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Abstract 

Consumers can be clustered based on their product-related check-all-that-apply (CATA) responses. 

We identify two paradoxes that can occur if these clusters are derived from conventional similarity 

coefficients. The first paradox is that clustering similar consumers can nullify within-cluster sensory 

differentiation of products. The second paradox is that consumers who check many attributes yet 

disagree can be clustered together, whereas consumers who check fewer attributes without 

disagreement can be split into different clusters. After illustrating these paradoxes with toy data 

sets, we propose “b-cluster analysis”, in which consumers are clustered according to how they 

differentiate products. We define performance metrics to compare cluster analysis solutions. By 

design, b-cluster analysis is expected to give different results than CLUSCATA, since the objective of 

CLUSCATA is to cluster consumers who characterize products similarly, not according to how they 

differentiate products. We apply b-cluster analysis to the same toy data sets and show that the 

identified paradoxes do not occur. Then we apply both b-cluster analysis and CLUSCATA to a real 

consumer data set. We find that the b-cluster analysis solutions have better within-cluster sensory 

differentiation, better sensory discrimination, and less redundant clusters than CLUSCATA solutions. 

To investigate the sensitivity of b-cluster analysis to the initial (random) cluster membership 

allocations, we obtained 10,000 two-cluster solutions, each initialized with a different random 

partitioning of consumers. The best solution, which retains the most sensory differentiation, was 

observed in 21.4% of the runs. As a best practice, we recommend running b-cluster analysis several 

times and choosing the best solution. The proposed b-cluster analysis approach can be extended to 

other types of sensometric data and may have applications in other fields.  

Keywords: cluster analysis; unsupervised classification; binary data; sensory evaluation; consumer 

testing; agreement 
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1. Introduction 

Check-all-that-apply (CATA; Ares & Jaeger, 2015; Meyners & Castura, 2014) data are often collected 

in product testing with consumers. The researcher provides a list of attributes (e.g. words, phrases, 

pictures, emojis); consumers are instructed to check all the attributes that describe each sample 

they evaluate. The CATA question format is popular in part because it allows untrained consumers to 

rapidly describe the products under study, which may be commercial products, prototypes, cultivars, 

concepts, environments, or some other experimental condition or factor of interest.  

Aggregated consumer CATA data can yield useful sensory profiles of products. One reason for this is 

the existence of a linear relationship between CATA attribute citation rates and attribute intensities 

(Jaeger et al., 2020b; Ares et al., 2015; Bruzzone et al., 2012; Ares et al., 2010). However, this finding 

does not imply that CATA responses are absolute judgments related to the presence or absence of 

particular stimuli. One consumer might endorse an attribute for a product that another consumer 

does not for various reasons. The two consumers may differ in their sensitivities for the attribute, 

their understanding of attribute meaning, their perception of an attribute’s relevance to the 

evaluated samples, or their susceptibility to contextual effects, such as psychological biases 

(Meyners & Castura, 2014). They might have approached the CATA task with different cognitive 

strategies (Galler et al., 2020) or differ in their visual attention to the options provided (Antúnez et 

al., 2016). It is also possible that the samples they evaluated were dissimilar due to product 

variability. CATA responses might differ due to differences in perception or in how the perceptions 

are described. Consumers might check an attribute when the perceived intensity exceeds a certain 

threshold which is consumer- and product category-specific (Jaeger et al., 2020a; Vidal et al., 2018), 

so that two consumers with similar perceptions but different thresholds might respond differently. 

One consumer might have a low elicitation threshold for endorsing an attribute, leading to a high 

citation rate, whereas another consumer with a similar sensory experience might have a high 

elicitation threshold for endorsing an attribute, leading to a low citation rate. Due to such response 

bias, the feature that we will focus on to cluster consumers is the product contrasts within each 

consumer’s CATA responses. 

The objective of this paper is to introduce a novel approach for clustering consumers based on their 

CATA data. We call this approach “b-cluster analysis”. We use toy and real data sets to demonstrate 

its ability to resolve certain paradoxes and to retain the sensory differentiation in the solution. This 

clustering algorithm is inspired by, but different from, the quick-transfer stage of the k-means 

algorithm proposed by Hartigan and Wong (1979). Ours is not the first proposal for conducting 

unsupervised classification of consumers based on their CATA responses. Llobell et al. (2019a) 

proposed CLUSCATA, which focuses on the similarity in how consumers characterize products. 

Vigneau et al. (2022) proposed clustering consumers based on associations between CATA and liking 

responses. The unsupervised classification procedure that we propose in this paper is different 

because it focuses on how consumers differentiate products―a different type of similarity that, as 

far as we know, has not been considered previously. These cluster analyses have different objectives 

and, as will be shown, produce different clusters. Cluster analysis is not always needed, nor always 

useful, but when it is done, it is important to select a clustering method that aligns with the study 

objectives.   

https://doi.org/10.1016/j.foodqual.2022.104564
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In Section 2, we identify two paradoxes that may arise if conventional similarity coefficients are used 

to quantify similarity of consumers based on their CATA data. We illustrate these paradoxes using 

toy data sets. The paradoxes motivate b-cluster analysis. The reasons for this name and the 

algorithm are given in Section 3. A key feature that differentiates b-cluster analysis from other 

methods is that it maximizes the retained sensory differentiation in the solution. In Section 4, we 

show that b-cluster analysis resolves the paradoxes that we identify. Then we apply b-cluster 

analysis and CLUSCATA to a real CATA data set and compare results. Discussion and conclusions 

follow. 

2. Paradoxes in clustering solutions based on conventional similarity measures 

Suppose that consumers are clustered based on the similarity of their CATA responses for various 

products. Here, it would be natural to make certain assumptions, such as that 

(i) members within each cluster will describe the products in a similar way, but 

differently than members of another cluster; 

(ii) each cluster member will differentiate the products in a manner that is similar to 

how other cluster members differentiate the products; and  

(iii) consumers who disagree about how products differ will tend to be allocated to 

different clusters. 

In this section, we identify two paradoxes, which we describe using simple examples. These 

paradoxes demonstrate that even if assumption (i) holds, assumptions (ii) and (iii) might not hold if 

cluster analysis is performed using conventional similarity measures. These paradoxes motivate our 

proposition of b-cluster analysis in Section 3. 

2.1. Paradox 1: Clustering similar consumers can nullify within-cluster sensory differentiation  

Table 1 shows a toy CATA data set with three consumers (C1, C2, C3), four products (P1 through P4), 

and two attributes. If two consumers check an attribute for the same product, we call this 

“elicitation agreement” (denoted 𝑐11). If two consumers do not check a given attribute for the same 

product, we call this “non-elicitation agreement” (denoted 𝑐00). Disagreement occurs if the attribute 

is checked for a product by only the first consumer (denoted 𝑐10) or only the second consumer 

(denoted 𝑐01).  

 

Table 1. Toy CATA data for illustrating Paradox 1, consisting of three consumers (C1, C2, C3), four 

products (P1, P2, P3, P4), and two attributes. Elicitation counts are shown for each combination of 

two consumers. 

 Attribute 1  Attribute 2 
 C1 C2 C3 C1+C2 C1+C3 C2+C3  C1 C2 C3 C1+C2 C1+C3 C2+C3 

P1 1 0 1 1 2 1  1 0 0 1 1 0 

P2 1 0 1 1 2 1  1 0 0 1 1 0 

P3 1 0 1 1 2 1  0 0 1 0 1 1 

P4 1 0 1 1 2 1  0 1 1 1 1 2 
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Conventional similarity coefficients quantify the similarities between pairs of consumers using 

counts from all attributes. Table 2 shows various similarity coefficients for each pair of consumers in 

Table 1. The similarity coefficients 𝑠𝑂𝑐ℎ (Ochiai coefficient; Ochiai, 1957), 𝑠𝐽𝑎𝑐 (Jaccard coefficient; 

Jaccard, 1912) and 𝑠𝐷𝑆 (Dice-Sørenson coefficient; Dice, 1945; Sørenson, 1948) were proposed 

originally to quantify species overlap between two geographical areas; all of these coefficients 

exclude from their calculations the species that are absent in both locations. Consequently, they 

consider agreement only from mutual presence of a species in both areas; the mutual absence of a 

species in both areas is ignored completely. The similarity coefficient 𝑠𝑆𝑀 (simple matching; Zubin, 

1938) considers mutual presence and mutual absence of some characteristic as providing equal 

evidence of agreement; the average Hamming distance (Hamming, 1950) is not shown but is equal 

to 1 − 𝑠𝑆𝑀.  

 

Table 2. Similarity coefficients (𝑠) across both attributes are shown for pairs of consumers in Table 1. 

In each row, the pair of consumers having the largest similarity is shown in bold. [𝑠𝑂𝑐ℎ: Ochiai 

coefficient; 𝑠𝐽𝑎𝑐: Jaccard coefficient  𝑠𝐷𝑆: Dice-Sørenson coefficient; 𝑠𝑆𝑀: simple matching 

coefficient.] 

Measure  Formula  𝒔(C1, C2) 𝒔(C1, C3) 𝒔(C2, C3) 

𝑠𝑂𝑐ℎ   𝑐11

√(𝑐11 + 𝑐10)(𝑐11 + 𝑐01)
  

0.00 0.67 0.41 

𝑠𝐽𝑎𝑐   𝑐11

𝑐11 + 𝑐10 + 𝑐01

  
0.00 0.50 0.17 

𝑠𝐷𝑆  2𝑐11

2𝑐11 + 𝑐10 + 𝑐01

 
 

0.00 0.67 0.29 

𝑠𝑆𝑀   𝑐11 + 𝑐00

𝑐11 + 𝑐10 + 𝑐01 + 𝑐00

 
 0.13 0.50 0.38 

 

Table 2 indicates that C1 and C3 have the largest similarity coefficients, indicating that these two 

consumers should be clustered together. We find it reasonable that the number of elicitations in 

their aggregated data is identical for all products within Attribute 1 (every product has two citations; 

see Table 1) since no consumer differentiated products on this attribute. However, we find it 

unreasonable that the number of elicitations in their aggregated data is also identical for all products 

within Attribute 2 (every product has one citation) since individually the consumers had 

differentiated the products on this attribute. Paradox 1 is that clustering the two most similar 

consumers produces a cluster in which all sensory differentiation of products is nullified. 

2.2. Paradox 2: Consumers with real disagreements are considered as being similar because they 

check many attributes  

Table 3 shows a toy CATA data set with three assessors (C4, C5, C6), five products (P5 through P9), 

and two attributes. Elicitation rates for C4, C5, and C6 are 70%, 30%, and 80%, respectively. C4 and 

C6 have high levels of elicitation agreement; however, C4 indicates that both attributes describe P5 

https://doi.org/10.1016/j.foodqual.2022.104564
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but not P9, and that attribute 4 describes P8, whereas C6 indicates that both attributes describe P8 

and P9 but not P5. These inversions indicate real disagreements between C4 and C6. No such 

inversions exist in the responses from C5 and C6. This means that differences in responses from C5 

and C6 could be due to differences in their elicitation thresholds for the attributes instead of any real 

disagreement. Table 4 shows the four standard similarity coefficients across attributes for each pair 

of consumers in Table 3. 

