
Submitted Paper

Applied Spectroscopy
2022, Vol. 76(5) 559–568
© The Author(s) 2022

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/00037028211056931
journals.sagepub.com/home/asp

Feasibility of In-Line Raman Spectroscopy for
Quality Assessment in Food Industry: How
Fast Can We Go?

Tiril Aurora Lintvedt1, Petter V. Andersen1, Nils Kristian Afseth1, Brian Marquardt2,
Lars Gidskehaug3, and Jens Petter Wold1

Abstract
Raman spectroscopy is a viable tool within process analytical technologies due to recent technological advances. In this article,
we evaluate the feasibility of Raman spectroscopy for in-line applications in the food industry by estimating the concentration of
the fatty acids EPA + DHA in ground salmon samples (n = 63) and residual bone concentration in samples of mechanically
recovered ground chicken (n = 66). The samples were measured under industry like conditions: They moved on a conveyor belt
through a dark cabinet where they were scanned with a wide area illumination standoff Raman probe. Such a setup should be
able to handle relevant industrial conveyor belt speeds, and it was studied how different speeds (i.e., exposure times)
influenced the signal-to-noise ratio (SNR) of the Raman spectra as well as the corresponding model performance. For all
samples we applied speeds that resulted in 1 s, 2 s, 4 s, and 10 s exposure times. Samples were scanned in both heterogenous
and homogenous state. The slowest speed (10 s exposure) yielded prediction errors (RMSECV) of 0.41%EPA + DHA and
0.59% ash for the salmon and chicken data sets, respectively. The more in-line relevant exposure time of 1 s resulted in
increased RMSECV values, 0.84% EPA +DHA and 0.84% ash, respectively. The increase in prediction error correlated closely
with the decrease in SNR. Further improvements of model performance were possible through different noise reduction
strategies. Model performance for homogenous and heterogenous samples was similar, suggesting that the presented Raman
scanning approach has the potential to work well also on intact heterogenous foods. The estimation errors obtained at these
high speeds are likely acceptable for industrial use, but successful strategies to increase SNR will be key for widespread in-line
use in the food industry.
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Introduction

According to the United Nations, the percentage of food lost
after harvesting and during transport, storage and processing is
estimated to be 13.8% globally.1 It is suggested that the pro-
duction costs could be lowered and the efficiency of food
systems increased if targeted interventions at critical stages of
the value chain are implemented. Detailed in-line spectroscopic
measurements of food raw materials can provide means for
increased raw material utilization and ensuring stable product
quality. Previously, several applications of near-infrared spec-
troscopy (NIRS) for evaluation of food products in the industry
have been successfully realized, for example, rapid determi-
nation of edible meat content in crabs,2 in-line fat distribution
analysis of salmon fillets3 and detection of woody breast

syndrome in chicken fillets.4 However, NIRS has limitations in
chemical resolution because absorptions originate from
overtones and combination modes which overlap intricately.5

In situations where higher chemical specificity is needed, one
option is to use Raman spectroscopy, which is based on
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fundamental transitions and do not suffer from overlapping
bands to the same extent. This can for instance be seen in
spectra of fish oil as shown by Bekhit et al.6 Raman spec-
troscopy is becoming a viable tool within process analytics due
to recent technological advances. Low-cost Raman instruments
are available and instrumental advances provide a new degree of
versatility. The potential of in-line Raman applications have been
demonstrated in several areas, such as in the pharmaceutical
and bioprocessing domain, as reviewed by Esmonde-White
et al.7 However, the literature on Raman spectroscopy for in-
line food evaluation is scarce, although the possibilities within
the food industry are undoubtedly many. In addition, the existing
studies on Raman-based strategies for reaction monitoring and
control is often based on analysis of continuous and homogenous
sample streams, while reported studies on in-line evaluation of
single products moving along a conveyor belt is to a huge part
lacking. The latter situation is frequently encountered in the food
industry.

