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Abstract

In the process of converting food-

processing by-products to value-added

ingredients, fine grained control of the raw

materials, enzymes and process conditions

ensures the best possible yield and eco-

nomic return. However, when raw mate-

rial batches lack good characterization and

contain high batch variation, online or at-line monitoring of the enzymatic reac-

tions would be beneficial. We investigate the potential of deep neural networks in

predicting the future state of enzymatic hydrolysis as described by Fourier-trans-

form infrared spectra of the hydrolysates. Combined with predictions of average

molecular weight, this provides a flexible and transparent tool for process moni-

toring and control, enabling proactive adaption of process parameters.
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1 | INTRODUCTION

Biotechnological solutions like fermentation and enzy-
matic protein hydrolysis (EPH) are recognized as essen-
tial tools in sustainable utilization of biomass, like the
production of revenue streams from food processing by-
products. In EPH, food grade proteases are used to digest
protein-based biomasses, and this technology has
attracted huge interest as a feasible tool for recovery of
value-added ingredients from food-processing by-prod-
ucts [1]. Due to the high degree of variability of raw
materials subjected to EPH, the need for a process moni-
toring and control tool is eminent in order to produce
products with specific properties over time. Analytical

measurements at critical points in the process are essen-
tial elements in controlling and optimizing a given bio-
technological process. In this respect, the combined use
of rapid spectroscopic measurements and data analytical
methods is therefore particularly attractive.

The use of Fourier-transform infrared spectroscopy
(FTIR) for bioprocess monitoring is currently gaining
considerable attention. One of the intriguing research
fields that builds on the extensive research related to
FTIR and protein structure is the application of FTIR for
probing protein modifications induced by enzymes, for
example, in EPH. In one of the first FTIR studies to be
reported on the monitoring of EPH Ruckebusch [2] and co-
workers followed the degradation of bovine haemoglobin
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by collecting transmission infrared spectra throughout the
hydrolysis reaction. More recent studies have shown that
FTIR spectroscopy can be used to follow the EPH process
and thus the enzymatic degradation of proteins both quali-
tatively and quantitatively by predicting average molecular
weights (AMW) as well as the degree of hydrolysis (DH),
which are two well established process parameters ([3–7]).
The rationale behind using FTIR spectroscopy to monitor
the EPH process is as follows: When the peptide bond is
hydrolysed during EPH, the result is an increasing number
of C-terminal carboxylate (COO-) and N-terminal amino
(NH3+) groups. This information is readily available in the
FTIR spectra. In addition to the intrinsic changes in the pri-
mary structure, the general shortening of the protein chain
also affects the secondary structure, which in turn also sig-
nificantly affects the FTIR spectral fingerprints [4].

High-resolution spectroscopic tools like FTIR spec-
troscopy are most often used for high-throughput screen-
ing of products off-line (i.e. not directly in a process).
Thus, in process control terms, this means that measure-
ments are made after the process has taken place, and
this information is then used to adjust processing param-
eters (i.e. the feed-backwards-scheme). The disadvantage
of this approach is that control action can only be taken
late, that is, a lot of product that is off-specification can
be produced before any potential action is taken in the
process. With rapid online FTIR analysers becoming
available, so-called feed-forward control is starting to
become a viable alternative. In this approach, a
predefined model decides settings of the controllable pro-
cess parameters, using measured raw material character-
istics or early process data as input. This approach has
been explored in a range of different studies, also related
to EPH, for example, Wubshet et al. [8]. However, char-
acterization of the future product, which steers the deci-
sions of the feed-forward controller, is then often reduced
to a single feature, and not to the entire information that
can be provided by for instance an FTIR spectrum. Argu-
ably, better control strategies could be reached with
richer chemical characteristics. Motivated by feed-for-
ward control of EPH, we are therefore in this study inter-
ested in models predicting FTIR spectra at arbitrary
future time points based on a limited number of spectra
from the initial stages of the process. To this end we wish
to employ deep neural networks.

Deep neural networks (DNNs) have recently made
significant contributions to a number of research prob-
lems and fields such as image classification [9], optimal
control [10], weather prediction [11] and protein folding
[12]. A particular class of DNNs relevant in the present
study are encoder–decoder networks, which, broadly
speaking, compute their output by first embedding the
input into a (lower-dimensional) latent space. We note

that in the special case when the networks are trained to
reproduce their inputs, that is, approximate the identity
mapping, the encoder–decoder networks are referred to
as autoencoders (AE) [13, Ch 14]. Autoencoders,
encoder–decoder networks and DNNs have also been
widely applied in the context of bio-reactor monitoring,
modelling and process control. For process monitoring,
Jo et al. [14] and Jinadasa et al. [15] apply AE for feature/
signal extraction in near-infrared and Raman spectros-
copy. In several recent papers [16, 17] AEs and/or
encoder–decoder networks [18, 19] are used for denoising
and scattering removal in FTIR spectra or to obtain clas-
sifiers for spectral histopathology, for example, Raulf
et al. [19]. In particular, the networks presented in Raulf
et al.'s papers [18, 19] are obtained by fine-tuning the
encoder–decoder models, where the encoders (architec-
ture and initial parameters) originate from an
autoencoder obtained in a pre-training step. That is, the
pre-training provides an initial guess for embedding of
the raw spectra suitable for a given problem (specified by
the decoder), for example, regression [18] or classification
[19]. Using pure data-driven approaches Mete et al. [20]
construct surrogate models of bioreactors. Further,
models based on simulations [21] (utilizing potentially
expensive-to-solve models described by partial differen-
tial equations) or on hybrid approaches [22] combining
simulations with measurements data have been devel-
oped. Finally, with the surrogate models available, opti-
mal controllers are designed as DNNs [23, 24] trained by
reinforcement learning, for example, Mnih et al. [25] and
references therein.

Here we are interested in employing the encoder–
decoder architecture for continuous-in-time inference of
the FTIR spectra based on (a small number of) discrete
spectra from the early stages of EPH.

The main aim of the present study was the combined
use of FTIR spectra and DNNs to predict the potential
outcome of an EPH process. One choice to be made when
modelling in the feed-forward framework would be to
either predict FTIR spectra at a future time point, given
one or more spectra in an early phase of hydrolysis, or to
directly predict future characteristics, such as AMW. In
the current study, the former approach, that is, predicting
future spectra, is used, as it has the benefit of providing a
(feature)-rich and flexible view into the future. The
generic approach of the study is illustrated in Figure 1,
where a convolutional encoder–decoder network is used
in order to predict the future spectra (i.e. the FTIR-to-
FTIR mappings/models are represented as DNNs). With
the process control application in mind, the spectral
models we wish to construct should be capable of
predicting the spectra at arbitrary future time points so
that fine-grained (in time) control of the process can be
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potentially achieved. Convolutional AEs allowing for such
continuous-in-time inference have been proposed, for
example, by Vukoti�c et al. [26] who address the task of
future video frame prediction. Specifically, their networks
take as input the image at time t and an arbitrary offset*
δt > 0 while the frame at t + δt is the expected output. As
commented by Vukoti�c et al., a discrete inference is more
common, where δt is implicit and effectively fixed by the
equispaced training data. We note that in the context of
EPH, acquiring the equispaced data set is costly since early
into the process small time steps (�1 min) are required to
capture accurately the dynamics while at later stages large
steps (�10 min) are sufficient. Thus, we argue that the
continuous inference is more natural.