 

Table 3. Toy CATA data to illustrate Paradox 2, consisting of three consumers (C4, C5, C6), five 

products (P5, P6, P7, P8, P9), and two attributes. Elicitation counts are shown for each combination 

of two consumers. 

 Attribute 3  Attribute 4 

 C4 C5 C6 C4+C5 C4+C6 C5+C6  C4 C5 C6 C4+C5 C4+C6 C5+C6 

P5 1 0 0 1 1 0  1 0 0 1 1 0 

P6 1 0 1 1 2 1  1 0 1 1 2 1 

P7 1 0 1 1 2 1  1 0 1 1 2 1 

P8 1 0 1 1 2 1  0 1 1 1 2 2 

P9 0 1 1 1 1 2  0 1 1 1 1 2 

 

Table 4. Similarity coefficients (𝑠) are shown for consumer pairs from Table 3. In each row, the pair of 

consumers having the largest similarity is shown in bold. (Ties occur in the last row.) [𝑠𝑂𝑐ℎ: Ochiai 

coefficient; 𝑠𝐽𝑎𝑐: Jaccard coefficient  𝑠𝐷𝑆: Dice-Sørenson coefficient; 𝑠𝑆𝑀: simple matching 

coefficient.] 

Measure  𝒔(C4, C5) 𝒔(C4, C6) 𝒔(C5, C6) 

𝑠𝑂𝑐ℎ   0.00 0.67 0.61 

𝑠𝐽𝑎𝑐    0.00 0.50 0.38 

𝑠𝐷𝑆  0.00 0.67 0.55 

𝑠𝑆𝑀    0.00 0.50 0.50 

 

For the reasons given above, C5 and C6 might be considered to be the most similar pair. However, 

according to the first three similarity coefficients in Table 4, C4 and C6 are most similar. The 

similarity coefficient 𝑠𝑆𝑀 indicates that it would be equally justifiable to cluster C4 and C6 as it would 

be to cluster C5 and C6. Paradox 2 is that consumers with low elicitation thresholds and real 

disagreement are considered to be as or even more similar than consumers whose lack of 

concordance does not necessarily arise from any real disagreement.  
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3. Methods 

3.1. Notation 

Before introducing b-cluster analysis, we give notation. CATA data from 𝐼 consumers on 𝐽 products 

for 𝑀 attributes are organized into a three-way array 𝐗. Each datum in 𝐗 has the value 0 (not 

checked) or 1 (checked). A “group” (denoted 𝑔) refers to any group of 𝑁 consumers regardless of 

the reason that they are grouped. A “cluster” is a specific group in which consumers are grouped 

together due to their data and specified criteria. The term “singleton cluster” refers to a cluster that 

consists of only one consumer.  

3.2. b-cluster analysis 

The goal of b-cluster analysis is to cluster consumers to maximize within-cluster sensory 

differentiation of products. The name for this cluster analysis was selected because 𝑏 and 𝑐 are 

regularly used to denote the number of consumers who check an attribute for the first and not the 

second product, and who check the second and not the first product, respectively, e.g. in 2×2 tables 

leading to McNemar’s test (McNemar, 1947). The next section shows how what we call the 𝑏-

measure is obtained from the difference in these counts (𝑏 − 𝑐), where 𝑏 − 𝑐 is embedded in the 

name b-cluster analysis. 

3.2.1. b-measure 

If every consumer evaluates every product using a CATA question, the responses for each pair of 

products (𝑗 and 𝑗′) on any attribute 𝑚 can be treated as matched binary data (Meyners, Castura & 

Carr, 2013). Consumer CATA results may be organized as shown in Table 5. The counts 𝑛11, 𝑛10 

(commonly “b” in the above-mentioned table for McNemar’s test), 𝑛01 (“c”), and 𝑛00 indicate the 

number of consumers who checked attribute 𝑚 for both products, only product 𝑗, only product 𝑗′, 

and neither product. Upper case 𝑁 refers to the total number of consumers, i.e. 𝑛11 + 𝑛10 + 𝑛01 +

𝑛00. Lower case 𝑛 refers to the consumers who differentiate this pair of products on this attribute, 

i.e. 𝑛 = 𝑛10 + 𝑛01.1 

 

Table 5. General data structure for matched CATA data for a pair of products (𝑗 and 𝑗′); 𝑛11, 𝑛10, 𝑛01, 

and 𝑛00 indicate the number of consumers who checked an attribute for both products, only product 

𝑗, only product 𝑗′, and neither product, respectively. 

  checked for 𝑗′  not checked for 𝑗′  Row totals 

checked for 𝑗  𝑛11  𝑛10  𝑛11 + 𝑛10 

not checked for 𝑗  𝑛01  𝑛00  𝑛01 + 𝑛00 

Column totals  𝑛11 + 𝑛01  𝑛10 + 𝑛00  𝑁 

 

The null hypothesis assumes that the attribute under consideration is cited with equal probability for 

products 𝑗 and 𝑗′. The alternative hypothesis states that the underlying probabilities of citation are 

                                                           
1 Whereas 𝑛## refers to responses for a matched pair of products, 𝑐## in Section 2 refers to responses from a 
matched pair of consumers. 
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unequal. McNemar (1947) shows that under the null hypothesis, (𝑛11 + 𝑛10) 𝑁⁄ = (𝑛11 + 𝑛01) 𝑁⁄  

(i.e., 𝑛10 = 𝑛01), the squared test statistic  

𝑍2 =
(𝑛10−𝑛01)2

𝑛10+𝑛01
        (1) 

is asymptotically distributed as a χ²-distributed random variable with one degree of freedom. Since 

𝑍2 can be calculated using data from only the 𝑛 consumers on the off-diagonal, the effective sample 

size is 𝑛, not 𝑁. We set 𝑍2 = 0 if 𝑛 = 0. We use the symbol 𝛥 to refer to 𝑛10 − 𝑛01 (or 𝑏 − 𝑐). The 

numerator in Eq. (1) has the range 0 ≤ 𝛥2 ≤ 𝑛2 ≤ 𝑁2. The squared test statistic 𝑍2 has the range 

0 ≤ 𝑍2 ≤ 𝑛 ≤ 𝑁, and quantifies sensory differentiation regardless of 𝑛.  

Since 𝑛 is often small, rather than using the χ²-distribution to approximate the null distribution, we 

test whether 𝑗 and 𝑗′ are cited with equal underlying probabilities (with the alternative being that 

they are unequal) using a two-tailed binomial test with 𝑛10 successes, sample size 𝑛, and probability 

½ (Meyners et al., 2013). This test will be applied to evaluate the quality of a cluster analysis solution 

(Section 3.3). We also apply one-tailed binomial tests to evaluate the direction of the difference, if a 

difference exists (i.e., either 𝑗 < 𝑗′ or 𝑗 > 𝑗′). For consistency, we conduct two-tailed tests at the 

95% confidence level and each one-tailed test at the 97.5% confidence level. A significant test result 

indicates sensory discrimination. 

We quantify the total sensory differentiation across 𝐽 products and 𝑀 attributes by any group of 𝑁 

consumers (𝑁 ≤ 𝐼) via  

𝑏 = ∑ ∑ ∑ 𝑍𝑗𝑗′𝑚
2𝑗−1

𝑗′=1
𝐽
𝑗=2

𝑀
𝑚=1       (2) 

where 𝑍𝑗𝑗′𝑚
2  is the squared test statistic from Eq. (1) for products 𝑗 and 𝑗′ on attribute 𝑚. For each of 

𝑀 attributes, we obtain the measure ∑ ∑ 𝑍𝑗𝑗′𝑚
2𝑗−1

𝑗′=1
𝐽
𝑗=2  from 𝐽(𝐽 − 1)/2 tables, each organized as 

shown in Table 5. We do not compare 𝑗 with itself, and once 𝑗 and 𝑗′ are compared, it is redundant 

to compare 𝑗′ and 𝑗 as this would give the same value. Thus, 𝑏 is the sum of squared test statistics 

from a total of 𝑀𝐽(𝐽 − 1)/2 tables. Details on the 𝑏-measure, including the range of possible values 

in any given data set, are provided in Appendix A.1. 

3.2.2. b-cluster analysis via iterative ascent 

The b-cluster analysis algorithm is a criterion-based, non-hierarchical procedure. The objective 

function that quantifies the quality of this solution is 

𝐵𝐺 = ∑ 𝑏𝑔
𝐺
𝑔=1         (3) 

where 𝑏𝑔 is the 𝑏-measure for cluster 𝑔 and 𝐵𝐺 is the sensory differentiation retained in the 𝐺-

cluster solution. For a given 𝐺, a solution with the larger 𝐵𝐺 is a better solution. It begins with an 

initialization stage. In this stage, the 𝐼 consumers are each allocated to one of 𝐺 groups. The initial 

cluster memberships can be specified by the researcher or determined by random assignment.  

Next, we initialize 𝐕, a “calculated values matrix” with 𝐼 rows and 𝐺 columns; its elements are 𝑏-

measures for candidate clusters. Specifically, if 𝑖 is currently a member of cluster 𝑔, then the 

element 𝑣𝑖,𝑔 is the 𝑏-measure for cluster 𝑔 if it loses 𝑖; otherwise 𝑣𝑖,𝑔 is the 𝑏-measure for cluster 𝑔 

https://doi.org/10.1016/j.foodqual.2022.104564
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if it acquires 𝑖. We also initialize 𝐔, an “update matrix” with 𝐼 rows and 𝐺 − 1 columns; each of its 

elements quantifies how 𝐵𝐺 changes if a candidate transfer is completed. Transferring 𝑖 to the 

candidate cluster 𝑔𝑐𝑎𝑛𝑑 affects two clusters: it affects the current cluster 𝑔𝑐𝑢𝑟𝑟, which after losing 𝑖 

is denoted 𝑔𝑐𝑢𝑟𝑟(−𝑖), and it affects the candidate cluster 𝑔𝑐𝑎𝑛𝑑, which after acquiring 𝑖 is denoted 

𝑔𝑐𝑎𝑛𝑑(+𝑖). Each column of 𝐔 corresponds to an index (𝑐) of the 𝐺 − 1 candidate groups, where 

matrix elements  

   
𝑢𝑖,𝑐𝑔𝑐𝑎𝑛𝑑

= 𝑏𝑔𝑐𝑎𝑛𝑑(+𝑖)
− 𝑏𝑔𝑐𝑎𝑛𝑑

+     

      𝑏𝑔𝑐𝑢𝑟𝑟(−𝑖)
− 𝑏𝑔𝑐𝑢𝑟𝑟

     (4) 

quantify the change in 𝐵𝐺 if 𝑖 is transferred from 𝑔𝑐𝑢𝑟𝑟 to 𝑔𝑐𝑎𝑛𝑑. The values 𝑏𝑔𝑐𝑎𝑛𝑑(+𝑖)
 and 𝑏𝑔𝑐𝑢𝑟𝑟(−𝑖)

 

are taken from 𝐕, whereas 𝑏𝑔𝑐𝑎𝑛𝑑
 and 𝑏𝑔𝑐𝑢𝑟𝑟

 are the current 𝑏-measures of the clusters specified. 

