
evaluation metrics were selected: F1-Score, Area Under the Curve (AUC), and Matthew
Correlation Coefficient (MCC). For a qualitative evaluation of the results, classification
maps and probability maps were generated and visualized. Finally, paired two-tailed t-tests
were employed to determine whether the difference in the mean AUC of the models (SVM
and 3DCNN) was significantly different.

F1-Score is the harmonic mean of precision and recall. It is defined by Equation (4),
where TP represents the true positives, FP the false positives, and FN the false negatives.
The AUC was computed based on the Receiver Operating Characteristic (ROC) curve.
The MCC is defined by Equation (5), where TN represents the true negatives. This metric
computes the correlation coefficient between the observed and the predicted values, used
to analyze unbalanced data. MCC has a value range between [−1, 1]. The extreme values
represent a completely wrong and completely correct prediction, respectively.

F1-Score =
2TP

2TP + FP + FN
(4)

MCC =
TP·TN − FP·FN√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(5)

The classification maps visualize the predicted labels. A color is assigned to each pixel
belonging to a specific predicted class. For the colon database, green represents the colon
tissue and red the tumor tissue. In the esophagogastric database, green was selected to
represent the esophagus class, red the tumor class, and pink the stomach class. Lastly, for
the brain database, green was assigned to the normal tissue, red to the tumor tissue, blue
to the blood vessels, and black to the background. As for the probability maps, the colors
indicate the probability that the pixel belongs to the class under evaluation. In this case, the
maps show the probability of the pixels belonging to the tumor class. Red color indicates
the higher probability (1) of belonging to the tumor class, while blue color refers to the
lower probability (0) of belonging to the tumor class.

With respect to the paired two-tailed t-test, this statistical method is employed to
evaluate whether the difference in the mean AUC of the models was significantly different
(SMV vs. 3DCNN). The p-value is considered statistically significant if p is lower than
0.05 (p ≤ 0.05).

3. Results
3.1. Colon Results

The performance results of the models are shown in Table 4. As can be seen, the
most accurate results were obtained with the Calibrated 3DCNN, the Filtered 3DCNN, and
the Median Filter 3DCNN models. For the tumor class, the Calibrated 3DCNN and the
MedFilter 3DCNN both achieved an F1-Score of 0.52, the Filtered 3DCNN reached an AUC
of 0.96, and the MedFilter 3DCNN obtained an MCC of 0.52. For the colon class, the best
performance was obtained with the MedFilter SVM with an F1-Score of 0.98. The results
showed that the MedFilter preprocessing clearly improved the performance of both the
SVM and 3DCNN models. With respect to the paired two-tailed t-test (SVM vs. 3DCNN),
a significant difference can be observed in the mean AUC of the models (p = 0.003 for
Calibrated and Filtered, p = 0.007 for Min-Max and SNV, and p = 0.04 for MedFilter).

The classification maps in Figure 6 show that the tumor class was correctly identified,
except for the Min-Max and SNV 3DCNN model. In general, the labeled areas are correctly
identified. However, the classification of the rest of the image varies between models. This
can be visualized in patient CP11, where the unlabeled tissue was mainly classified as
healthy tissue. However, when the MedFilter was used, it was identified as tumor. On
these three examples, the Calibrated 3DCNN provided a better visual delineation of the
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labeled structures. Figure S1 in the Supplementary Material shows the classification maps
for the remaining patients included in the test dataset.

Table 4. Mean and standard deviation values of the quantitative metrics obtained on the colon
database according to different preprocessing and classification algorithms.