A prerequisite for in-line Raman applications is proper and
representative optical sampling tools, and a development of
particular interest in this respect is wide area illumination
probes. This approach utilizes a defocused laser combined
with multiple collection fibers, resulting in larger measure-
ment areas and insensitivity to smaller variations in working
distance.8 This optical setup is suitable for measurements of
food samples in a surface scanning mode. Recent work9–12

demonstrates the potential for a surface scanning setup for
food evaluation. Andersen et al. showed the applicability of
Raman spectroscopy for bulk composition analysis of het-
erogenous foods. However, they used rather long exposure
times ranging from 60 s to 80 s and pointed out that sampling
speed could be a limitation for applications where single
samples need to be analyzed in real-time. In other applications,
Raman spectroscopy may give satisfactory measurements
within milliseconds given the adequate laser power. In con-
trast, foods often have low Raman signals and may be damaged
by exposure to higher laser powers, making in-line food
applications more challenging.

One potential in-line application in the food industry is the
evaluation of ground meat from the mechanical deboning
process of rest-raw material of chicken, where remaining
meat on the carcasses after filleting is separated from the
bones. Perfect separation of bone and meat is not achieved,
and the content of finely ground bone in the meat fraction is
regulated.13 In-line monitoring and control of the bone
concentration is yet to be implemented, but Wubshet et al.10

recently showed that Raman spectroscopy potentially could
be used to quantify bone contents in these samples. Another
relevant application is in-line determination of omega-3 fatty
acids in salmon. Due to reported health effects, fatty acid
composition is an important quality parameter in the market.
NIRS has been successfully used for determination of total fat
content in whole salmon fillets14 and estimation of omega-3 fatty
acids in pure fish oils is promising.15,6 Brown et al.16 reported
that eicosapentaenoic acid (EPA) and docosahexaenoic acid

(DHA) could be determined in salmon by NIR spectroscopy,
but their calibration were less successful for intact salmon
cutlets than for minced salmon and they suggest that the
obtained performances are acceptable for rough approxi-
mation only. In addition, it is not clear whether the calibrations
relied on measurements of the actual fatty acids or just a
covariation with total fat as discussed by Eskildsen et al.17

Raman spectroscopy is a promising tool for compositional
analysis of fatty acids,18–21 and in-line determination of omega-3
fatty acids in fillets can expand the opportunities for product
differentiation. Furthermore, the implementation of such a
spectroscopic sorting system on an industrial basis can provide
the means for a rapid and affordable mapping of how feeding
regimes affect the final fatty acid composition in the fish.

The main aim of this work was to evaluate the feasibility of
Raman spectroscopy for in-line evaluation of complex foods,
and to elucidate how fast a product can pass by on the conveyor
belt while still obtaining a spectrum of sufficient signal-to-noise
ratio (SNR) and acceptable modeling errors. This was inves-
tigated for sample sets based on (i) chicken rest-raw material
from the mechanical deboning process and (ii) ground salmon
belly trims. We used an industry relevant setup, applying the
surface scanning strategy on samples moving along a conveyor
belt. As food samples in general are heterogenous, we also
aimed to confirm that the heterogeneity of the sample surface is
not necessarily a limitation for a Raman scanning system.We did
this by comparing prediction performance on heterogenous
and homogenous versions of the same samples.

Material and methods

Raw Materials

Chicken Samples. Chicken samples came from a mechanical
deboning process of rest-rawmaterial of chicken. In this process,
the remaining meat on the carcasses after filleting is separated
from the bone fragments, resulting in two fractions: The me-
chanically debonedmeat (MDM), containingmostlymeat, and the
mechanical deboning residues (MDR) containing mostly bone.
Batches of MDM and MDR were provided by a poultry pro-
cessing plant (Bioco, Nortura Hrland, Norway) and subsequently
frozen. The batches were then ground in frozen state and used to
make five different base blends with different bone concentra-
tions. These blendsweremade bymixing groundMDMandMDR
in different ratios, according to the following shares