The initialization stage ends once 𝑏𝑔, 𝐵𝐺, 𝐕, and 𝐔 are calculated based on the initial cluster 

memberships. 

Next, we begin the transfer stage. At each iteration, the maximum value in matrix 𝐔, max(𝑢𝑖,𝑐𝑔𝑐𝑎𝑛𝑑
), 

is determined and the corresponding consumer 𝑖 is transferred to 𝑔𝑐𝑎𝑛𝑑.  If multiple potential 

transfers yield the same improvement (i.e. the largest value in 𝐔 occurs more than once), then one 

of these transfers is made at random. After a transfer, it is only necessary to update two columns 

and one row in 𝐕, which requires 2(𝐼 − 1) + 𝐺 rather than 𝐼𝐺 calculations. The number of 

calculations (of Eq. (4)) that must be made to update 𝐔 depends on the state of the current solution. 

Specifically, members of the two clusters that have acquired and lost 𝑖, respectively, each require 

𝐺 − 1 calculations; other consumers each require only two calculations for the clusters that acquired 

and lost i, respectively. Our experience indicates that calculating only the necessary values of 𝐕 and 

𝐔 gives advantages for larger 𝐺, but provides no efficiencies when 𝐺 = 2. 𝐵𝐺 is maximized by 

transferring consumers iteratively until max (𝑢𝑖,𝑐𝑔𝑐𝑎𝑛𝑑
) < 0. The transfer stage ends if this condition 

is reached because every possible transfer erodes the quality of the solution.  To avoid the potential 

of an infinite loop, we also stop the transfer stage if both max (𝑢𝑖,𝑐𝑔𝑐𝑎𝑛𝑑
) = 0 and the variance in 𝐵𝐺 

over the most recent five iterations is smaller than a pre-specified limit (we used 𝑒−8 ≈ 0.0003355).  

In the completion stage, the algorithm returns the final cluster memberships for the fixed number of 

clusters (𝐺). The algorithm can, and often does, reach a local maximum where it cannot increase 𝐵𝐺 

from the current solution, even though we know that a better solution exists, because we have 

found one having a larger 𝐵𝐺. For this reason, we advise running the algorithm multiple times with 

different initial cluster memberships to determine whether a better solution exists. The solution that 

achieves the largest 𝐵𝐺 is considered to be the best 𝐺-cluster solution. 

The largest possible 𝐵𝐺 occurs for the trivial solution without clustering, where 𝐺 = 𝐼 (Appendix 

A.1.4). The percentage of sensory differentiation retained in a 𝐺-cluster solution,  

%𝐵𝐺 = 100(𝐵𝐺 𝐵𝐼⁄ )%       (5) 

measures the quality of a b-cluster analysis solution. A higher percentage indicates a better-quality 

solution. In what follows, if 𝐺 is understood implicitly then 𝐵𝐺 and %𝐵𝐺 may be denoted 𝐵 and %𝐵 

for ease of notation. 
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3.2.3. Determining the number of clusters (𝐺) 

𝐵𝐺  tends to decline when 𝐺 gets smaller and the number of consumers per cluster becomes larger. 

More sensory differentiation is nullified because heterogeneous consumers cannot be split across 

more clusters. To determine the number of clusters, we attempt to balance several objectives. For 

parsimony, we want 𝐺 to be small. For quality, we want 𝐵𝐺 to be high. For robustness and relevance, 

we want the number of consumers per cluster to be large since overly small clusters sizes are 

commercially meaningless. Robustness and relevance objectives can be met by keeping 𝐺 small, or 

by interpreting only clusters with approximately 50 or more consumers.  

To determine the number of clusters, we calculate the percentage change in 𝐵𝐺 in a 𝐺-cluster 

solution vs. in 𝐵𝐾 in a 𝐾-cluster solution (𝐾 = 𝐺 + 1) via 

𝛥𝐵𝐾→𝐺% = 100 (1 −
𝐵𝐺

𝐵𝐾
) %      (6) 

A larger 𝛥𝐵𝐾→𝐺% value indicates relatively more sensory differentiation is eroded when the number 

of clusters is reduced from 𝐾 to 𝐺. It also indicates that relatively more sensory differentiation can 

be reclaimed by increasing the number of clusters from 𝐺 to 𝐾. Values of 𝛥𝐵𝐾→𝐺% are plotted to 

evaluate how the quality of the b-cluster analysis solutions evolves. First, we consider 𝛥𝐵2→1%, then 

𝛥𝐵3→2%, and 𝛥𝐵4→3%. We prefer the smaller solution (with 𝐺 clusters) if it retains a relatively high 

proportion of sensory differentiation in the larger solution (with 𝐾 clusters). We prefer to decrease 

the number of clusters whenever we can do so without substantially eroding the sensory 

differentiation retained. 

3.2.4. Evaluating the initialization effect 

In this study, we conducted b-cluster analysis with 𝐺 = 2, … ,5 clusters with 500 runs each, using 

different random initial allocations of consumers to clusters. These results were used to determine 

the number of clusters to retain. We selected a solution with two clusters. Then, to understand the 

initialization effect (i.e. the variation in the solution due to random initializations of the algorithm), 

and to search more exhaustively for a better solution, we re-ran a two-cluster b-cluster analysis 

10,000 times. 

The best solution (with the largest %𝐵) in 500 runs was also the best solution in 10,000 runs. Then 

we used two approaches to investigate the agreement between the best solution and all other 

solutions found in 10,000 runs. First, we considered the raw agreement in cluster memberships 

between the best solution and each other solution. Second, we considered agreement in cluster-

wise product configurations. To obtain this second type of agreement for two different solution, we 

calculated a 𝐽 × 𝑀 matrix of citation proportions for each cluster in each solution. Then we 

calculated the 𝑅𝑉 coefficient (Robert & Escoufier, 1976) for every possible pairing of clusters. The 

best pairing of clusters was considered to be the one with the highest average 𝑅𝑉. The raw 

agreement in cluster memberships and average 𝑅𝑉 of the two solutions were plotted to review the 

initialization effect.  
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3.3. Evaluating the quality of a CATA cluster analysis solution by additional measures  

To evaluate the quality of a cluster analysis solution, we use the following measures, which are 

based on hypothesis test results.  

3.3.1.  Within-cluster product discrimination (𝐷𝑔) ― The percentage of the 𝑀𝐽(𝐽 − 1)/2 product 

comparisons across attributes that are significantly discriminated (at alpha level 5%) by 

consumers in cluster 𝑔 is calculated via  

𝐷𝑔 = 100 (
𝑠𝑔

𝑀𝐽(𝐽−1)/2
) %      (7) 

where 𝑠𝑔 is the count of product pairs that are significantly different. A solution in which 𝐷𝑔 

is higher in more clusters is considered to be better. Further details are provided in Appendix 

A.2.1. 

3.3.2.  Between-cluster non-redundancy (𝑁𝑅𝑔𝑔′) ― If two clusters mostly discriminate product 

pairs in the same way, then they provide redundant information. If two groups discriminate 

product pairs in different ways (e.g., elicitation rates for P1 are significantly higher than P2 in 

𝑔 and significantly lower than P2 in 𝑔′), then there is value in keeping these two groups 

separate. 𝑁𝑅𝑔𝑔′  is the percentage of non-redundant discriminating test results in groups 𝑔 

and 𝑔′ and is calculated via 

𝑁𝑅𝑔.𝑔′ = 100 (
𝑆

𝑔⊻𝑔′

𝑀𝐽(𝐽−1)
) %       (8) 

where 𝑆𝑔⊻𝑔′  is the count of one-tailed tests on which we obtain a signficant result for either 

𝑔 or 𝑔′ (but not both; i.e. “xor”). A solution in which between-cluster non-redundancy is 

high for all pairs of clusters is considered to be better. Further details are provided in 

Appendix A.2.2. 

3.3.3.  Overall diversity (𝐷𝑖𝑣𝐺) ― The percentage of unique directionally discriminating test results 

that are observed across the solution is calculated via 

𝐷𝑖𝑣𝐺 = 100 (
𝑆𝐺

𝑀𝐽(𝐽−1)
) %      (9) 

where 𝑆𝐺 is the count of one-tailed tests on which we obtain a significant result for at least 

one of the 𝐺 clusters. A solution in which overall diversity is higher is considered to be 

better. Further details are provided in Appendix A.2.3. 

3.4. Comparison with CLUSCATA 

We compare b-cluster analysis with the CLUSCATA method (Llobell et al., 2019a). CLUSCATA is run 

using the recommended procedure: it starts with a hierarchical algorithm to determine the number 

of clusters, and then uses these cluster memberships to initialize a k-means algorithm that optimizes 

the solution (Llobell et al., 2019a). In the first step of CLUSCATA, each consumer’s CATA data are 

arranged in a matrix with 𝐽 products in rows and the 𝑀 attributes in columns. The binary cosine 

similarity coefficient (Llobell et al., 2019a) is calculated for each pair of consumers, which is the same 

as the Ochiai similarity coefficient (𝑠𝑂𝑐ℎ; see Table 2) calculated on each consumer’s vectorized 
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multivariate CATA data in the way shown in Section 2. It is equivalent to normalizing each 

consumer’s data by dividing the 0 and 1 values by the Frobenius norm (square root of sum of all 

squared entries based on each consumer’s own data, which weights consumers with different 

citation rates more equally), then obtaining the trace of the cross-product of the normed matrices 

(i.e. if 𝐀 is the normed matrix, then we obtain the sum of the diagonal elements of the cross-product 

𝐀T𝐀). Similarity coefficients are organized into an 𝐼 × 𝐼 similarity matrix. At each iteration, all 

candidate groups are evaluated for possible merger. Singular values (Mardia et al., 1979) are 

determined for the submatrix of similarity coefficients belonging to members of the potential new 

group. The two groups for which the respective first singular value (𝜆1) explains the largest 

percentage of variability are merged. The procedure continues until all consumers are members of a 

single group. The number of clusters is chosen based on an adaptation of Hartigan’s index (Llobell, 

2020; Hartigan, 1975). The solution is optimized using a k-means algorithm that permits many 

cluster memberships to be updated at each iteration until cluster memberships are finalized. 

CLUSCATA is deterministic so only needs to be run once for a given data set. The reason is that for a 

given input (data set), the hierarchical cluster analysis always produces the same output (cluster 

memberships). This output then initializes the k-means algorithm, which also converges in a 

deterministic manner to produce the final cluster memberships. The k-means CLUSCATA algorithm 

also allows the possibility of a “noise cluster” for absorbing consumers who do not fit any cluster 

well (Llobell et al., 2019a; Dave, 1991). For simplicity, we report only results without a noise cluster.  