Models
F1-Score

AUC MCC
TT CT

SVM

Calibrated 0.36 ± 0.26 0.94 ± 0.12 0.69 ± 0.26 ** 0.21 ± 0.27
Filtered 0.38 ± 0.28 0.87 ± 0.25 0.68 ± 0.27 ** 0.22 ± 0.27

Min-Max 0.31 ± 0.26 0.97 ± 0.03 0.71 ± 0.23 * 0.19 ± 0.21
SNV 0.32 ± 0.21 0.97 ± 0.03 0.74 ± 0.18 * 0.19 ± 0.21

MedFilter 0.43 ± 0.28 0.98 ± 0.03 0.84 ± 0.15 * 0.36 ± 0.27

3DCNN

Calibrated 0.52 ± 0.21 0.90 ± 0.11 0.94 ± 0.06 ** 0.50 ± 0.19
Filtered 0.46 ± 0.26 0.88 ± 0.11 0.96 ± 0.03 ** 0.48 ± 0.22

Min-Max 0.38 ± 0.26 0.85 ± 0.12 0.93 ± 0.08 * 0.37 ± 0.22
SNV 3 0.45 ± 0.22 0.87 ± 0.13 0.90 ± 0.08 * 0.44 ± 0.20

MedFilter 0.52 ± 0.23 0.91 ± 0.08 0.94 ± 0.08 * 0.52 ± 0.20
TT: Tumor Tissue; CT: Colon Tissue, *: p < 0.05; **: p < 0.01.

Probability maps for whether individual pixels belong to the tumor class are depicted
in Figure 7. In general, the maps show a high probability in the area corresponding to
the annotated tumor. However, for non-labeled areas, a large number of false positives is
observed. Explanations could be that tissues are different from the labeled classes (deeper
tissues) or they could be cauterized during the surgery, among other factors. Considering
only the labeled tumor pixels, the MedFilter SVM and 3DCNN models achieved an accurate
delineation of the tumor area, which is consistent with the quantitative results. Figure S2 in
the Supplementary Material shows the probability maps of each patient in the test dataset.
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3.2. Esophagogastric Results

Table 5 shows the classification results obtained for the esophagogastric database.
The models with the best performance with respect to the F1-Score are the Min-Max SVM
and MedFilter SVM, with 0.58 for the tumor class. With respect to the AUC, the Min-Max
SVM model achieved 0.93 for the tumor class, and 0.94 and 0.95 for the esophagus and
stomach tissue classes, respectively. However, with respect to the MCC metric, the best
results for tumor classification were obtained by the Calibrated 3DCNN model (0.51).
The Min-Max model tended to improve the performance of the classification, while no
preprocessing was required for the 3DCNN to obtain high performance. In this case, the
paired two-tailed t-test was employed to evaluate whether the mean AUCs of the models
have significant differences. It can be observed that Filtered models (SVM vs. 3DCNN)
have a significant statistical difference (p = 0.005). The remaining models obtained the
following p-values: p = 0.18 for Calibrated, p = 0.17 for Min-Max, p = 0.14 for SNV, and
p = 0.06 for MedFilter.

Table 5. Mean and standard deviation values of the quantitative metrics obtained on the esopha-
gogastric database according to different preprocessing and classification algorithms.

Models
F1-Score AUC MCC

TT ET ST TT ET ST TT ET ST

SVM

Calibrated 0.56 ± 0.32 0.91 ± 0.09 0.90 ± 0.13 0.91 ± 0.06 0.92 ± 0.05 0.95 ± 0.11 0.42 ± 0.21 0.60 ± 0.13 0.71 ± 0.30
Filtered 0.53 ± 0.31 0.89 ± 0.10 0.89 ± 0.13 0.90 ± 0.06 ** 0.89 ± 0.05 0.93 ± 0.11 0.40 ± 0.20 0.53 ± 0.11 0.62 ± 0.26

Min-Max 0.58 ± 0.30 0.96 ± 0.05 0.84 ± 0.12 0.93 ± 0.05 0.94 ± 0.05 0.95 ± 0.10 0.41 ± 0.23 0.62 ± 0.12 0.64 ± 0.27
SNV 0.56 ± 0.32 0.95 ± 0.06 0.86 ± 0.12 0.92 ± 0.05 0.93 ± 0.05 0.94 ± 0.11 0.44 ± 0.23 0.64 ± 0.15 0.68 ± 0.28