2 | METHODOLOGY

2.1 | FTIR encoder–decoder networks

In order to define our FTIR models, let ηti∈R
n be a vector

representing the FTIR spectrum at time ti. We recall that
a canonical autoencoder is a mapping N :Rn !Rn such

that
���ηti �N ηti

� ���� is small and having a particular struc-

ture N = D ∘ E where E :Rn !Rl and D :Rl !Rn. Here,
E is the encoder(compression) network which takes the
input into a latent space (typically l � n) while the
decoder network D reconstructs the original input from
the compressed representation. In the following the
(reconstruction) norm is taken as the average l2 norm,

that is,
���e���¼ 1

n

P
i
eij j2

 !1=2

.

To allow for the continuous-in-time inference of the
FTIR spectra we follow Vukoti�c et al. [26] and introduce

extra input variables (to be made more precise later) to
the encoder part of the encoder–decoder network. To this
end, let ηtj be the spectrum at time tj > ti and ϵi,j∈Rm be
the additional inputs representing, for example, the
offset/temporal distance tj � ti. We then wish to find
N = D ∘ E which minimizes

���ηtj �D E ηti ,ϵi,j
� �� ���� over the

given input–output spectra.
In the following we will consider two different

choices of the variables ϵi,j∈Rm leading to two different
FTIR-to-FTIR models represented by encoder–decoder
networks with different architectures. For the first archi-
tecture we set m = 1 and let the extra input be the offset
time tj � t0 = δt > 0 between the fixed time t0 at which
the input spectrum ηt0 is taken and the inference time tj
(to be varied) at which the spectrum ηtj is predicted. That
is, the network attempts to predict the rest of the reaction
from only one single state ηt0 , where t0 may be both early
and late in the process. For this reason we will further
speak of single input time networks and denote the map-
ping as St0 to highlight the dependence of the network on
the input time t0. We remark that different t0 yield differ-
ent networks. Moreover, since only positive offsets are
assumed the inference time for models with larger value
of t0 is shortened since we assume that all the EPH reac-
tions (more precisely, our measurements of the process)
have a fixed terminal time. In turn the dataset that can
be used for training is shrunk for t0 further away from
the initial time of the reaction. At the same time, infer-
ence at t > t0 then concerns only the later stages of the
hydrolysis with possibly less dynamics (as reflected by
the coarser measurement sampling in time).

A disadvantage of the St0 networks is that they do not
utilize the spectra ηt for t < t0. Indeed, the idea of predic-
tions based on histories (as given, e.g., by batched
sequences of reaction states) has already been proven
useful in bioreactor modelling [27]. In the context of

FIGURE 1 Process and quality monitoring of EPH. State of the reaction at time ti, i¼ 0,1,… is described by FTIR spectra. In turn, the

product quality, here AMW, at time ti can be obtained from the spectra by a dedicated model. Predictions of future product quality are

accomplished by combining the AMWmodel with an encoder–decoder network predicting spectra at t > ti based on the input spectra at time ti

KUCHTA ET AL. 3 of 18



encoder–decoder networks, predictions based on batched
spectra can be realized in several ways. For example, the
inputs to the convolutional encoder could be a matrix
with entries formed by a fixed number of past spectra ηtj ,
tj ≤ tc. While simple to implement using standard layers,
a disadvantage of this approach lies in the fixed input
size. In particular, for tc close to the onset the spectra
might be too few to form the input thus restricting which
cut-off time could be used. On the other hand, only part
of the available history of the spectra is used when tc is
large. To enable variable-sized inputs, fully convolutional
networks [28] or pyramid pooling layers [29] could be
used. However, it is not evident how these approaches
should be combined with temporal information about
the spectra, which is needed especially if the spectral
measurements are not equispaced. Here we therefore
propose a simple network type, further referred to as
many input time models, which maps the input time t,
spectrum ηt and the offset δt to ηt+δt. This construction is
rooted in the idea that by learning to predict the same
spectra from different inputs, and especially times, the
network can learn the dynamics between the inputs lead-
ing to more robust inference. We remark that for our
many inputs model, the additional input space has
dimension m = 2.

In the following we will restrict the input time such
that t ≤ tc for some cut-off-time tc. Similarly to t0 in St0
networks, the choice here is motivated by application in
optimal control of EPH where we wish to predict the tra-
jectory of the reaction based on the inputs close to its
start. The many input networks which differ by the cut-
off-time will be denoted as Mtc . We note that a network
Mtc can predict the spectrum at some time t in a number
of ways, reflecting the consistency property ηt ¼ ηtkþδtk for
any input time and offset such that tk + δtk = t, tk < tc.

We construct both St0 , Mtc as convolutional encoder–
decoder networks where, following Vukoti�c et al. [26], in
the encoding part the temporal variables are evolved
(through dense layers) in branches independent of the
input spectra. The encoding of the spectra is provided by
convolutional layers while deconvolutional (transpose-
convolutional) layers are used in the decoder. It is only in
the decoder network that the time and the spectrum,
which have both been embedded in their respective
latent spaces, are combined and decoded together to yield
the final inferred spectrum. We detail the networks'
architectures in Figure 2. We note that for Mtc the bra-
nches of time variables t and δt are combined before
concatenating with the spectral branch (represented by
an orange arrow in the figure). Furthermore, to prevent
overfitting, the temporal branches in Mtc use dropout
layers [30]. Finally, we remark that the architectures of
St0 and Mtc , in particular the layer sizes, are chosen as

independent of t0 and tc respectively. Thus all St0 and Mtc

networks are optimized through 12198 and 12484 train-
able parameters, respectively.