CLUSCATA aims to achieve high within-cluster homogeneity (𝐻𝑔), so we will also evaluate clusters 

using this measure. For any group (𝑔) comprised of 𝐼𝑔 consumers, the homogeneity index 𝐻𝑔 =

100 (𝜆1
(𝑔)

/𝐼𝑔) %, where 𝜆1
(𝑔)

 is the first singular value of the 𝐼𝑔 × 𝐼𝑔 submatrix of the similarity 

coefficients between all pairs of the 𝐼𝑔 consumers. 𝐻𝑔 is constrained between 1/𝐼𝑔 and 1 since 1 ≤

𝜆1
(𝑔)

≤ 𝐼𝑔. Larger values of 𝐻𝑔 indicate greater homogeneity in how consumers characterize, rather 

than differentiate, products. For 𝐺 groups comprised of 𝐼 = ∑ 𝐼𝑔
𝐺
𝑔=1  consumers, the weighted 

average of these 𝐻𝑔 indices gives the overall homogeneity 𝐻𝐺 = (∑ 𝜆1
(𝑔)𝐺

𝑔=1 ) 𝐼⁄  (Llobell et al., 

2019a). 

3.5. Graphical evaluation of a CATA cluster analysis solution 

Following each cluster analysis, results within each cluster are visualized using multiple-response 

correspondence analysis (MR-CA; Mahieu et al., 2021). MR-CA builds on the bootstrap-driven 

approach of Loughin and Scherer (1998) which accounts for dependencies between attributes in 

consumers’ product-related responses. For this reason, they consider MR-CA more appropriate than 

conventional correspondence analysis (CA; Greenacre, 2007) for investigating associations between 

products (rows) and attributes (columns) in the 𝐽 × 𝑀 matrix of CATA citation rates. For details and a 

comparison of MR-CA and CA we refer to Mahieu et al. (2021). We report the number of significant 

dimensions based on the multiple-response chi-squared test (𝜒𝑀𝑅
2 ; Mahieu et al., 2021). We display 

products in principal coordinates (analogous to PCA scores) and attributes in standard coordinates 

(unit vectors). When products and attributes are displayed jointly, the uncertainty of the products is 

indicated by 95% confidence ellipses that are obtained from the total bootstrap procedure (Cadoret 

& Husson, 2013).  
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3.6. The “strawberry data” 

The methods in this paper are demonstrated using CATA data from a consumer sensory test of six 

“products”, which are strawberry cultivars: (1) Festival, (2) Yvahé, (3) Yurí, (4) Guenoa, (5) L20.1, (6) 

K31.5 (Ares & Jaeger, 2013). Consumers evaluated a sample of each strawberry cultivar in sequential 

monadic presentation format according to a complete-block design that balanced both carry-over 

and presentation order effects. Consumers described the strawberry samples using 16 CATA 

attributes. The test was performed in Spanish; the English translations of the evaluated attributes 

were sweet, sour, strawberry flavor, strawberry odor, flavorsome, tasteless, red color, irregular 

shape, regular shape, small, big, firm, hard, soft, juicy, dry. Complete data were obtained from 114 

consumers. The strawberry CATA data from this study have also been analyzed elsewhere (e.g. 

Meyners & Castura, 2014; Meyners & Hasted, 2021a, 2021b; and Bi & Kuesten, 2021). Llobell et al. 

(2019a) demonstrated the CLUSCATA method for clustering consumers using this data set, which is 

publicly available in the R package ClustBlock (Llobell, Vigneau, Cariou & Qannari, 2020). 

3.7. Software 

Data analyses were conducted in R 4.1.1 (R Core Team, 2021) and using functions provided in the R 

package cata (Castura, 2021). We completed b-cluster analyses with 𝐺 = {2, … ,5} clusters with 

500 random starts without benchmarking runtimes. Later, we ran b-cluster analyses with two 

clusters; total running time to complete these 10,000 analyses was approximately 153 h on a virtual 

machine running Windows 10 Pro (version 21H1, build 19043.1237) with dedicated resources of one 

core (Intel® Xeon® Silver 4114 CPU, 2.19 GHz) and 10 GB RAM hosted in Hyper-V on a Dell 

PowerEdge T440 tower server. The average time to complete one such analysis was 55 s. CLUSCATA 

was conducted using the R package ClustBlock version 2.3.1 (Llobell et al., 2020) using the 

CLUSCATA algorithm (Section 3.4). To visualize CATA results per cluster for the best solutions, we 

conducted MR-CA and visualized results using the R package MultiResponseR (Mahieu, 2021). 

The adjusted Rand index (𝐴𝑅𝐼; Hubert & Arabie, 1985) is a chance-corrected comparison of the 

agreement of clustering results that ranges from 0 (no agreement beyond chance) to 1 (perfect 

agreement). 𝐴𝑅𝐼 was calculated using the R package mcclust (Fritsch, 2012). 

4. Results 

4.1. Revisiting Paradoxes 1 and 2 with b-cluster analysis 

In Table 6, we show all calculations for b-cluster analysis of the toy data sets from Tables 1 and 3. For 

the “paradox 1” results in Table 1, a two-cluster solution maximizes 𝐵𝐺 by placing C1 in one cluster 

and C2 and C3 together in another cluster. For the “paradox 2” results in Table 3, a two-cluster 

solution maximizes 𝐵𝐺 by placing C4 in one cluster and C5 and C6 together in another cluster. 

Calculations for the best solutions are provided (e-Component Suppl. Tables S1 and S2). In both 

cases, the two consumers who are clustered together satisfy the expectations stated at the 

beginning of Section 2. Recall that the conventional similarity coefficients in Tables 2 and 4 do not 

cluster consumers in this manner. They cluster C1 and C3, which nullifies the sensory differentiation 

for this pair of consumers (see Table 6), and cluster C4 and C6, who both have high elicitation rates, 

but also real disagreement.  
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Table 6. Results from b-cluster analysis with 𝐺 = 2 for results in Table 1 (columns 1 & 2) and Table 3 

(columns 3 & 4). Results are whole numbers as shown (not rounded). The solutions for each data set 

are ordered best (largest 𝐵𝐺) to worst. (Calculations for the best solutions are shown in Suppl. Tables 

S1 & S2.) 

 Table 1  Table 3 

𝒃(C1) + 𝒃(C2,C3) 4 + 7 = 11 𝒃(C4) + 𝒃(C5,C6) 10 + 18 = 28 

𝑏(C3) + 𝑏(C1,C2) 4 + 3 = 7 𝑏(C5) + 𝑏(C4,C6) 10 + 12 = 22 

𝑏(C2) + 𝑏(C1,C3) 3 + 0 = 3 𝑏(C6) + 𝑏(C4,C5) 8 + 0 = 8 

 

4.2. b-cluster analysis of the strawberry data 

If each consumer is placed in a singleton cluster (𝐺 = 114), then no sensory differentiation is lost 

and  𝐵𝐺=114 = 9230. If all consumers are in one big cluster (𝐺 = 1), then 𝐵𝐺=1 = 1150. The 

implication is that a solution without clustering retains only 12.5% (=1150/9230) of the sensory 

differentiation in this data set. We calculated the best solution from b-cluster analysis based on 500 

random starts specifying 𝐺 = 2, … ,5. Fig. 1 shows the variation in 𝛥𝐵𝐾→𝐺% over the last four 

changes in the number of clusters. With so few clusters, sensory differentiation is eroded with each 

reduction in the number of clusters (each 𝛥𝐵𝐾→𝐺 > 0%). At the far left, we see that the absolute 

and relative loss in sensory differentiation is largest when the number of clusters is reduced from 

two to one. Using a two-cluster solution instead of a solution without clustering provides a fairly 

large benefit (𝛥𝐵2→1% = 46.5%). A solution with three clusters does not bring the same size of 

benefit (𝛥𝐵3→2% = 22.0%), but whether the additional complexity of the solution is justified or 

useful depends on the objectives of a project and its analysis. For brevity, only the two-cluster 

solution will be characterized in Section 4.6, whereas the four-cluster solution will only be discussed 

briefly in Section 4.4 to allow comparison with the results from CLUSCATA reported by Llobell et al. 

(2019a).  
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Fig. 1. Relative change in sensory differentiation (𝛥𝐵𝐾→𝐺%, heavy line; primary x, y axes on the left, 

bottom) and percentage of sensory differentiation retained (%𝐵; light line; secondary x, y axes on 

the top, right) for b-cluster analysis of the strawberry data. The two-cluster solution is emphasized. It 

retains 23.3% of the total sensory differentiation vs. 12.5% in the solution without clustering. 

 

Next, we conducted b-cluster analysis with 𝐺 = 2 and 10,000 random starts. We chose the best two-

cluster solution, which was identical to the best solution that we obtained from only 500 random 

starts. On average, it took 62.5 iterations from a random start to reach a solution; the number of 

iterations required were 54 and 69 at the first and third quartiles, respectively.  

The best solution was observed in 21.4% of the 10,000 runs; however, 266 other unique solutions 

were observed. Some of these solutions differ markedly from the best solution. The top six solutions 

were observed in more than half (55.6%) of the runs; these solutions retained at least 23.2% of the 

sensory differentiation, which was almost the same as the best solution. The raw agreement in 

cluster membership between the best solution and each of the five next-best solutions was 82% or 

higher (e-Component Suppl. Fig. S1), and product configurations for the best-matched cluster 

pairings were similar to the best solution (average 𝑅𝑉 > 0.97; see e-Component Suppl. Fig. S2). So, 

if by chance the best solution was not observed, a near-best suboptimal solution would have 

strongly resembled solution that we used. Regardless, we recommend running b-cluster analysis 50 

to 100 times with random starting cluster membership allocations to avoid settling for a suboptimal 

solution. 

Although we chose a two-cluster solution, we noticed that solutions with more than two clusters 

were more sensitive to the initial (random) cluster membership allocations. For example, the best 

solutions with three, four, and five clusters were only observed in 10, 2, and 1 out of 500 runs, 
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respectively. If we recreate Fig. 1 using the average 𝐵𝐺 values from 500 runs instead of the best 𝐵𝐺 

values, the plot characteristics are similar (in particular, 𝛥𝐵𝐾→𝐺% drops much more sharply for 2 →

1 than for any other 𝐾 → 𝐺) and would lead us to select the same two-cluster solution. However, if 

settling on a larger 𝐺, then using more  (random) initial configurations is recommended to get 

(closer) to an optimum solution.  

The iterative ascent algorithm anticipated the possibility of ties, but we found that every run at 

every 𝐺 ended without a tie, such that any additional transfer would reduce 𝐵𝐺 and erode the 

quality of the solution. 

4.3. CLUSCATA results 

The strawberry data were also submitted to CLUSCATA cluster analysis. Based on Hartigan’s index, 

we chose a two-cluster solution, even though a four-cluster solution based on this data set was 

described in an earlier publication (Llobell, 2019). By design, and unlike b-cluster analysis, the 

CLUSCATA algorithm is deterministic, i.e. a particular data set always produces the same cluster 

analysis solution (Section 3.4). 