MedFilter 0.58 ± 0.35 0.90 ± 0.11 0.88 ± 0.18 0.90 ± 0.08 0.93 ± 0.05 0.93 ± 0.13 0.41 ± 0.22 0.62 ± 0.19 0.72 ± 0.32

3DCNN

Calibrated 0.53 ± 0.30 0.89 ± 0.05 0.82 ± 0.34 0.90 ± 0.08 0.86 ± 0.22 0.95 ± 0.11 0.51 ± 0.29 0.77 ± 0.11 0.79 ± 0.35
Filtered 0.42 ± 0.29 0.84 ± 0.07 0.79 ± 0.33 0.92 ± 0.06 ** 0.90 ± 0.09 0.95 ± 0.09 0.42 ± 0.26 0.70 ± 0.12 0.75 ± 0.31

Min-Max 0.44 ± 0.31 0.78 ± 0.12 0.77 ± 0.33 0.92 ± 0.06 0.82 ± 0.16 0.95 ± 0.10 0.44 ± 0.27 0.63 ± 0.15 0.73 ± 0.32
SNV 0.45 ± 0.30 0.84 ± 0.07 0.80 ± 0.33 0.89 ± 0.09 0.83 ± 0.24 0.94 ± 0.11 0.42 ± 0.28 0.69 ± 0.13 0.76 ± 0.32

MedFilter 0.33 ± 0.15 0.77 ± 0.13 0.79 ± 0.26 0.86 ± 0.12 0.92 ± 0.08 0.92 ± 0.15 0.34 ± 0.16 0.60 ± 0.22 0.72 ± 0.32

TT: Tumor Tissue; ET: Esophagus Tissue; ST: Stomach Tissue; **: p < 0.01.

Figure 8 shows the classification maps, where we can observe that, except for the
MedFilter models, the maps look very similar. In EP1, no model can clearly identify the
center of the tumor, with the Calibrated 3DCNN model being the most accurate. In the
case of EP3, the MedFilter SVM model provided a better delineation of the different classes.
It showed a reduced rate of misclassification of the tumor class, relative to the esophagus
class. Finally, for EP9, the Min-Max 3DCNN model provided the best visual classification.
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Figure S3 in the Supplementary Material illustrates the classification maps of the remaining
patients of the test dataset.
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Figure 8. Classification maps of three different patients (EP1, EP3, and EP9) from the esophagogastric
database, as computed by each model. Green represents healthy esophagus tissue, red tumor tissue,
pink healthy stomach tissue, and yellow tumor margin area.

The probability maps in Figure 9 show that for EP1, only the Min-Max and SNV
3DCNN models could correctly detect the tumor tissue. For EP3 and EP9, all models except
the MedFilter 3DCNN model, correctly identified the tumor area. However, a large number
of false positives is observed in the image. With respect to the SVM model, the Min-Max
and SNV preprocessing provided a better delineation of the tumor. In the Supplementary
Material, Figure S4 shows the probability maps of the remaining patients included in the
test dataset.
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3.3. Brain Results

In Table 6, the classification performance of the different models and preprocessing
methods are shown. With respect to the F1-Score, it can be observed that the SVM models
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obtained better results (0.67 to 0.82) than the 3DCNN models (0.41 to 0.52) for tumor
classification. In the case of the AUC metric, the best result with respect to the tumor
class was obtained by the Filtered SVM model with a value of 0.94, followed by the
Calibrated SVM and Min-Max SVM models with values of 0.92. Lastly, considering the
MCC metric, the best-balanced model is the Filtered SVM, achieving 0.61 of the tumor
class. Although the values of the metrics between the different preprocessing methods and
classification models are relatively close, spatial and spectral smoothing tended to improve
the classification performance of the SVM model, while Min-Max scaling tended to improve
that of the 3DCNN. With respect to the p-values obtained with the paired two-tailed t-test,
no significant difference was observed in the mean AUC between the models (p = 0.48 for
Calibrated, p = 0.18 for Filtered, p = 0.50 for Min-Max, p = 0.18 for SNV, and p = 0.12
for MedFilter).