2.2 | FTIR dataset

The FTIR data are based on a recently published study
[4] where 11 protein-rich food processing materials:
chicken mechanical deboning residue (CR), heat treated
chicken mechanical deboning residue (HC), chicken skin
(CS), chicken bone (CB), turkey carcasses (TC), turkey
mechanical deboning residue (TR), chicken muscle
(CM), salmon heads (SH), salmon bone (SB), salmon skin
(SS) and mackerel (Ma) were hydrolysed by a selection of
five commercially available enzymes: Alcalase (A),
Papain (Pa), Protamex (Pr), Flavourzyme (F) and Cor-
rolase (C), in addition to natural enzymes present in the
raw materials (autolysis). A total of 28 different sub-
strate–enzyme combinations were performed in the
study, and FTIR spectra were obtained at different
timepoints for all hydrolysis reactions, including {0.5, 2.5,
5, 7.5, 10, 15, 20, 30, 40, 50, 60, 80}min since onset of the
reaction. Not all reactions were sampled for all substrate–

FIGURE 2 Architecture of convolutional encoder–decoder
models for predicting future FTIR spectra. (Top) Single input time

network. (Bottom) Many input time network. The architectures are

chosen to be independent from t0 and tc. Convolutional and

deconvolutional layers are represented in orange and blue colours

where the first subscript denotes the number of filters and the

second (rotated) subscript is the filter size. The red colour

represents a dense layer. By blue arrows we denote a connection

through a dropout layer (dropout probability 0.3-0.5 was used)

while the orange arrows highlight the concatenation of the

temporal branch with the (compressed) spectrum. All layers except

the last are activated by rectified linear units (ReLU(x) = max(0, x)).

Both network types have approximately 12 thousand weights
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enzyme combinations. This resulted in a total of 885
FTIR spectra, as shown in Table 1.

The proposed networks will be trained to map between
spectra from the FTIR dataset which are represented as
real-valued vectors of size n = 571. To compensate for
physical effects such as light scattering affecting the spec-
tra, pre-processing is performed using Savitzky-Golay [31]
filtering (with third-order polynomials, second-order deriv-
atives and a local window size of 11) followed by Extended
Multiplicative Signal Correction [32] (with quadratic base-
line). The spectra are cut to the region 1800–700 cm�1

before modelling. For each of the 28 hydrolyses the set
contains at most 12 sets of spectra which correspond to
measurements at the different time points.

We note that neither of the networks St0 , Mtc take as
the input the encoding of the substrate or the enzyme.
This network design choice is in contrast to the FTIR-to-
AMW model presented in [4] where different regression
models were used to predict AMW after an initial classifi-
cation of the input substrate type. The reason why the
two-step/hierarchical approach was need, was that the
linear models used could not disentangle the variation
due to substrate–enzyme and degree of hydrolysis. Such a
hierarchical approach is challenging in our setting due to
scarcity of data for some of the substrates. Moreover,
explicit representation of substrate–enzyme can consider-
ably increase the size of the input space and thus poten-
tially the number of training parameters. This is in
particular the case for the one-hot vector encoding used
to code categorical inputs into binary format. However,
the results of Måge et al. [33] suggest that FTIR spectra
can be used to predict material composition (substrate) as
well as processing factors (such as enzyme types). The
observation is well aligned with our preliminary experi-
ments where addition of one-hot encoded enzyme types
did not translate to greater accuracy of the models.
Finally, the inherent non-linearity means that the

networks can learn these complex information mixtures
with quite high precision without further aids. They also
have the potential to be more robust and generalizable,
since they are not dependent on knowing the substrate–
enzyme combination at the time of prediction.

2.3 | Training set and training process

The training set used to optimize the FTIR networks is
based on the FTIR dataset described in the previous sec-
tion. However, we omit several measured reactions for
testing purposes and augment the training set by ‘synthe-
sized’ hydrolyses in order to increase robustness of the
models (explained below).

To test generalization capabilities of the trained
networks we leave out one hydrolysis of the CM-A and

TABLE 1 Composition of the FTIR

dataset. For a given row (substrate type)

and column (enzyme type) the numbers

in the brackets count respectively the

hydrolysis reactions and the FTIR

spectra. Coloured pairs show the

reactions left out for validation: either

one reaction (orange) or all reactions

(red) were removed. Absence of

experimental data for the given pair is

indicated by –

Subenz A Pa Pr F C Autolysis

CB (1, 12) (1, 12) (1, 12) (–, –) (–, –) (–, –)

CM (8, 87) (2, 23) (1, 12) (–, –) (–, –) (–, –)

CR (8, 89) (2, 24) (3, 36) (–, –) (–, –) (–, –)

CS (2, 22) (2, 24) (1, 12) (–, –) (–, –) (–, –)

TR (2, 24) (–, –) (–, –) (2, 24) (2, 24) (–, –)

Ma (1, 12) (1, 11) (–, –) (1, 12) (–, –) (1, 12)

SB (1, 11) (–, –) (–, –) (–, –) (–, –) (–, –)

SH (12, 130) (–, –) (–, –) (–, –) (–, –) (–, –)

SS (12, 132) (–, –) (–, –) (–, –) (–, –) (–, –)

TC (2, 22) (–, –) (–, –) (2, 23) (2, 24) (–, –)

HC (2, 23) (2, 24) (1, 12) (–, –) (–, –) (–, –)

FIGURE 3 Variations in spectral measurements. The mean

(solid red line) spectra η7:5 at time t = 7.5 min from eight

hydrolyses of CM-A pair. Shaded regions denote values three

standard deviations away from the mean. Standard deviation itself

is plotted in black against the right axis. Large variations near 1100

cm�1 and 1700 cm�1 can be seen
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SS-A data, which can be seen to be among the most
frequent reactions in their respective groups (poultry
and fish), see Table 1. With this choice we aim to see
if the networks can generalize to new spectra drawn
from a seen distribution. In addition, all hydrolyses
with the Flavourzyme (F) enzyme and mackerel hydro-
lysis without a specific enzyme (Ma) were removed in
order to test generalization to unseen enzymes. In
summary, the dataset of measured reactions available
for training has been reduced to 70 reactions counting
792 spectra.

The extended FTIR dataset used for training the
encoder–decoder networks augments the measured
hydrolyses with input–output pairs obtained by combin-
ing data from the different experiments available for most
of the substrate–enzyme pairs in the original dataset. We
remark that the aim of the data augmentation is to
increase the robustness of the networks to raw material
variation and measurement noise. The variability of spec-
tra from different realizations of EPH with fixed sub-
strate–enzyme pair is illustrated in Figure 3. Here, with
CM-A, large standard deviations between the reactions
can be seen for wavenumbers close to 1100 cm�1 and
1700 cm�1. We remark that this localization is common
to most pairs/reactants.

We will next describe the extended training set for St0
networks; for Mtc networks the process is simply repeated
for each t0 ≤ tc and the resulting datasets are merged. To
this end, let us fix the input time t0. Then, for a sub-
strate–enzyme pair the FTIR dataset contains 1 ≤ k ≤
k(substrate,enzyme) measured input spectra, and for each k
the set of spectra at time t > t0 represents the target out-
puts. As an example, Table 1 gives seven possible input
spectra† for CM-A hydrolysis. If the reactions were per-
formed under identical external conditions, one can
assume that the differences in spectra, see Figure 3, are
primarily due to raw material variation and measure-
ment error. In turn, new input–output pairs can be con-
structed by combining inputs from one reaction with the
outputs from the remaining ones. We use approximately
80% of the available combinations in order to augment
the measured data and thus finally form the training set
for the St0 network. Note that the size of the training set
depends on the input time t0 with larger times leading to
less data.