4.4. Comparison of solutions 

Table 7 shows association matrices for the two- and four-cluster solutions from CLUSCATA (rows) 

and b-cluster analysis (columns). Counts on the main diagonal indicate the cluster allocation 

agreement between the cluster allocations from the two cluster analysis methods. The results show 

that the two cluster analysis methods produced different results. The association matrix for the 

respective two-cluster solutions (top left) indicates that any agreement between the methods might 

be due to chance alone (𝐴𝑅𝐼 = 0.00). The association matrix for the respective four-cluster 

solutions (bottom right) also indicates that any agreement might be due to chance alone (𝐴𝑅𝐼 =

0.00). Cluster memberships from the best two-cluster solution and the best four-cluster solution are 

not strongly similar within b-cluster analysis (𝐴𝑅𝐼 = 0.30) nor within CLUSCATA (𝐴𝑅𝐼 = 0.33). This 

seems reasonable since there is no reason to believe, a priori, that the best two-cluster solution 

should be obtained by simply merging clusters from the best four-cluster solution. 

 

Table 7. Association matrices showing the two- and four-cluster solutions from both b-cluster 
analysis and CLUSCATA. Total counts of consumers in the respective clusters are given in the margins. 
 

 
 

b-cluster analysis 
𝐺 = 2 

 b-cluster analysis 
𝐺 = 4 

   

  𝑔1  𝑔2  𝑔1  𝑔2  𝑔3  𝑔4   Total 

CLUSCATA 
𝐺 = 2 

𝑔1 40  32           72 
𝑔2 20  22           42 

CLUSCATA 
𝐺 = 4 

𝑔1     10  9  4  9   32 
𝑔2     11  14  7  5   37 
𝑔3     6  9  11  7   33 
𝑔4     1  6  4  1   12 

 Total 60  54  28  38  26  22   114 
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In Table 8, we consider the quality of the b-cluster analysis and CLUSCATA solutions based on the 

two- and four-cluster solutions. We also show results for the solution without clustering, which 

provides a baseline. 

 

Table 8. Summary of results from b-cluster analysis and CLUSCATA for two- and four-group solutions 

along with a summary of results without clustering. Cluster order is the same as shown in Table 7. 

[𝐼𝑔: cluster size; 𝑏𝑔: sensory differentiation (Section 3.2.1); �̅�𝑔: elicitation rate; Signif. Dim.: number of 

significant dimensions as determined by the 𝜒𝑀𝑅
2  test (Section 3.5); 𝐻𝑔: homogeneity (Section 3.4); 

𝐻𝐺: overall homogeneity (Section 3.4); 𝐷𝑔: within-group sensory discrimination (Section 3.3.1); %𝐵𝑮: 

sensory differentiation retained (Section 3.2.2); 𝑚𝑖𝑛 (𝑁𝑅𝑔𝑔′): minimum non-redundancy (Section 

3.3.2); mean(𝑅𝑉𝑔𝑔′): average 𝑅𝑉 between clusters (Section 3.2.4); 𝐷𝑖𝑣𝐺: overall diversity (Section 

3.3.3).] 

 𝐺 = 1  𝐺 = 2  𝐺 = 4 

 
No 

clustering 
 b-cluster 

analysis 
CLUSCATA 

 
b-cluster analysis CLUSCATA 

𝐼𝑔 114  60, 54 72, 42  28, 38, 26, 22 32, 37, 33, 12 

𝑏𝑔 1150  934, 1214 880, 865  789, 1144, 785, 547 632, 733, 595, 308  

�̅�𝑔 0.29  0.29, 0.29 0.30, 0.27  0.29, 0.30, 0.30, 0.29 0.32, 0.31, 0.29, 0.19 

Signif. Dim. 5  4, 5 4, 5  4, 5, 5, 4 5, 4, 5, 4 
𝐻𝑔 37%  39%, 40% 41%, 37%  41%, 43%, 42%, 42% 45%, 44%, 38%, 42%  

𝐻𝐺  37%  39% 39%  42% 42% 
𝐷𝑔 34%  28%, 39% 28%, 22%  24%, 40%, 26%, 13% 18%, 23%, 18%, 0% 

%𝐵𝐺 12.5%  23.3% 18.9%  35.4% 24.6% 

min(𝑁𝑅𝑔𝑔′) n/a  26% 20%  18% 8% 

mean(𝑅𝑉𝑔𝑔′) n/a  0.31 0.56  0.45 0.63 

𝐷𝑖𝑣𝐺  17%  30% 24%  40% 25% 

 

First, we consider the two-cluster solutions shown in Table 8. Cluster 𝑔2 from b-cluster analysis 

matches CLUSCATA 𝑔2 better (𝑅𝑉 = 0.74) than CLUSCATA 𝑔1 (𝑅𝑉 = 0.58), but b-cluster analysis 

𝑔1 matches both 𝑔1 and 𝑔2 from CLUSCATA equally well (𝑅𝑉 = 0.48). The two 𝑔1 clusters are 

larger in size (60 and 72) than the two 𝑔2 clusters (54 and 42). Although CLUSCATA 𝑔1 is larger and 

retains more sensory differentiation than b-cluster analysis 𝑔1, these two clusters are similar in 

within-cluster sensory discrimination. Compared with CLUSCATA 𝑔2, the b-cluster analysis 𝑔2 

discriminates the cultivars better (𝐷𝑔 is 77% higher; 39/22=1.77) and retains 40% more sensory 

differentiation (𝑏𝑔; 1214/865=1.40). In b-cluster analysis, 𝑔2 discriminates at least one cultivar pair 

on every attribute, whereas 𝑔1 fails to discriminate any cultivar pairs on big or strawberry flavour.  

In CLUSCATA, 𝑔1 fails to discriminate any cultivar pairs on firm and dry; 𝑔2 fails to discriminate any 

cultivar pairs on irregular shape or strawberry flavour. The two CLUSCATA clusters characterize the 

cultivars in a more redundant manner than the two clusters from b-cluster analysis (based on 

min(𝑁𝑅𝑔𝑔′) and mean(𝑅𝑉𝑔𝑔′)). Overall, the solution from b-cluster analysis captures more sensory 

diversity (𝐷𝑖𝑣𝐺) than the CLUSCATA solution (25%; 30/24=1.25). Both two-cluster solutions will be 

explored further in Section 4.6. 
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Since the aim of the paper is methodological, we also show the respective four-cluster solutions in 

Table 8 even though these clusters are probably too small to be commercially relevant. Both cluster 

analysis methods split consumers into four clusters with similar homogeneities. The b-cluster 

analysis solution retains more sensory differentiation (𝐵𝑔) and is more discriminating (𝐷𝑔). It has 

33% more diversity than the two-cluster solution (40/30=1.33) and more than twice the diversity of 

the solution without clustering (40/17=2.35). Collectively, the diversity of the four-cluster CLUSCATA 

solution (25%) does not even achieve the diversity of the b-cluster analysis solution with two clusters 

(30%), let alone that of its four-cluster b-cluster analysis solution (40%). One reason is that in b-

cluster analysis, every cluster achieves at least 18% non-redundancy with some other cluster, which 

is larger than every pair of CLUSCATA clusters. The multivariate correlation in the product 

configuration is relatively high for some pairs of clusters in CLUSCATA (𝑅𝑉𝑔3,𝑔4 = 0.87,𝑅𝑉𝑔2,𝑔3 =

0.67, 𝑅𝑉𝑔2,𝑔4 = 0.65). Cluster 𝑔2 from the four-cluster b-cluster analysis solution captures similar 

information as both CLUSCATA 𝑔3 (𝑅𝑉 = 0.85) and CLUSCATA 𝑔4 (𝑅𝑉 = 0.69), and has some 

overlap with CLUSCATA 𝑔2 (𝑅𝑉 = 0.59). Taken together, b-cluster analysis yields a more diverse, 

more discriminating, and less redundant solution than does CLUSCATA. 

Finally, the best solutions in Table 8 were compared with solutions obtained by randomly allocating 

consumers to clusters. Specifically, we generated 106 two-cluster solutions each with (i) group sizes 

identical to the best b-cluster analysis solution, (ii) group sizes identical to the best CLUSCATA 

solution, and (iii) without restriction on group sizes, respectively. The 𝐵𝐺 for the best two-cluster 

solutions from both b-cluster analysis and CLUSCATA were higher than all of the randomly generated 

two-cluster solutions. We also generated the same number of four-cluster solutions in an analogous 

manner. Again, the 𝐵𝐺 for the best four-cluster solutions from both b-cluster analysis and CLUSCATA 

were higher than all of the randomly generated four-cluster solutions. These results illustrate the 

effectiveness of these cluster analysis algorithms, and especially b-cluster analysis, to identify cluster 

memberships that retain sensory differentiation. 

4.5. Revisiting the paradoxes in the strawberry data 

In Section 2, we used toy data sets to show that conventional similarity coefficients tend to group 

consumers with high overall citation rates and produce clusters that might not differentiate 

products. We also showed that the clusters obtained from b-cluster analysis differentiate products 

(Section 4.1). But we do not find compelling evidence that CLUSCATA clustered heavy-checking 

consumers together. Citation rates are similar in most of the clusters. The 30 consumers (26%) with 

the highest citation rates are allocated to clusters more evenly in b-cluster analysis (split 15:15) than 

in the CLUSCATA solution (22:8). Ten of these 30 consumers had checked every product for at least 

one attribute, and they were split 6:4 by b-cluster analysis and 10:0 by CLUSCATA. However, these 

outcomes seem unremarkable because they are roughly proportional to their respective cluster 

sizes.  

4.6. Cluster-wise characterization of products in the two-cluster solutions 

In both two-cluster solutions, the six strawberry cultivars are well discriminated (Section 4.4). The 

MR-CA biplots for Dimensions 1 vs. 2 and Dimensions 3 vs. 4 (Figs. 2-5) show the strawberry cultivars 

overlaid with their 95% confidence ellipses. The first component in each plot is associated with 

strawberry ripeness. Subsequent components are related to other factors, including shape, size, and 
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texture. In the two-cluster solution from b-cluster analysis, the confidence ellipses overlap more for 

𝑔1 (Fig. 2) and less for 𝑔2 (Fig. 3), consistent with the finding that they are less and more 

discriminating, respectively (see 𝐷𝑔 in Table 8). In the CLUSCATA two-cluster solution, the 

confidence ellipses overlap more for 𝑔1 (Fig. 4) than for 𝑔2 (Fig. 5), even though the within-cluster 

sensory discrimination was higher for 𝑔1 than for 𝑔2 (Table 8). 