Figure 10 shows the classification map of three different patients. In the case of BP8C1,
only the MedFilter SVM model was able to detect the tumor. The other classes were
well-classified by all models, except the Calibrated SVM. For BP12C1, all models correctly
identified the tumor class, and the Min-Max 3DCNN and SNV 3DCNN models clearly
provided structure delineations. For BP20C1, the tumor area was correctly identified by the
SVM model only. In general, the Filtered SVM model best visualized the tumor class of
patients. Figure S5 in the Supplementary Material shows the classification maps of each
patient in the test dataset.

Regarding the probability maps shown in Figure 11, it can be observed that in the
case of BP8C1, only the Min-Max SVM, MedFilter SVM, and Calibrated 3DCNN models
identified parts of the tumor area. For BP12C1, all models identified the tumor area with a
high probability. Only the MedFilter SVM model showed more false positives. For BP20C1,
the Calibrated, Filtered, and SNV SVM models were able to identify the tumor area. With
respect to the SVM model, the Filtered, Min-Max, and SNV preprocessing provided a better
delineation of the tumor. Figure S6 in the Supplementary Material visualizes the probability
maps of the remaining patients included in the test dataset.
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Figure 10. Classification maps of three different patients (BP8C1, BP12C1, and BP20C1) from the
brain database, as computed by each model. Green represents healthy brain tissue, red tumor tissue,
blue blood vessels, and black the background.
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Table 6. Mean and standard deviation values of the quantitative metrics obtained from the brain database according to different preprocessing and
classification algorithms.

Models
F1-Score AUC MCC

BT TT BV BG BT TT BV BG BT TT BV BG

SVM

Calibrated 0.92 ± 0.09 0.68 ± 0.27 0.98 ± 0.02 0.79 ± 0.20 0.90 ± 0.11 0.92 ± 0.07 0.96 ± 0.07 0.98 ± 0.02 0.58 ± 0.28 0.55 ± 0.26 0.81 ± 0.20 0.72 ± 0.20
Filtered 0.92 ± 0.16 0.82 ± 0.29 0.97 ± 0.07 0.86 ± 0.23 0.95 ± 0.08 0.94 ± 0.05 0.97 ± 0.05 1.00 ± 0.00 0.75 ± 0.24 0.61 ± 0.29 0.84 ± 0.17 0.82 ± 0.23

Min-Max 0.84 ± 0.14 0.80 ± 0.25 0.92 ± 0.12 0.88 ± 0.13 0.95 ± 0.05 0.92 ± 0.10 0.97 ± 0.05 0.98 ± 0.04 0.71 ± 0.17 0.55 ± 0.26 0.81 ± 0.21 0.79 ± 0.18
SNV 0.87 ± 0.10 0.67 ± 0.32 0.90 ± 0.16 0.97 ± 0.03 0.97 ± 0.03 0.86 ± 0.20 0.96 ± 0.07 0.99 ± 0.02 0.79 ± 0.11 0.48 ± 0.39 0.78 ± 0.20 0.88 ± 0.14

MedFilter 0.85 ± 0.17 0.78 ± 0.23 0.96 ± 0.06 0.83 ± 0.17 0.93 ± 0.07 0.90 ± 0.07 0.98 ± 0.03 0.98 ± 0.03 0.67 ± 0.22 0.52 ± 0.23 0.81 ± 0.07 0.80 ± 0.12