In order to train the network, the spectra in the
extended datasets are normalized to have unit standard
deviation while we normalize the temporal variables to
lie roughly in the unit interval.‡ The networks are then
trained to minimize the mean squared error using 5000
epochs of the ADAM optimizer with randomized mini-
batches of size 40 for St0 and 64 for Mtc . For both network
types the weights were initialized by Xavier Glorot

initialization [34]. During optimization, 20% of the train-
ing dataset is used for calculating validation error, and
the learning rate is kept constant at 10�3. Let us remark
that the loss functions of the St0 , Mtc networks are identi-
cal. In particular, we do not enforce the consistency prop-
erty Mtc ti,ηi,δtið Þ≈Mtc tj,ηj,δtj

� �
for ti, tj ≤ tc and

ti + δi = T = tj + δj, see Section 2.1.

3 | SINGLE INPUT TIME
NETWORKS

In the following we will discuss performance of networks
St0 for input times t0 = 0.5, 2.5, 5.0 min. The prediction
error at time t will be defined as Mean Squared Error:
MSEt ¼ 1

n
1
p

PP
ηt� bηtð Þ2 and Root Mean Squared Error:

RMSEt ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSEt

p
. The overall error across all times t for

which inference can be performed is then MSE¼
1
T

1
n
1
p

PP
ηt� bηtð Þ2 and Root Mean Squared Error:

RMSE¼ ffiffiffiffiffiffiffiffiffiffi
MSE

p
where T is the number of valid predic-

tion times (which depends on t0 and tc). Finally, for the
individual spectra we will also discuss the absolute error:
max j ηt� bηt j. Here, all the error measures have the unit
d2Absorbance

d cmð Þ2 , which we omit in the text in order to simplify
the notation.

For each t0 we have trained five networks which dif-
fer by the random seed value in the networks' weight ini-
tialization. Due to the low number of samples and high
heterogeneity in the raw materials, some variation in pre-
diction results of the models that are refitted is to be
expected. The average standard deviation in predictions
caused by varying the random seed ranged from 0.01 to
0.015. Based on the limited data available for this study,
this is a low enough instability to be acceptable for practi-
cal usage. In the remainder of the article we will there-
fore for simplicity report results for a fixed choice of
the seed.

Convergence of the training process for St0 networks
is summarized in Figure A1 (see Appendix 7). At the final
epoch the networks achieve similar accuracy on the
training set while on the validation set the error of S0.5 is
slightly higher; MSE0.5 = 0.016 to be contrasted with
MSE2.5 = 0.013 and MSE5.0 = 0.011. However, we recall
that higher t0 means that inference (at times t > t0)
avoids the initial stages of the reaction where most
dynamics are expected. In this sense the learning prob-
lem is potentially simpler which could explain the obser-
vation that both in training and validation the errors
MSE5.0 <MSE2.5 <MSE0.5. Another potential reason is
the fact that for large t0 the temporal distance between
input and output spectra is shorter.

To further analyse performance of the networks, Sec-
tion 3.1 considers the accuracy on the original FTIR
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dataset. That is, the networks will be evaluated using
only the measured hydrolyses. Section 3.2 then addresses
generalization of the networks as the analysis therein
concerns the set withheld from training, see Table 1. We
remark that the training data was obtained as random
subset of combined reactions from the FTIR set. Thus it
is possible that the exact measured sequence of spectra
(a concrete measured hydrolysis) was not seen during
training.

3.1 | Performance on FTIR dataset

To dissect the inference errors of the single input net-
works we choose to consider at first St0 with t0 = 0.5 min
since this network is the least accurate in the training
metrics, see Figure A1.

Analysis of St0¼0:5

Fixing inference time at t = 10 min, Figure 4 shows the
network error for CM-A reactions. We note that for this
substrate–enzyme pair there are seven reactions, that is,
seven input (and target) spectra are available for St0 . Pick-
ing one of the reactions, it can be observed that the net-
work's absolute error is approximately 0.5 ( which
translates to relative error of approximately 12%) and the
error is largely localized in the spectral range (1600,
1650) cm�1, see also Figure A2 in Appendix A. However,
the measured target spectra show large variance for these
wavenumbers as can be seen in the bottom pane of Fig-
ure 4. Indeed, if the targets are averaged and compared
with the mean prediction obtained by averaging network
outputs for all the 7 measured input spectra the error
drops to 0.1 (or relative error of 3%) and is rather
delocalized, see also Figure A2. This suggests that the
network does not overfit to the individual reactions but
instead learns certain ‘averaged’ reactions. The claim can
be further supported by the fact that the averaged predic-
tions have a smaller standard deviation, 0.35, compared
to the averaged standard deviation of 3.23 for the data at
t = 10 min or the averaged standard deviation of the
input values 0.96.

We next keep the inference time fixed at 10 min and
vary the substrate–enzyme pairs. The results are summa-
rized in Table A.1. It can be seen that the low/high pre-
diction errors seem to correlate well with the number of
hydrolysis experiments performed for the given combina-
tions. For example, for CB-Pr and CB-Pa errors as large
as 0.27 and 0.40 are observed and for these reactions we
have only one experiment available, see Table 1. We
remark that Table A.1 (as well as Tables 2, 3) do not
include reactions for Ma or with the Flavourzyme

enzyme since these pairs were removed from the training
set for validation purposes, see Section 2.3.

To continue our dissection of the network prediction
error, let us now fix the substrate–enzyme pair and vary
the inference time. In Figure 5 we summarize the results
for the CM-A combination. Similar to the stationary case
we see that the error of a single reaction is larger than
when the averages are compared. As in the stationary
case, the error based on the single reaction is localized
(close to the amide1 band) especially in the early stages
of the reaction. For ti = 2.5 min errors close to 0.9 can be
seen. On the other hand, the error in averaged predic-
tions seems to be rather constant in time and largely
delocalized in the wavenumber space. In particular, the
error in the amide1 band is approximately 0.1. Interest-
ingly, the averaging had very little effect on the

FIGURE 4 Prediction errors of single input network with time

t0 = 0.5 min. The inference time and substrate–enzyme pair are

fixed at t = 10 min and CM-A. (Top) Prediction using one of seven

available inputs. (Bottom) Mean prediction obtained as average of

all seven measured input spectra. Shaded region shows values

3 standard deviations away from the mean
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prediction error for wavenumbers close to 1425 cm�1. In
Table 2 we finally show the global prediction error of the
S0.5 network. The results are largely consistent with the
errors at early inference time t = 10 min, see Table A.1.
This observation again confirms the expectation that the
error is localized in time close to the onset of the
reaction.