A : 100%MDR
B : 20%MDMþ 80%MDR
C : 50%MDMþ 50%MDR
D : 80%MDMþ 20%MDR
E : 100%MDM

Each sample was then made by combining four sub-samples
of the available base blends A–E into the positions 1–4 in
different arrangements in a rectangular sample holder
(30 cm × 3 cm) as indicated in Fig. 1. This sample arrangement
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was scanned with the Raman system. The aim of the ar-
rangements was to create samples with different bone con-
centrations and varying heterogeneity. The bone content
typically covaries with fat content in this kind of material. To
reduce this correlation and to avoid overoptimistic modeling
results, a fat-rich sub-sample (ground chicken skin) of varying
size was added randomly to each sample (Fig. 1). A total of 66
different samples were made, spanning a realistic range of bone
content. The samples were first measured as heterogenous
compositions of base blends, then homogenized (Retsch Knife
Mill Grindomix GM 200, 7000 rpm for 6 s twice with a stir in
between) and measured again in the same sample holder. Five
samples which consisted of only one base blend were not
homogenized. The samples were made consecutively and the
base blends were kept in a cold room (�1°C–0 °C) throughout
the whole experiment. Smaller portions of the blends were
taken out to the experiment room (room temperature) at a
time, to reduce possible temperature effects.

Salmon Samples. The samples were based on homogenized
belly trims from 52 salmons acquired from three farming
locations. Different feeding regimes were used on the dif-
ferent farming locations. Before homogenization (Retsch
Knife Mill Grindomix GM 200, 7000 rpm for 3 s), the bellies
were stored at (�1 °C–0 °C) to prevent liquid loss and lipid
oxidation. The target for these samples was the concentration
of omega-3 fatty acids EPA and DHA. To obtain an even
distribution of fatty acid concentration in the sample set, 11
additional samples were made of 50/50 combination of two
samples of the original set of 52. Those two sub-samples were
placed side by side in the sample holder (Fig. 1). The total
number of samples was then 63.

Reference Measurements

Reference analyses of the chicken samples were carried out by
an external laboratory (ALS Laboratory Group, Oslo, Norway).
Measurements for ash concentration (percent of wet weight)
were carried out by gravimetric analysis (BS 4401 Part 1 1998
Commision Regulation (EC) 152/2009 MU 6,5%), and reference
measurements for fat concentration (percent of wet weight)
were carried out using pulsed nuclear magnetic resonance
(NMR) analysis (MU 6.5%). Analyses of the salmon samples were
carried out by BioLab (Bergen, Norway). Measurements of EPA
and DHA concentration applied the reference standard AOCS
Ce 1b-89 (methyl esterification capillary gas chromatography
with a flame ionization detector or GC-FID), and was expressed
as a percentage of the total amount of fatty acids (FA) in the
analyzed sample. For all reference analyses the mean of two
parallel sample measurements was reported.

Measurements and Data Analysis

Raman Measurements. For spectral acquisition, we employed a
MarqMetrix all-in-one (AIO) Raman system equipped with a
785 nm laser operating at 450 mW power. The sampling optic

used with the AIO was a wide area illumination (D = 3 mm),
Proximal BallProbe HV standoff Raman probe with optimal
working distance 8–10 cm (MarqMetrix Inc., Seattle, WA,
USA). The probe was placed inside a tube structure in a dark
cabinet on a conveyor belt, as shown in Fig. 2. The tube
structure was perfectly fitted around the probe. The dark
cabinet, designed for reducing ambient light, was a steel cabinet
of 100 cm length and 5.2 cm height with black coating inside.
For each measurement the Raman laser and signal acquisition
were activated by a trigger system which relied on a laser
sensor (CMOS laser sensor LR-ZB90CB from Keyence) for
detection of a block placed beside the sample on the belt.