3DCNN

Calibrated 0.84 ± 0.19 0.52 ± 0.40 0.88 ± 0.12 0.97 ± 0.04 0.93 ± 0.13 0.86 ± 0.17 0.98 ± 0.04 0.99 ± 0.02 0.81 ± 0.21 0.51 ± 0.38 0.84 ± 0.15 0.96 ± 0.05
Filtered 0.82 ± 0.19 0.37 ± 0.40 0.89 ± 0.12 0.96 ± 0.04 0.93 ± 0.13 0.79 ± 0.17 0.99 ± 0.04 0.98 ± 0.02 0.79 ± 0.21 0.37 ± 0.32 0.86 ± 0.15 0.94 ± 0.05

Min-Max 0.86 ± 0.20 0.44 ± 0.44 0.87 ± 0.1 0.98 ± 0.01 0.97 ± 0.04 0.87 ± 0.14 0.97 ± 0.03 0.98 ± 0.03 0.83 ± 0.23 0.54 ± 0.40 0.83 ± 0.23 0.96 ± 0.02
SNV 0.84 ± 0.19 0.44 ± 0.42 0.87 ± 0.14 0.97 ± 0.02 0.97 ± 0.05 0.90 ± 0.10 0.95 ± 0.09 0.96 ± 0.01 0.80 ± 0.22 0.45 ± 0.41 0.82 ± 0.18 0.96 ± 0.03

MedFilter 0.75 ± 0.30 0.41 ± 0.33 0.86 ± 0.10 0.92 ± 0.09 0.78 ± 0.17 0.83 ± 0.34 0.98 ± 0.03 0.99 ± 0.01 0.68 ± 0.39 0.40 ± 0.36 0.82 ± 0.12 0.91 ± 0.09

TT: Tumor Tissue; BT: Brain Tissue; BV: Blood Vessel; BG: Background.
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Figure 11. Tumor class probability maps in three different patients (BP8C1, BP12C1, and BP20C1)
from the brain database. The red color indicates a high probability to correspond to the tumor class (1),
while the blue color indicates a low probability to correspond to the tumor class (0).

4. Discussion

This study reveals the importance of data preprocessing steps for tissue segmentation
purposes in the medical HSI field. Depending on the type of HS camera and the different
tissue type to be evaluated, it is necessary to carry out a preliminary study analyzing which
preprocessing technique is the most suitable in each case. In the case of the colon and
esophagus databases, the HS data were captured by the TIVITA® Tissue system, while the
brain database was captured by the HELICoiD demonstrator.

For the colon database, all the models were statistically significant (p = 0.003 for
Calibrated and Filtered, p = 0.007 for Min-Max and SNV, and p = 0.04 for MedFilter),
indicating in this case that the type of model employed has no relevance. However, the
optimal combination of preprocessing and classification model was, for both quantitative
and qualitative results, the MedFilter 3DCNN model, achieving an F1-Score of 0.52 for
the tumor class. Additionally, the MedFilter clearly also improved the performance of the
SVM. For the esophagogastric database, only Filtered models have a significant statistical
difference, p = 0.005. The SVM models provided the best quantitative and qualitative
results with respect to tumor tissue. F1-Scores of 0.58 for the identification of the tumor class
were obtained with Min-Max and MedFilter preprocessing. The performance of the 3DCNN
models for tumor detection was higher with the calibrated preprocessing, with an F1-Score
of 0.53. The rest of the models showed a lower performance, with a tumor class F1-Score
of 0.45. However, the best results for the MCC metric were obtained with the Calibrated
3DCNN model. This was confirmed by the qualitative results. For the brain database, no
significant statistical difference was obtained, and it was more difficult to select the best
preprocessing method. The SVM model provided the best results for tumor classification
with F1-Scores of 0.82 and 0.80 for Filtered and Min-Max preprocessing, respectively. This
fact was confirmed by the visualization of the classification and probability maps. The
3DCNN model achieved an F1-Score of 0.52 with respect to the tumor class. Filtered and
Min-Max preprocessing tended to improve the performances of the SVM and 3DCNN
classification models, respectively.