The MR-CA biplots show similarities and differences between 𝑔1 (Fig. 2) and 𝑔2 (Fig. 3) from b-

cluster analysis. Within each of these clusters, the first two MR-CA components extract 80% of the 

total inertia (total sum of squares) and the four components shown extract more than 97% of the 

total inertia in both cases. Both of these clusters characterize Yvahé strawberries as relatively small 

and irregularly shaped, Guenoa as relatively soft, K31.5 as relatively sour and dry, and Yurí as 

relatively hard, sour, and dry, and tasteless. Differences also exist; for example, 𝑔1 characterizes 

Festival strawberries as relatively flavoursome and sweet with strawberry odor, whereas 𝑔2 

characterizes these strawberries as relatively firm, sour, dry, hard, and tasteless. Yurí strawberries 

are characterized relatively more often as dry by 𝑔1 than by 𝑔2. Cluster 𝑔1 characterizes Festival 

strawberries as ripe and Yurí and K31.5 as not ripe, whereas 𝑔2 characterizes Guenoa and L20.1 

strawberries as ripe and Festival strawberries as not ripe. Overall, we find that 𝑔1 and 𝑔2 both 

differentiate the cultivars, but each cluster does so using different attributes. 

In CLUSCATA clusters 𝑔1 and 𝑔2, MR-CA extracts 82% and 63% of total inertia in the first two 

components, respectively, and more than 95% of the total inertia in the four components shown 

(Figs. 4-5). Both CLUSCATA clusters characterize Festival strawberries as relatively sour, Yvahé as 

small, Yurí as relatively hard and tasteless, Guenoa as relatively juicy and soft, L20.1 as big, and K31.5 

as relatively sour and having a regular shape. The clusters differ in the following attributes used to 

characterize the cultivars. Cluster 𝑔1 describes K31.5  as dry, whereas 𝑔2 does not. Cluster 𝑔2 

characterizes Yvahé as relatively juicy and regular shaped and separates it from Yurí, which is 

characterized as relatively firm and dry; 𝑔1 does not discriminate these cultivars quite as well and 

finds both of these cultivars to be relatively small and irregular shaped. Cluster 𝑔2 also discriminates 

more strongly between Guenoa (soft) and Festival (small) cultivars, whereas 𝑔1 is less discriminating 

of these cultivars, and does not discriminate them all in the first plane. Both clusters characterize 

Yurí and K31.5 as having characteristics associated with lack of ripeness, each with a different focus. 

Festival is characterized as ripe by 𝑔1, but not by 𝑔2. Although 𝑔2 has lower homogeneity, fewer 

consumers, and lower within-cluster sensory discrimination than 𝑔1 (Table 8), it retains more 

sensory differentiation per cluster member. This might be one reason why the MR-CA plots show 

that 𝑔2 (Fig. 5) separates the strawberry cultivars better than 𝑔1 (Fig. 4).  
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Fig. 2. MR-CA biplots for cluster 𝑔1 from b-cluster analysis with 95% confidence ellipses for the 

strawberry cultivars (1) Festival, (2) Yvahé, (3) Yurí, (4) Guenoa, (5) L20.1, (6) K31.5.  
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Fig. 3. MR-CA biplots for cluster 𝑔2 from b-cluster analysis with 95% confidence ellipses for the 

strawberry cultivars. (1) Festival, (2) Yvahé, (3) Yurí, (4) Guenoa, (5) L20.1, (6) K31.5.  
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Fig. 4. MR-CA biplots for cluster 𝑔1 from CLUSCATA, with 95% confidence ellipses for the strawberry 

cultivars. (1) Festival, (2) Yvahé, (3) Yurí, (4) Guenoa, (5) L20.1, (6) K31.5. 
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Fig. 5. MR-CA biplots for cluster 𝑔2 from CLUSCATA, with 95% confidence ellipses for the strawberry 

cultivars. (1) Festival, (2) Yvahé, (3) Yurí, (4) Guenoa, (5) L20.1, (6) K31.5. 
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Although the 𝐷𝑔 results (Table 8) may give the impression that discrimination in clusters from b-

cluster analysis is uniformly better, this is not the case. The CLUSCATA clusters discriminate fewer 

cultivar pairs and attributes overall, but they successfully discriminate every cultivar pair on at least 

one attribute. Not so in b-cluster analysis: 𝑔1 fails to discriminate Guenoa from Yvahé and neither 

cluster discriminates Guenoa from L20.1. In the MR-CA biplot from both types of cluster analysis, the 

95% confidence ellipses of the cultivars are well separated in at least one MR-CA plane (Figs. 2-5), 

suggesting that every cluster achieves multivariate discrimination. Here we also note that the 

attribute vector lengths in all of these plots are roughly proportional to the number of cultivar pairs 

discriminated (Figs. 2-5).  

In the first MR-CA plane, big is important for CLUSCATA 𝑔1 and more closely associated with 

ripeness attributes (Fig. 4) than b-cluster analysis 𝑔1 (its best-matching cluster if clusters were 

paired exclusively; see Section 4.4), in which interpretation of big provides almost no value (Fig. 2). 

Only in the second plane do we find big associated with dry and the L20.1 cultivar in b-cluster 

analysis. In the first MR-CA plane, CLUSCATA 𝑔2 (Fig. 5) separates all but the Festival and Yurí 

cultivars based mainly on visual (shape, size) and textural (soft, firm, hard, juicy) attributes. It was 

previously noted that cluster 𝑔2 from b-cluster analysis was especially discriminating; Fig. 3 shows 

that nearly all of the attribute vectors for this cluster have similar lengths in the first MR-CA plane 

such that together they discriminate the six strawberry cultivars. 

 5. Discussion  

We initially implemented b-cluster analysis using a hierarchical clustering algorithm (available in 

Castura, 2021), in which consumers each start in a singleton cluster, then pairs of clusters are 

merged to maximize the retained sensory differentiation at each iteration. These results are not 

presented here because the non-hierarchical iterative ascent algorithm, which we propose, 

produces much better clustering solutions. For example, in 10,000 runs, the best two-cluster 

solution from the iterative ascent algorithm was realized in 21.4% of runs and retained 23.3% of 

sensory differentiation. By contrast, the best two-cluster solution from the hierarchical algorithm 

retained only 20.5% of sensory differentiation and was observed in only 1.8% of runs. One reason 

that the best hierarchical cluster analysis solution is found infrequently is that when equally good 

mergers are possible, one of these mergers is made randomly. Once merged, consumers are never 

split again, so each merger has long-ranging implications. Then, when we initialized the iterative 

ascent algorithm with the final cluster memberships from each of the solutions obtained by the 

hierarchical algorithm, we found that the best iterative ascent solution was reached in only 2.0% of 

the runs, and it was not reachable if using the cluster memberships from the best hierarchical 

solution as a starting point (e-Component Suppl. Table S3). This means that there was often no path 

from the best hierarchical cluster analysis solutions to the best solution using the b-cluster analysis 

algorithm. A limitation of hierarchical cluster analysis is that it assumes nesting of cluster analysis 

solutions across varying numbers of clusters, i.e. the best two-cluster solution is found by merging 

two clusters from the best three-cluster solution, which in turn is found by merging two clusters 

from the best four-cluster solution, and so on. The assumption might hold if the clustering structure 

is very clear, but we see no reason to believe this assumption would hold generally. It constrains the 

range of solutions that can be obtained, which apparently leads to the relatively poor performance 

https://doi.org/10.1016/j.foodqual.2022.104564


Clustering consumers based on product discrimination in check-all-that-apply (CATA) data  24 
JC Castura, M Meyners, P Varela, T Næs  
  

PREPRINT – see the published manuscript in Food Quality and Preference for all quotes and citations 
https://doi.org/10.1016/j.foodqual.2022.104564  

that we observed. These findings are mentioned because they may have broader implications for the 

routine use of cluster analysis in sensory evaluation.  

Improvement of b-cluster analysis might be achieved by algorithmic refinements inspired by 

simulated annealing (Kirkpatrick, Gelatt & Vecchi, 1983) or some other adaptation of the Metropolis-

Hastings algorithm (Metropolis et al., 1953). The iterative ascent algorithm in Section 3.2 often yields 

a solution that, based on its 𝐵𝐺 value relative to the other 𝐵𝐺 values observed, is known to be a local 

maximum, not a global maximum. We tried slight algorithmic changes that did not yield a solution 

that was better than the best solution that we reported, but we cannot rule out the possiblity that a 

better solution exists. More work is needed to investigate whether algorithmic refinements can 

achieve a better outcome or a similar outcome at lower computational cost. Based on the insights 

that we have so far, we recommend to use computing resources for runs from random starts rather 

than more complex algorithms. 

Our study of the initialization effect was always done using the same 114 consumers. Thus, the 

results tell us how reliably the iterative ascent algorithm converged to the best solution for this data 

set. The recommended number of runs that is likely to lead to the best solution at least once is 

determined based on these results. Obviously, this initialization study investigates only the 

sensitivity of the algorithm to the random initial memberships, not the reproducibility of the study 

results with new consumers.  

Other authors have grappled with challenges related to paradoxes described in Section 2. Llobell et 

al. (2019a) identified that CLUSCATA agreement tends to decline as the number of attributes 

increases. Llobell et al. (2019b) proposed running Cochran’s 𝑄 test per attribute (Meyners et al., 

2013; Cochran, 1950) across all consumers, then setting non-discriminating attributes aside when 

conducting the cluster analysis. Dropping non-discriminating attributes might also seem to resolve 

Paradox 1 (Section 2.1) since dropping Attribute 1, which none of the consumers differentiated in 

the toy data set, would resolve the paradox. However, in another data set, it is possible that 

subgroups of consumers will differentiate products systematically yet in contradictory ways, such 

that the attribute is non-discriminating if all consumers are pooled. If this attribute was dropped, 

then an attribute that is relevant to the clustering structure will be lost. Also, significance of 

discrimination is usually a function of sample size, so the approach might drop attributes due to lack 

of statistical significance from an underpowered study even when the differences in that attribute 

might be consumer-meaningful. Llobell et al. (2019a) also sought to reduce the outsized influence of 

heavy-checking consumers on a CLUSCATA solution. They partially address the problem by 

normalizing each consumer’s responses (Section 3.4). In b-cluster analysis, the situation is different: 

the most influential consumers are those who are the most differentiating, and the most 

differentiating consumers of all are those who check as close as possible to half of the products for 

every attribute (Appendix A.1). Since Paradox 2 (Section 2.2) deals conceptually with what 

constitutes disagreement, it also concerns what constitutes agreement. Llobell et al. (2019a) discuss 

why elicitation agreement (denoted 𝑐11) is more relevant than non-elicitation agreement (denoted 

𝑐00), and suggest alternative approaches that might be explored, such as using the Faith index (Faith, 

1983). In b-cluster analysis, agreement is defined differently (Section 3.2): elicitation agreements for 

two consumers might be discounted entirely if they occur on attributes that do not differentiate the 

products.  
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When working on b-cluster analysis, we discovered another method that also seems to resolve the 

paradoxes that we described in Section 2. It is based on the 𝜑-coefficient, which for binary data is 

identical to Pearson’s product-moment correlation coefficient and Spearman’s rank correlation. 