Comparison across input times

In order to discuss the role of the input time t0 we will
compare performance of the different single input net-
works St0 , where t0 = 0.5, 2.5, 5 min. We recall that the
networks differ by their inference times, ti > t0 and there-
fore direct comparison requires predicting spectra at
times that are common to all St0 , here t > 5 min.

Before the direct comparison we list in Table 3 the
global prediction errors (similar to Table 2) of the new
networks. Here the errors are computed on the maxi-
mum inferable part of the FTIR dataset, that is, S2.5 will,
in addition to all of the S5 target spectra, predict also
those corresponding to t = 5 min. In terms of the number
of spectra, S5 is evaluated on 585 samples while S2.5 uses
683. Interestingly, we observe that the error of S2.5 (on a
larger dataset) is typically smaller than for S5. In fact, of
the 24 substrate–enzyme pairs S5 is more accurate for
HC-{A, Pa, Pr} in addition to Ma-A, SS-A, CM-A, CB-Pa
and CS-Pr where it is only in the HC reactions where the
difference is significant, for example, for HC-A the errors
with S2.5 and S5 are respectively 0.25 and 0.25. At the
same time, comparing with Table 2, the S5 on average
yields smaller errors than S0.5. These observations suggest
that there might be an optimal input time t0 in terms of
the accuracy of single-input networks.

We investigate the suggested optimality of
t0 = 2.5 min further in Figure 6. Therein the accuracy of
predictions is measured using the common part of the
training FTIR dataset corresponding to reaction times
greater than 5 min. Then the errors achieved by the net-
works are 0.159, 0.141 and 0.137 for S0.5, S2.5 and S5.0
respectively. However, as in the previous comparison,
S2.5 is most accurate in most reactions. In fact, we observe
that S2.5 is outperformed by S5 only for Ma-A, SS-A, CB-
Pa (where the differences between the networks' accu-
racy are small) and systematically in the hydrolyses of
HC substrate. With the latter reactions removed, the per-
formance of all networks improves to RMSE = 0.153,
0.132 and 0.133.

Performance on the validation set

We next evaluate the ability of trained single-input net-
works to generalize to data unseen during training. Simi-
lar to the training set performance, we will first consider
a fixed input time t0 and address accuracy for a given
inference time or material. Here S2.5 is considered since it
showed highest accuracy on most reactions in the train-
ing set. Comparison of the networks is presented at the
end of the section.

Analysis of St0¼2:5

We recall that the validation set consists of reaction spec-
tra from one or more hydrolysis using the substrate–
enzyme pairs CM-A, SS-A, TC-F, TR-F, MA-F and Ma.
Here the hydrolysis with Flavourzyme and mackerel

TABLE 2 Total prediction errors of single input network S0.5.

RMSE is reported based on all hydrolysis spectra of given

substrate–enzyme pairs

Subenz A Pa Pr C

CB 0.16 0.32 0.22 —

CM 0.13 0.10 0.17 —

CR 0.11 0.11 0.15 —

CS 0.14 0.14 0.14 —

TR 0.15 — — 0.12

Ma 0.15 0.18 — —

SB 0.11 — — —

SH 0.06 — — —

SS 0.06 — — —

TC 0.21 — — 0.19

HC 0.29 0.28 0.21 —

TABLE 3 Total prediction errors of single input networks S2.5
(blue) and S5 (green). The RMSE errors are computed based on all

inferable hydrolysis spectra (i.e. ηt for t > t0) of given substrate–
enzyme pairs

Subenz A Pa Pr C

CB 0.12, 0.13 0.21, 0.20 0.15, 0.16 —

CM 0.12, 0.11 0.09, 0.09 0.11, 0.15 —

CR 0.10, 0.11 0.09, 0.10 0.14, 0.15 —

CS 0.12, 0.13 0.12, 0.12 0.14, 0.13 —

TR 0.14, 0.15 — — 0.12, 0.12

Ma 0.14, 0.12 0.10, 0.13 — —

SB 0.09, 0.09 — — —

SH 0.06, 0.07 — — —

SS 0.06, 0.05 — — —

TC 0.16, 0.17 — — 0.17, 0.20

HC 0.25, 0.20 0.27, 0.18 0.33, 0.24 —
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were not seen in the training, both of which showing
substantially differences from the other FTIR spectra.

In Figure 7 we consider generalization of the network
to inputs from the CM-A and SS-A reactions, i.e., data
drawn from a distribution used in the training, see
Table 1. Comparing with Figure 5 we observe that the
error on unseen CM-A input is similarly localized to
wavenumbers close to 1600 cm�1 with large overshoots
in the spectra for inference times t < 30 min. However,
the error is almost twice as large compared to the spec-
trum drawn from the training set. On the other hand, for
SS-A the RMSE error does not exceed 0.06 for any of the
input times. We hypothesize these observations are due
to the choice of the training set for St0 which effectively
forces the network to predict averages of several

hydrolyses. For SS-A the unseen reaction is then captured
well-enough by the learned average.

Typical features of the generalization error of the sin-
gle-input networks with unseen reactants are illustrated
in Figure 8 where predictions for TC-F and Ma are
shown. For fixed inference time t = 10 min we observe
that the error is largely due to shifts between the spectra
(e.g. coo- band for TC-F, Ma or amide2 band for Ma) and
smoothing (e.g. amide2 TC-F). However, smoothing in
general does not appear to be associated with high fre-
quency oscillations in the spectra but rather with wave-
lengths and the spectral intensity. In particular, for Ma
small amplitude and high frequency features in the
amide1 are well resolved. On the other hand, for TC-F
the features that are smoothed/ignored by the network
have longer wavelengths but higher amplitudes. Con-
cerning predictions for different time points, we notice
that the errors are in general not localized in space as
was the case with the reactants seen during the training.
However, for SS-A and CM-A we see that the error does
not decrease for later stages of the reaction.

The generalization error is further analysed in Table 4
where the RMSE for the individual reactions are shown
as a function of time. Comparing with Table A.2 we con-
clude that the error for seen reactions is comparable to
those drawn from the training set. For SS-A the perfor-
mance is practically identical (RMSE � 0.05) for all time
points. In case of unseen CM-A spectra, the network gen-
eralizes well in later stages t > 20 min while the error is
large close to the onset (RMSE � 0.20 vs. RMSE � 0.10).
For the reactants that were not part of the training set we
notice that the error is large in particular for the turkey

FIGURE 5 Prediction errors for network S0.5 and the entire

hydrolysis process with CM-A pair. (Top) A single reaction is

compared with corresponding network predictions based on the

reaction spectrum at t0 = 5 min. (Bottom) Mean of the reactions is

compared with the averaged predictions from the possible inputs.