It was observed in this study that only by performing the filtered step to standardize
the illumination conditions could similar values to the best results obtained be achieved.
Furthermore, with respect to the two-tailed paired t-test, it was observed that the best
p-values were obtained by Filtered preprocessing in each of the databases (p = 0.003,
p = 0.005, and p = 0.18). However, due to the classification models, saturation can occur
when there are values greater than 1 or −1. Regarding the different kinds of preprocessing,
it is necessary to highlight how each method can affect the spectral features and the
subsequent classification. First, it can be observed that Min-Max is greatly affected by the
extreme values (minimum and maximum values). SNV reduces the variations between the
absolute reflectance values, enabling us to compare HS data of different patients acquired
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under different external conditions. However, SNV can smooth sharp spectral features,
which can reduce the classification performance if those spectral features were relevant.
The same also applies when the median filter is performed, as it tends to smooth out the
values that have a large difference from their neighbors, distorting the data.

Different conclusions can be deduced based on this study: first, it is necessary to carry
out a preliminary study analyzing which preprocessing technique is the most suitable,
depending on the type of HS camera and the different tissues to be evaluated. This can be
observed with patient BP20C1 of the brain database. Previous segmentation performed
without preprocessing steps led to the non-identification of the tumor area using ML tech-
niques [23,25]. Second, statistical results show that the results are worse when more than
two classes are taken into account. Third, the probability and classification maps showed
that the annotated tumor tissue was in general correctly identified by the two-classification
model tested. On the other hand, these maps also show a remarkable number of false
positives. This may be due to several reasons. One reason could be the spatial resolution of
the data. Since the classification is performed pixel-wise, having a small pixel size (high
resolution sensor) assumes that one pixel includes only one type of tissue. In low spatial
resolution data, one pixel may include information from several tissues. The spectral
signature of the pixel is the combination of the spectral signatures of the different tissue
types, which may result in worsen classification results. In such a situation, spectral unmix-
ing methods are more suitable to extract the different tissues represented in a pixel [42].
However, how the spatial resolution is affecting the quality of the classification should be
further investigated in the future. Another reason is that the colon and esophagogastric
databases are composed of ex vivo tissues. This can explain the lower performance in
comparison to the results obtained with the brain database, which includes in vivo tissues.
The tissue has been exposed to chemo- and radiotherapy, altering the tissue composition in
the colon and esophagogastric databases. This leads to large inter-patient variabilities. A
further reason is the limited number of available patients in the study. Training the models
on larger datasets should increase the classification performance.

5. Conclusions

HSI has proved to be a promising technology for identifying cancerous tissue. In this
paper, the importance of carrying out an evaluation of different preprocessing techniques
is highlighted, looking for the most appropriate one depending on the target application.
As has been shown, this can vary depending on the type of tissue to be studied and the
HS instrumentation employed. In this study, Min-Max scaling was shown to be one of the
preprocessing steps which provides the best performance results.

Future work will be carried out on an increasing the number of patients and classes,
in order to evaluate the ML and DL models with more robustness. The possibility of using
animal tissue has also been raised, increasing the number of subjects, and thus allowing
the validation of the proposed models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s22228917/s1, Figure S1. Classification map results of each
model, for each patient in the colon database. Green color indicates colon, red color represents tumor
tissue, and yellow represent the marginal area. Figure S2. Tumor class probability map results for
each patient in the colon database. Figure S3. Classification map results of each model, for each
patient in the esophagogastric database. Green color indicates healthy esophagus tissue, red color
represents tumor tissue, pink color identifies healthy stomach tissue, and yellow represents the
marginal area. Figure S4. Tumor class probability map results for each patient in the esophagogastric
database. Figure S5. Classification map results of each model, for each patient in the brain database.
Green color indicates healthy brain tissue, red color represents tumor tissue, blue color identifies the
blood vessels, and black represents the background. Figure S6. Tumor class probability map results
for each patient in the brain database.
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