Meyners et al. (2013) use the 𝜑-coefficient to investigate the association between two binary 

variables. If we instead measure the association between two consumers via the 𝜑-coefficient, then 

we can construct an 𝐼 × 𝐼 table in which entries are 1 − φ dissimilarities between pairs of 

consumers. Cluster analysis can then be conducted on the dissimilarity matrix. For brevity, the 

results are not presented here, but association matrices for cluster memberships based on 1 − φ 

dissimilarities vs. cluster memberships from b-cluster analysis as well as from CLUSCATA indicate 

that very different solutions are obtained. It is also possible that a sum of Cochran’s 𝑄 test statistics 

(Meyners et al., 2013; Cochran, 1950) can be used in place of the 𝑏-measure in Eq. (2) for a different 

cluster analysis (Castura, 2021). The mixture of latent trait models with common slope parameters 

for multivariate binary data (Tang, Browne & McNicholas, 2015), which also incorporates elicitation 

thresholds into the model but in a different way, might be adapted to cluster consumers on their 

multivariate CATA data. Research into these and other clustering approaches could prove useful. 

Additionally, the b-cluster analysis approach as we have presented it here could be extended to 

analyze other types of data, including continuous, ordinal, and ranking data. 

In this paper, we have discussed the clusters as if they were related mainly to the consumers’ 

perception of the samples. But strawberries are an agricultural product, and the fruits of these 

plants are inherently variable. Even plants with similar genetics and growing conditions may yield 

strawberries that differ in sensory properties due to the timing of the harvest (ripeness), the location 

on the plant, the soil micro-conditions, and other factors. It is possible that the consumers were 

clustered according to the particular sensory characteristics of the strawberry samples that were 

presented to them for evaluation by the researchers. For example, in b-cluster analysis, cluster 𝑔1 

characterizes the Festival cultivar as flavoursome and sweet, whereas 𝑔2 characterizes this cultivar 

as tasteless and sour (Section 4.6). If Festival samples were highly variable, some flavoursome and 

sweet and others tasteless and sour, then the sample that the researcher served to a particular 

consumer would strongly influence the consumer’s perceptions as well as the cluster membership 

allocation. If different consumers evaluate samples of a particular product that are non-equivalent, 

then cluster memberships will be driven by these within-product sample differences rather than, or 

in addition to, true differences in consumer perception. Perhaps this is not always a major concern if 

the purpose of the study is to size a market opportunity. However, if the researcher will make 

associations between the cluster membership and other types of consumer data (e.g. demographic, 

socio-economic, attitudinal, behavioural factors) then some or all of these “insights” might be 

spurious. Previously, it has been pointed out that serving order, which is known and thus easily 

investigated, can influence hedonic scores and subsequent preference cluster memberships 

(Hottenstein, Taylor & Carr, 2008). If the cluster memberships are influenced by serving non-

equivalent samples of the same product to consumers, then these sample-to-sample differences are 

often unknown. Without appropriate replication or potential measures suitable to either measure or 

improve homogeneity of the samples, it is impossible to determine whether the consumer 

differences observed are due to consumer perception or sample heterogeneity. Here, we note that 

our goal is merely to present the b-cluster analysis method for finding consumer clusters, not to 

determine why the clusters that we find exist. The concerns we raise regarding variability of samples 

extends to any cluster analysis, not only b-cluster analysis. In many sensory applications, products 
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are manufactured rather than agricultural; samples of such products can often be assumed to be 

less variable than the samples of the strawberry cultivars in this data set. Future work should thus 

focus on applying the b-cluster analysis in cases where samples of a particular product or treatment 

are relatively similar to one another and sample sets have varying degrees of product-to-product 

differences.  

6. Conclusions 

In this paper, we identified two paradoxes that can occur when grouping consumers based on 

conventional similarity coefficients. The first paradox is that grouping the most similar consumers 

has the potential of nullifying within-group sensory differentiation. The second paradox is that 

consumers who check many attributes yet have real disagreements are identified as being similar. 

The CLUSCATA method is based on one such similarity coefficient.  

Then we proposed a new approach for clustering consumers based on their CATA data, which we call 

b-cluster analysis. Its clustering strategy aims to maximize the retained sensory differentiation. We 

show that the paradoxes that we identified do not occur in b-cluster analysis. We submitted a real 

CATA data set to both CLUSCATA and b-cluster analysis and found that b-cluster analysis performed 

better in terms of within-group sensory discrimination and non-redundancy of the groups. This 

result makes sense: CLUSCATA focuses on similarity in characterization, as do many cluster analyses. 

By contrast, b-cluster analysis focuses on similarity in product differentiation, which seems relevant 

yet, as far as we know, has not been considered previously. This shows a point that might not be 

broadly appreciated, which is that a cluster analysis solution is often influenced not only by what 

data are submitted to clustering (e.g. which attributes and products are chosen for the study), but 

also which clustering algorithm is used.  

Appendix A.1 

This appendix gives properties of the 𝑏-measure when there are 𝐽 products and one consumer 

evaluates one attribute (A.1.1), when 𝑁 consumers evaluate one attribute (A.1.2), when 𝑁 

consumers evaluate 𝑀 attributes (A.1.3), and when 𝐼 consumers are each allocated to one of 𝐺 

clusters (A.1.4). In what follows, let 1𝐽∈{𝑜𝑑𝑑} = 1 if 𝐽 is odd and 0 otherwise. 

A.1.1. 𝑏-measure for one consumer on one attribute ― Each consumer can only give one of two 

possible responses to each product: not checked (0) or checked (1). Whenever 𝐽 > 2, one or more 

products will have the same response, called a tie. In general, a consumer who checks 𝐽1 products 

and does not check 𝐽 − 𝐽1 products differentiates  

∑ ∑ |𝛥|𝑗𝑗′
𝑗−1
𝑗′=1

𝐽
𝑗=2 = 𝐽1(𝐽 − 𝐽1)        (A.1.1) 

product pairs. The result of Eq. (A.1.1) is also the 𝑏-measure for this consumer and attribute. If 𝐽1 =

0 or 𝐽1 = 𝐽, then the consumer responds the same way to all products and differentiates none of the  

𝐽(𝐽 − 1)/2 product pairs. The consumer can differentiate at most (𝐽2 − 1𝐽∈{𝑜𝑑𝑑}) 4⁄  pairs, which is 

realized when the consumer checks as close as possible to half of the products. 

A.1.2. 𝑏-measure for 𝑁 consumers on one attribute ― The non-discriminating result 𝑏 = 0 can only 

be obtained if every 𝛥 = 0, in which case every 𝑍2 = 0. (We define 𝛥 in Section 3.2.1, and note 
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there that 𝑍2 = 0 when 𝑛 = 0.) This outcome occurs due either to consumer disagreement or to 

consumer non-differentiation. If 𝑁 consumers all differentiate a product pair in the same way, then 

for this product pair 𝑍2 = 𝑁. If none of the 𝑁 consumers differentiates the products, then 𝑍2 = 0 

(Section 3.2.1). If 𝑁 consumers differentiate one product from the other 𝐽 − 1 products in an 

identical manner, then 𝑏 = 𝑁(𝐽 − 1). If 𝑁 consumers differentiate (𝐽 + 1𝐽∈{𝑜𝑑𝑑})/2 products from 

the other (𝐽 − 1𝐽∈{𝑜𝑑𝑑})/2 products (i.e. as close as possible to half of the products) in an identical 

manner, then 𝑏 = 𝑁(𝐽2 − 1𝐽∈{𝑜𝑑𝑑}) 4⁄ , which is the largest possible value.  

A.1.3. 𝑏-measure for 𝑁 consumers on 𝑀 attributes ― The smallest 𝑏-measure for 𝑀 attributes is 𝑏 =

0, which is only realized if 𝑏 = 0 for every attribute. The maximum value is obtained only if the 

maximum value is obtained for all 𝑀 attributes. Thus, the range of possible outcomes is  

0 ≤ 𝑏 ≤ 𝑁𝑀(𝐽2 − 1𝐽∈{𝑜𝑑𝑑}) 4⁄ .      (A.1.2) 

A.1.4. Sum of 𝑏-measures for 𝐼 consumers split into 𝐺 groups ― If 𝐼 consumers are split into 𝐺 

groups of size 𝐼𝑔, 𝑔 = 1, … , 𝐺, then each group’s 𝑏-measure, denoted 𝑏𝑔, has the range indicated in 

Eq. (A.1.2), where 𝑁 = 𝐼𝑔. Since ∑ 𝐼𝑔
𝐺
𝑔=1 = 𝐼, the sum of 𝑏-measures across the 𝐺 groups has the 

range 

0 ≤ ∑ 𝑏𝑔
𝐺
𝑔=1 ≤ 𝐼𝑀(𝐽2 − 1𝐽∈{𝑜𝑑𝑑}) 4⁄      (A.1.3) 

regardless of 𝐺 or how the 𝐼 consumers are split. The maximum value is realized if the 𝐼𝑔 consumers 

in every group agree perfectly and the numbers of elicitation and non-elicitations differ at most by 1 

for every consumer and every attribute. This would be an extraordinary occurrence if it ever 

happens in practice. 

Although the range of ∑ 𝑏𝑔
𝐺
𝑔=1  is the same regardless of the number of clusters, the sum 

 𝐵𝐺 = ∑ 𝑏𝑔
𝐺
𝑔=1 = ∑ ∑ ∑ ∑ 𝑍𝑔𝑗𝑗′𝑚

2𝑗−1
𝑗′=1

𝐽
𝑗=2

𝑀
𝑚=1

𝐺
𝑔=1     (A.1.4) 

will tend to be smaller when 𝐺 is small.  

When 𝐺 = 𝐼, each consumer forms a singleton cluster and there is no within-cluster disagreement. 

In this case, the numerator of Eq. (1) is either 0 or 1, so |𝛥|𝑔𝑗𝑗′𝑚 = 𝛥𝑔𝑗𝑗′𝑚
2 = 𝑛𝑔𝑗𝑗′𝑚, with 𝑛𝑔𝑗𝑗′𝑚 

being the quantity 𝑛 = 𝑛10 + 𝑛01 defined earlier for attribute 𝑚 and products 𝑗 and 𝑗′ in cluster 𝑔. 

For any data set, the sum 𝐵𝐺 = ∑ 𝑏𝑔
𝐺
𝑔=1  is maximized for 𝐺 = 𝐼 since only here is 𝐵𝐺 =

∑ ∑ ∑ ∑ 𝑛𝑔𝑗𝑗′𝑚
𝑗−1
𝑗′=1

𝐽
𝑗=2

𝑀
𝑚=1

𝐺
𝑔=1 . The reason is that no consumers are grouped, so every 

differentiating response contributes to 𝐵𝐺 (since no differentiating responses cancel each other out). 