The mean concerns only sampling times which are common to all

reactions. Here, some reactions were missing data for t = 60 min.

The coloured stripes show the approximate spectral bands of

amide1 (1630, 1690) cm�1, amide2 (1530, 1590) cm�1, nh3 (1510,

1520) cm�1 and coo (1395, 1405) cm�1

FIGURE 6 Comparison of total accuracy of single-time input

networks St0 , t0 = 0.5, 2.5, 5 min on a common part of the FTIR

dataset. Spectra for t > 5 min are inferable for all the networks.

Network S2.5 is the most accurate
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substrate (RMSE � 0.6 while the largest error on the
training set was RMSE � 0.3).

We conclude the section by comparing the networks
S0.5, S2.5 and S5.0. Using target spectra common to all net-
works (t > 5 min), Table 5 reveals that the networks per-
form rather similarly on the seen substrate–enzyme pairs.
In case of the unseen reactants, there is a notable differ-
ence between mackerel and turkey substrate. With the

latter the accuracy of the networks improves for larger t0,
while with Ma reactions S0.5 can yield smaller error that
the other networks. We remark that on the training set
t0 = 0.5 min yielded consistently the least accurate pre-
dictions, see Figure 6.

4 | MANY-INPUT TIME
NETWORKS

In this section we discuss performance of the many-input
networks Mtc which aim to improve the accuracy of St0 .
Here cut-off times tc = 7.5, 15, 30 min will be considered.
We recall that the inputs to the network form a triplet
ηti , ti,δti
� �

where ti < tc is the time point corresponding to
input spectrum ηti and δti >0 is the temporal offset such
that t¼ tiþδti is the inference time; ηt ¼Mtc ηti , ti,δti

� �
.

Therefore, if tc0 < tc1 the network Mtc1
can predict ηt from

more inputs than Mtc0
and correspondingly, the size of

the training set of Mtc1
is larger. Convergence of the opti-

mizer for training Mtc networks is summarized in
Figure A1. All three networks§ achieve similar RMSE on
their respective training/validations sets, where Mtc¼30 is
slightly more accurate RMSEvalid = 7.12 � 10�3, RMSEtrain

= 9.14 � 10�3 (to be contrasted with RMSEvalid = 7.43 �
10�3, RMSEtrain = 9.78 � 10�3 for M15). We remark that,
unlike with single-input networks St0 , the inference time
for all Mtc networks here starts at t = 2.5 min.

In order to assess accuracy of Mtc we will next address
the issue of non-uniqueness of predictions by many-input
networks. Given network Mtc with tc > 0.5 min, observe
that using the measured input spectra the prediction at a
given time can be obtained in multiple ways. More pre-
cisely, let ti ≤ tc be possible input times, and for inference
time t, let δti such that t¼ tiþδti be the temporal offsets.
Note that by construction of the training process only
positive offsets δti >0 constitute a valid input to Mtc . For
any triplet ti,ηti ,δti

� �
the network Mtc then computes a

FIGURE 7 Generalization error of St0¼2:5 network to reactants

seen in the training. (top) CM-A and (bottom) SS-A

FIGURE 8 Generalization error of St0¼2:5 network to two of the reactants (left) TC-F and (right) Ma unseen during training. In each plot

comparison of instantaneous spectra at time t = 10 min is shown in the top panel (grey curves). The bottom panel compares predictions

with measured spectra at different times during the hydrolysis
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(possibly different) approximation ηt. This property of
many-input networks is illustrated in Figure A3 using
M15 as an example. Recalling that in the analysed FTIR
dataset the typical measurement time points are 0.5, 2.5,
5.0, 7.5, 10, 15, … min the network can thus predict ηt>15
from 6 different inputs. However, we observe that the
predictions are consistent in the sense that the they have
a well-defined mean.

Based on the observation in Figure A3 we will in the
following obtain a unique predicted spectrum based on
all measured admissible inputs using an averaged net-
work whose value at time t¼ tiþδti is given as

Mtc tð Þ¼meanδti >0,t¼tiþδti
Mtc ti,ηti ,δti
� �

: ð1Þ

Thus predictions at t > tc are computed based on all
input times ti ≤ tc, while predictions at earlier times use
fewer input spectra. We remark that different construc-
tions are possible in order to obtain the single spectrum,
for example, Mtc tð Þ≔Mtc minti ,ηti ,δti

� �
.

4.1 | Performance

We proceed to evaluate prediction errors of the many-
time input networks on the raw FTIR dataset similar to
St0 in Section 3.1. For the sake of brevity the cut-off time
will be fixed as tc = 15 min and we consider the error of
the averaged output M15.

Broken down by substrate–enzyme pairs, Table 6
shows the RMSE error computed from spectra at t
≥ 5 min and all the reactions of a given pair. This
set allows for a direct comparison with performance of
S0.5 (see Table 2); with S0.5 the overall RMSE error is
0.137 while M15 yields RMSE = 0.129. Comparing the
individual reactions we observe that the many-input

network is more accurate for hydrolyses with Ma, HC
and TC substrates for which at most two set of measured
spectra were available. We recall that, having approxi-
mately 2% more degrees of freedom, the Mtc networks are
slightly larger than St0 . However, the size difference is
small and thus the improved accuracy is not likely to be
due to overfitting.

We compare the accuracy of the different many-input
networks in Figure 9. Similar to St0 , the larger cut-off
times lead to greater accuracy; the observed RMSE errors
for Mtc , tc = 7.5, 15, 30 min are 0.126, 0.129 and 0.113
respectively. Each of the networks is then more accurate
than the most performant single-input network S5
(RMSE = 0.137). In agreement with Table 6, the
improvements of Mtc can be traced to the reactions with
turkey substrates. We recall that the three networks are
identical in their architectures but greater tc yields larger
sets used for training.

Taking M30 as the most accurate of the many-time
input networks we finally consider the generalization
error. For the six reactions withheld during training, the
RMSE evolution over time is listed in Table 7. Comparing
with St0¼2:5 shown in Table 4 the two networks perform
similarly in general. In particular, for TC-F, Ma and SS-A
hydrolyses the relative difference between the networks'
prediction is below 10%. The largest difference appears
for Flavourzyme hydrolyses of TR where the many-input
RMSE = 0.75 and the single-input RMSE = 0.63, and the
error of M30 is consistently large(r) for all the time points.

5 | PREDICTING FUTURE AMW

Having demonstrated the abilities of encoder–decoder
models to predict the FTIR fingerprint of EPH, we will
now consider applying the networks in modelling the
future product quality characteristics. To this end we will

TABLE 4 Generalization (RMSE) error of St0¼2:5 network to reactants unseen during training

Time (min) CM-A TR-F TC-F Ma-F Ma SS-A

5 0.27 0.73 0.73 0.22 0.33 0.05

7.5 0.22 0.67 0.70 0.23 0.32 0.05

10 0.20 0.62 0.70 0.23 0.31 0.04

15 0.16 0.53 — 0.24 0.33 0.04

20 0.12 0.50 0.58 0.24 0.34 0.06

30 0.11 0.53 0.59 0.27 0.37 0.03

40 0.09 0.62 0.59 0.28 0.40 0.04

50 0.09 0.67 0.64 0.32 0.41 0.04

60 0.09 0.69 0.68 0.34 0.41 0.05

80 — 0.71 0.75 0.39 0.42 —
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use the average molecular weight (AMW) and utilize the
hierarchical model of Kristoffersen et al. [4], which uses
spectra together with categorical information about the
substrate–enzyme pair, to predict the current AMW, at
the hydrolysis time corresponding to input spectrum.
Denoting AMWt the average molecular weight at time t,
and S the set of substrate–enzyme pairs, the model thus
predicts AMWt = H(ηt, s) for ηt the spectrum of hydroly-
sis with a reactant s∈S. Using the future spectra ηt,
t = δt + t0 predicted by the St0 network as the input for
the hierarchical model we then aim to predict AMWt as
AMWt ¼H St0 ηt0 ,δt

� �
,s

� �
. For the many-time input net-

works the construction is analogous once a unique ηt is
determined. Here we will use the average from Equa-
tion (1). We remark that in the following the two models
are trained separately using their independent loss func-
tions. This simple choice is due to practical consider-
ations where it is potentially useful to obtain a modular
quality controller by composition. That is, a predictor for
a different quality indicator could be constructed by pro-
viding its dedicated model (to replace the H function
above). Alternatively, variational encoders/decoders
could be modified to include elements of S as additional
input and output both ηt and AMWt using predictions of
the H model as part of the loss function. The combined
approach is clearly specific to the given quality indicator
and while not modular the resulting model is expected to
be more accurate in predicting AMW than the combined
model.

To evaluate the combined model we next replace the
spectra at time t from the FTIR dataset by outputs of
St0¼0:5 and averaged Mtc¼30 networks. More precisely, for
fixed s, we use all initial spectra ηt0 for S0.5 and ηti , ti ≤ tc
for M15 to predict the spectra ηt, t > t0. The accuracy of
the combined models are evaluated in Figure 10. Here
the pairs CM-A and SH-A are used since they are among
the most frequent reactions in the dataset. In addition,
the reactants illustrate sufficiently the typical features of

the combined models. Focusing first on the single input
network, we notice that for CM-A (second and fourth
row of Figure 10) the model over-predicts AMWt and the
difference is approximately constant in time. On the
other hand, for SH-A the model predictions are inaccu-
rate for the early stages of the reaction (t < 20 min) and
improve afterwards. The predictions from the model
based on M30 are then more accurate for both CM-A and
SS-A. More precisely, in terms of R2 measured on all reac-
tion times, the latter model achieves 80.5% and 70.4% on
the respective pairs, while accuracy using S0.5 is 71.1%
and 50.9%. Since in the context of control of the hydroly-
sis, one is mostly interested in AMW at later times, we

TABLE 5 Generalization (RMSE) errors for single input

networks St0 with t0 = 0.5, 2.5, 5.0 min. Maximal set concerns

inference times t > t0 while t > 5.0 min for the common set

t0[min] Sub-enz 0.5 2.5 5 0.5 2.5 5
Maximal set Common set

Ma 0.28 0.37 0.30 0.29 0.37 0.30

TR-F 0.80 0.63 0.59 0.79 0.62 0.59

TC-F 0.80 0.66 0.62 0.78 0.66 0.62

Ma-F 0.26 0.28 0.28 0.28 0.29 0.28

CM-A 0.18 0.16 0.14 0.13 0.14 0.14

SS-A 0.05 0.05 0.04 0.04 0.04 0.04

TABLE 6 Prediction errors of Equation (1)-averaged many-

input network M15 measured on the raw FTIR dataset, see Table 2

for S0.5. The inference covers times t ≥ 5 min

Subenz A Pa Pr C

CB 0.17 0.23 0.22 —

CM 0.13 0.08 0.11 —

CR 0.12 0.10 0.16 —

CS 0.12 0.12 0.12 —

TR 0.17 — — 0.13

Ma 0.11 0.09 — —

SB 0.09 — — —

SH 0.07 — — —

SS 0.06 — — —

TC 0.14 — — 0.13

HC 0.10 0.12 0.11 —

FIGURE 9 Comparison of total accuracy of many-time input

networks Mtc , tc = 7.5, 15, 30 min on FTIR dataset inferring spectra

ηt, t ≥ 5 min
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also evaluate the accuracy of the combined models using
spectra from reaction times t > 10 min. In Figure 10 it
can be seen that in this case the predictions appear more
tightly clustered around the diagonal.

We remark that the AMW predictions of the com-
bined model are rather sensitive to the input spectra. In
particular, we recall that the variations in ηt obtained
from different St0 are small, see Figure 6, however, they
might translate to large difference in predicted AMW. To
obtain more robust models than the composite ones dis-
cussed here possible alternative strategies include (1) tun-
ing the encoder–decoder networks with added AMW,
substrate and enzyme information (as mentioned above),
(2) retraining the AMW prediction on the output from
the networks and (3) combining the FTIR networks with
AMW prediction modelling for a joint optimization. We
remark that for the combined approach (3), exploring the
pre-training and fine-tuning strategy [18, 19] based on
FTIR autoencoders appears fruitful.

6 | SUMMARY AND DISCUSSION

In a biotechnological process, such as enzymatic protein
hydrolysis, feed-forward predication of product character-
istics is a powerful and essential element for process con-
trol [8]. One choice to be made when modelling in the
feed-forward framework would be to either predict the
entire FTIR spectrum at a future time point in the pro-
cess using one or more spectra in an early phase of
hydrolysis, or to directly predict future characteristics,
such as AMW. The former route, predicting the FTIR
spectrum, has the benefit of providing a (feature)-rich
and flexible view into the future.

In this article we have constructed deep neural net-
works for predicting the future FTIR spectra of EPH

based on single spectra from the early stages of the reac-
tion and the temporal offsets. Two types of networks
were proposed: the single-input networks are trained
using input spectra at fixed input time and the temporal
offset, the many-input networks use different spectrum-
offset pairs in their training and were found to yield more
accurate predictions. Due to a relatively small amount of
data available, both architectures were trained on a
dataset where the measured reactions were augmented
by combining spectra from different EPH (of the same
substrate–enzyme pair). The data augmentation resulted
in models which do not overfit to individual spectra in
the measured reactions but instead capture certain aver-
aged features. For greater accuracy larger dataset of EPH
reactions with more uniform representation of the reac-
tions would be required. In addition, the learning prob-
lem could be modified/simplified by restricting the
predictions (and inputs) in wavenumbers > 1000 cm�1 or
by considering different weighting for key parts of the
spectra (e.g. amide1, amide, coo and nh3 bands) in the
loss function.