Whenever 𝐺 < 𝐼, some consumers are grouped. If different consumers contribute differentiating 

responses that disagree with other consumers who are in the same group 𝑔, then the inequalities in 

𝑍𝑔𝑗𝑗′𝑚
2 ≤ 𝑛𝑔𝑗𝑗′𝑚 ≤ 𝑁𝑔𝑗𝑗′𝑚 are strict. This shows why we expect 𝐵𝐺 to decrease as the number of 

clusters decreases and the number of consumers per cluster increases. 

Appendix A.2 

This appendix describes how the quantities presented in Section 3.3 are calculated. Some properties 

are also given. 
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A.2.1. Within-cluster product discrimination (𝐷𝑔) ― The percentage of product comparisons that are 

discriminated by consumers in group 𝑔 is given in Eq. (7). The dominator, 𝑀𝐽(𝐽 − 1)/2, indicates the 

number of tests conducted. It is redundant to test both 𝑗 ≠ 𝑗′ and 𝑗′ ≠ 𝑗, and unnecessary to test 

𝑗 ≠ 𝑗. Thus, for each of 𝑀 attributes, there are 𝐽(𝐽 − 1)/2 paired comparisons. The smallest possible 

result is 𝐷𝑔 = 0%. Although the largest possible result is 𝐷𝑔 = 100%, this result cannot be obtained 

when consumers agree perfectly. The reason is that if all 𝑁 consumers in group 𝑔 agree perfectly 

and in how they differentiate products and 𝑁 is large enough to detect differences, then 𝐷𝑔 is fully 

determined by the number of products. The reason is that for binary data, consumers who agree 

perfectly can discriminate at most 𝑆𝑔 = 𝑀(𝐽2 − 1𝐽∈{𝑜𝑑𝑑})/4 product pairs, thus 

   𝐷𝑔 = {

(𝐽+1)

2𝐽
       if J is odd

𝐽

2(𝐽−1)
   if J is even.

       (A.2.1) 

For the strawberry data (𝐽 = 6), the largest possible value for perfectly agreeing consumers is 𝐷𝑔 =

60%. 𝐷𝑔 can only be higher if there is disagreement in how the consumers differentiate products, 

yet the effective sample size (𝑛) remains relatively high to provide reasonable power for the tests 

within groups. Of course, 𝐷𝑔 can be lower if there is disagreement in how the consumers 

differentiate products or if statistical power is low since too few consumers differentiate the 

products. The implication is that it is not necessarily possible to maximize both within-cluster 

product discrimination and within-cluster agreement simultaneously.  

A.2.2. Between-cluster non-redundancy (𝑁𝑅𝑔𝑔′) ― The percentage of non-redundant discriminating 

test results in groups 𝑔 and 𝑔′ is given in Eq. (8). The denominator, 𝑀𝐽(𝐽 − 1), indicates the number 

of test outcomes evaluated. Both 𝑗 < 𝑗′ and 𝑗′ > 𝑗 are tested, but 𝑗 is not tested against itself. Thus, 

for each of 𝑀 attributes, there are 𝐽(𝐽 − 1) paired comparisons. Since 𝑁𝑅𝑔𝑔′  cannot be larger than 

𝐷𝑔 + 𝐷𝑔′ , possible values range from 0% to 100%. 𝑁𝑅𝑔𝑔′  is calculated for all 𝐺(𝐺 − 1)/2 group 

comparisons, but only the smallest 𝑁𝑅𝑔𝑔′  is reported. The reason is that a low 𝑁𝑅𝑔𝑔′  value may 

indicate that a solution has two clusters that provide redundant information.  

A.2.3. Overall diversity or coverage (𝐷𝑖𝑣𝐺) ― The percentage of unique directionally discriminating 

test results that are observed across the solution is given in Eq. (9). As above, the denominator, 

𝑀𝐽(𝐽 − 1), indicates the number of test outcomes evaluated. It is obvious that a group can 

discriminate either 𝑗 > 𝑗′ and 𝑗 < 𝑗′, not both. So the largest possible 𝐷𝑖𝑣𝐺 is 100% if 𝐺 ≥ 2, but 

only 50% if 𝐺 = 1. The smallest possible 𝐷𝑖𝑣𝐺 is 0% but it cannot be smaller than max(𝐷𝑔) /2 taken 

across all G groups. 
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e-Component 

Suppl. Fig. S1. Sensory differentiation retained (%𝐵; y axis) vs. cumulative proportion of 10000 b-

cluster analyses that retain at least the sensory differentiation indicated (x axis). Raw agreement 

between each unique solution vs. the best two-cluster solution (top right, indicated by “100”) is 

indicated numerically for each result.  
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e-Component 

Suppl. Fig. S2. The 𝑅𝑉 coefficient for the best solution’s two clusters and the closest matching two 

clusters from unique solutions (y axis) is plotted against the sensory differentiation retained (x axis). 

The best solution vs. itself is also included (𝑅𝑉 = 1; top right).  
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e-Component 

Suppl. Table S1. Calculations for the best solution shown in Table 6 for raw data from Table 1. 

Cluster Attribute Sample Pair 𝑛10 𝑛01 𝑍2 𝑏𝑔 

C1 1 P1,  P2 1 1 0  
C1 1 P1,  P3 1 1 0  
C1 1 P1,  P4 1 1 0  
C1 1 P2,  P3 1 1 0  
C1 1 P2,  P4 1 1 0  
C1 1 P3,  P4 1 1 0  
C1 2 P1,  P2 1 1 0  
C1 2 P1,  P3 1 0 1  
C1 2 P1,  P4 1 0 1  
C1 2 P2,  P3 1 0 1  
C1 2 P2,  P4 1 0 1  
C1 2 P3,  P4 0 0 0  

𝒃(C1)    4 

C2,C3 1 P1,  P2 1 1 0  

C2,C3 1 P1,  P3 1 1 0  

C2,C3 1 P1,  P4 1 1 0  

C2,C3 1 P2,  P3 1 1 0  

C2,C3 1 P2,  P4 1 1 0  

C2,C3 1 P3,  P4 1 1 0  

C2,C3 2 P1,  P2 0 0 0  

C2,C3 2 P1,  P3 0 1 1  

C2,C3 2 P1,  P4 0 2 2  

C2,C3 2 P2,  P3 0 1 1  

C2,C3 2 P2,  P4 0 2 2  

C2,C3 2 P3,  P4 0 1 1  

𝒃(C2,C3)   7 

𝒃(C1) + 𝒃(C2,C3)   11 
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Suppl. Table S2. Calculations for the best solution shown in Table 6 for raw data from Table 3. 

Cluster Attribute Sample Pair 𝑛10 𝑛01 𝑍2 𝑏𝑔 

C4 3 P5,  P6 0 0 0  

C4 3 P5,  P7 0 0 0  

C4 3 P5,  P8 0 0 0  

C4 3 P5,  P9 1 0 1  

C4 3 P6,  P7 0 0 0  

C4 3 P6,  P8 0 0 0  

C4 3 P6,  P9 1 0 1  

C4 3 P7,  P8 0 0 0  

C4 3 P7,  P9 1 0 1  

C4 3 P8,  P9 1 0 1  

C4 4 P5,  P6 0 0 0  

C4 4 P5,  P7 0 0 0  

C4 4 P5,  P8 1 0 1  

C4 4 P5,  P9 1 0 1  

C4 4 P6,  P7 0 0 0  

C4 4 P6,  P8 1 0 1  

C4 4 P6,  P9 1 0 1  

C4 4 P7,  P8 1 0 1  

C4 4 P7,  P9 1 0 1  

C4 4 P8,  P9 0 0 0  

𝒃(C4)    10 

C5,C6 3 P5,  P6 0 1 1  

C5,C6 3 P5,  P7 0 1 1  

C5,C6 3 P5,  P8 0 1 1  

C5,C6 3 P5,  P9 0 2 2  

C5,C6 3 P6,  P7 0 0 0  

C5,C6 3 P6,  P8 0 0 0  

C5,C6 3 P6,  P9 0 1 1  

C5,C6 3 P7,  P8 0 0 0  

C5,C6 3 P7,  P9 0 1 1  

C5,C6 3 P8,  P9 0 1 1  

C5,C6 4 P5,  P6 0 1 1  

C5,C6 4 P5,  P7 0 1 1  

C5,C6 4 P5,  P8 0 2 2  

C5,C6 4 P5,  P9 0 2 2  

C5,C6 4 P6,  P7 0 0 0  

C5,C6 4 P6,  P8 0 1 1  

C5,C6 4 P6,  P9 0 1 1  

C5,C6 4 P7,  P8 0 1 1  

C5,C6 4 P7,  P9 0 1 1  

C5,C6 4 P8,  P9 0 0 0  

𝒃(C5, C6)   18 

𝒃(C4)+ 𝒃(C5, C6)   28 
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Suppl. Table S3. The hierarchical agglomerative b-cluster analysis algorithm yielded 39 unique 

solutions after 10,000 runs. The final cluster memberships from each of these unique solution were 

used as starting point for 10 runs of the non-hierarchical iterative ascent b-cluster analysis algorithm 

(described in Section 3.2). From each starting point, the 10 runs converged on the same solution. The 

sensory differentiation retained is reported. The hierarchical solution and the non-hierarchical 

solutions that retain the most sensory differentiation are emphasized (in bold italics). The best 

solution overall was only achieved when starting from the cluster memberships produced by one (the 

13th best) of the 39 solutions from the hierarchical agglomerative algorithm. 

Hierarchical solution 
 

After b-
cluster 

analysis 

 
Hierarchical solution 

 
After b-
cluster 

analysis 
 

Rank 𝐁G=2 

Observed 
Frequency 

/10000 
 𝐁G=2  Rank 

 
𝐁G=2 

Observed 

Frequency 
/10000 

 𝐁G=2    
1 1888.986 182  1988.593  21 1791.568 207  2121.715 

2 1878.476 224  2142.815  22 1788.838 185  2036.398 

3 1848.182 206  2142.815  23 1787.853 442  2142.815 

4 1846.482 222  2057.662  24 1785.445 443  2057.662 

5 1839.096 235  2086.377  25 1783.379 241  2143.668 

6 1838.545 201  2086.377  26 1782.202 200  1978.892 

7 1837.604 213  2093.550  27 1779.341 205  2145.912 

8 1836.788 429  2142.815  28 1774.063 213  2121.715 

9 1834.564 235  2142.815  29 1766.942 194  2123.195 

10 1830.030 211  2145.912  30 1765.732 214  2145.912 

11 1824.112 199  2142.815  31 1763.094 184  2142.815 

12 1821.981 223  2118.120  32 1759.773 190  2142.815 

13 1817.530 198  2147.665  33 1757.844 227  2078.950 

14 1814.625 193  2142.815  34 1746.985 199  2142.815 

15 1807.171 815  2086.377  35 1739.508 200  2078.950 

16 1804.362 198  2142.815  36 1728.529 211  1944.106 

17 1801.815 382  2019.062  37 1726.192 435  2118.120 

18 1796.695 409  2143.668  38 1721.318 234  2142.815 

19 1793.182 198  2145.912  39 1699.873 190  2123.195 

20 1792.536 213  2142.815       
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