In order to predict future product characteristic we
have combined the neural network models predicting the
future spectra with a linear FTIR-to-AMW model. While
AMW is one product characteristic that can be derived
from FTIR spectra, it has been shown that the IR signa-
ture of a given hydrolysate can serve as a chemical signa-
ture of a given product [33]. Therefore, given that the IR
signature of the desired product is known, the approach
presented here can serve as a powerful tool that can pre-
dict in the beginning of the hydrolysis process if product
specification will be met. In addition, similar combina-
tions of deep learning and a linear prediction model
(demonstrated in the current study for AMW) could be
developed for other important product characteristics
such as degree of hydrolysis and bioactivity.

TABLE 7 Generalization error of Mtc¼30 network to reactions unseen during training

Time (min) CM-A TR-F TC-F Ma-F Ma SS-A

2.5 0.39 0.90 0.87 0.18 0.37 0.07

5.0 0.29 0.78 0.75 0.18 0.36 0.05

7.5 0.23 0.71 0.71 0.17 0.32 0.04

10 0.20 0.68 0.71 0.17 0.31 0.04

15 0.16 0.61 — 0.17 0.30 0.04

20 0.11 0.60 0.61 0.17 0.30 0.06

30 0.10 0.65 0.62 0.22 0.32 0.04

40 0.08 0.73 0.58 0.24 0.34 0.04

50 0.09 0.79 0.62 0.30 0.35 0.04

60 0.10 0.83 0.67 0.33 0.35 0.05

80 — 0.91 0.77 0.38 0.36 —
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The use of the resulting combined model predicting
the spectra and different product characteristics in a pro-
cess control setting can be envisioned in various scenar-
ios and levels of granularity and automation. The most
coarse analysis would be to use the trajectories of predic-
tions to estimate the time point at which the reaction has
reached sufficient conversion of proteins. Process param-
eters like temperature, mixing speeds, etc. may be
adjusted in an attempt to reach optimal time usage. If the
trajectories indicate that sufficient hydrolysation will not
be achieved at any time point, addition of more or differ-
ent enzymes may be considered. Furthermore, if

predicted spectra give indications that the hydrolysis
product is likely to end up outside quality specifications,
preventive measures including the above may be taken
early in the hydrolysis process or the process may be
guided towards a lower grade end-product. Regardless of
the scenario, the possibility of early intervention and
decision support could be beneficial. We finally mention
that if process control parameters were passed as inputs
to the FTIR networks, the trained models could be used
for optimal control of EPH. That is, strategies for
obtaining the product of desired quality would be
obtained by optimization in terms of the controls.

FIGURE 10 Accuracy of the

composite models combining a

hierarchical model [4] with FTIR

encoder–decoder networks. (Left panes)
Single time input network St0¼0:5. (Right

panes) Many-time input network Mtc¼30.

Each model predicts AMW for all

reactions (represented by markers) and

time points (colour-encoded) of SH-A

(first/third row) and CM-A (second/

fourth row). The bottom four panes

show outputs restricted to t > 10 min
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Overall, EPH of complex biomasses is a complex process
prone to high degree of raw material and, as a result, prod-
uct quality variation. Therefore, the feed-forward process
control strategy presented here holds a promising potential
that can ensure a stable product quality over time.
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ENDNOTES

* The offset time may be arbitrary, however, Vukoti�c et al. [26]
observe that the accuracy of predictions deteriorates for large
values.

† We recall that one reaction (of the 8 listed in the table) was omit-
ted for validation.

‡ We normalize t, t0, δt in minutes by 60 min which is the most
common terminal time in the FTIR dataset.

§ The networks are identical in terms of architecture and number
of parameters.
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APPENDIX A

In this section we collect additional results supporting
the findings reported in the main article. Figure A1
shows convergence of the optimization process for train-
ing the different single- and many-input neural networks.
Tables A.1 and A.2 analyse the prediction errors of the
single-input network St0¼0:5 for fixed inference time and

evolution of the error in time. Figure A2 demonstrates
the property of the obtained models in predicting the
mean of the measured EPH reactions (for the given sub-
strate–enzyme pair) rather than fitting to individual spec-
tra. Finally, Figure A3 illustrates the consistency property
of the many-input networks; as desired in the applica-
tion, the different input pairs are mapped to practically
identical outputs.

FIGURE A1 Convergence of

ADAM iterations in training (left) single

input networks St0 with t0 = 0.5, 2.5,

5.0 min and (right) many input

networks Mtc with tc = 7.5, 15, 30 min.

Training/validations sets differ between

the networks

TABLE A .1 Prediction errors for S0.5 network at fixed inference time ti = 10 min. RMSE is reported based on all measured reactions for

given substrate–enzyme pairs

Subenz A Pa Pr C

CB 0.17 0.40 0.27 —

CM 0.14 0.09 0.16 —

CR 0.11 0.11 0.11 —

CS 0.12 0.14 0.16 —

TR 0.21 — — 0.11

Ma 0.13 0.16 — —

SB 0.08 — — —

SH 0.08 — — —

SS 0.06 — — —

TC 0.17 — — 0.18

HC — 0.21 0.16 —

TABLE A .2 Time evolution of the prediction error of the S0.5 network. RMSE is reported based on all measured reactions for given

substrate–enzyme pairs

Time (min) CM-A SS-A Time (min) CM-A SS-A

2.5 0.19 0.08 20 0.10 0.05

5 — 0.06 30 0.09 0.05

7.5 0.15 0.07 40 0.09 0.06

10 0.14 0.06 50 0.10 0.06

15 0.12 0.06 60 0.10 0.06
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FIGURE A2 Prediction errors of single input network with time t0 = 0.5 min. The inference time and substrate–enzyme pair are fixed

at t = 10 min and CM-A. (Left) Prediction using one of seven available inputs. The error is noticeably larger in the band between 1600 cm�1

and 1800 cm�1 (Right) Mean prediction obtained as average of seven inputs is compared with the mean of the targets. The error is rather

delocalized

FIGURE A3 Non-uniqueness of many-input network

predictions. (Left) Predicted spectra of a single CM-A reaction at

time t = 40 min by network Mtc , tc = 15 min using input spectra at

times ti = 2.5, 5.0, 7.5, 10, 15 min. Predictions are consistent with

respect to ti as can be seen through small variations in difference

between the mean prediction (taken over all ti) and the individual

spectra. In the inset figure showing the entire wavenumber range

the predicted spectra are practically identical. (Right) RMSE for all

seven CM-A reactions in the FTIR dataset and the different input

times ti
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