Each sample was placed on a plate covered with aluminum
foil. The foil was used to prevent disturbing signals from the
plastic conveyor belt upon potential imperfect sample trig-
gering. Samples were passed through the dark cabinet and
scanned at belt speeds 0.3 m/s, 0.15 m/s, 0.075 m/s, and 0.03 m/
s. Corresponding exposure times were 1 s, 2 s, 4 s, and 10 s,
respectively. The belt speedwas tuned and controlled by using a
contact tachometer (Tachometer PCE-DT 65 from PCE In-
struments). Two technical replicates were measured for all
samples and exposure times. Homogenized chicken samples
weremeasured only for 2 s and 10 s exposures, for comparison
with measurements on the corresponding heterogenous
samples. Salmon samples were measured only in homogenized
version, except for the 11 additional combination samples
which were measured only in heterogenous state.

Pre-Processing.Chicken and salmon spectra were pre-
processed using Savitzky–Golay (SG) smoothing (polynomial

Figure 1. Sample composition scheme for chicken (a) and the 11
salmon combination samples (b). A fat-rich species F of varying size
was placed at a random position in the chicken samples.

Figure 2. Spectrum acquisition setup consisting of a dark cabinet
(a), wide area illumination standoff Raman probe (b) and a moving
sample (c) on a conveyor belt.
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order 2 and window size 9)22 followed by extended multipli-
cative signal correction (EMSC)23,24 employing up to the sixth
order polynomial and the asymmetric least squares (ALS)
algorithm25,26 for baseline correction of the EMSC reference
spectrum. The ALS reference spectrum correction employed a
smoothing parameter of 5.8 (λ) and an asymmetric weighting
parameter (of the residuals) of 0.01 (p). Pre-processing was
applied on the full data sets, including all exposure times.
Subsequently, the data sets were organized into separate ex-
posure time subsets for data modeling.

Data Modeling. The Raman shift range 520 cm�1–

1800 cm�1 was utilized in the data modeling for both data sets.
Partial least squares regression (PLSR)27,28 was used for
calibration development. We established models for ash
concentration in chicken samples (proxy for bone content)
and EPA + DHA concentration for salmon samples. Note that
EPA and DHA concentrations were not estimated separately,
but as a joint concentration value. The PLSR models were
validated by cross-validation (CV) where replicate measure-
ments were held out in the same segment to avoid overfitting.
The reason for not averaging the replicates was to keep the
prediction conditions as close to an in-line situation as pos-
sible. The choice of number of latent variables for the PLS
modeling was based on a simple criterion using a 3% punish
factor, as described by Westad and Martens.29 Noise re-
duction and improvement in the model performance was
attempted for the shorter exposure time subsets (4 s, 2 s, and
1 s) through variable selection employing the significance
multivariate correlation (sMC) method.30 For selection of
variables in the 1 s exposure data, we applied sMC on the 2 s
exposure data, and for selection of variables in the 2 s ex-
posure data, sMC on the 4 s exposure data was used, and so
on. This was to avoid overfitting. The results were compared
with the corresponding calibrations based on the full spec-
trum (642 channels). Another method we investigated for
noise reduction was averaging of in-line replicates. To evaluate
this strategy, cross-validated PLSR models were obtained for
three versions of the exposure time subsets; one version
where the two spectrum replicates were averaged, one where
replicate number 1 was selected as a representative for each
sample and one where replicate number 2 was selected as a
representative for each sample. We report the average
performance of the two single-replicate versions as a rep-
resentative for a single-measurement system.

The chicken samples were used to compare the per-
formance of regression models on heterogenous samples
versus homogenous samples. This comparison was con-
ducted with CVANOVA,31–33 a two-way analysis of variance
(ANOVA) of cross-validation errors. In total five samples
which consisted of only one base blend were excluded from
this analysis, since these were not homogenized. The
ANOVA was carried out in Python version 3.7, Anaconda3
distribution (Anaconda, Austin, TX). All other data analysis
was carried out in Matlab version R2020a (The MathWorks,
Natick, MA). The data that support the findings of this study

are available from the corresponding author, upon rea-
sonable request.

Signal-to-Noise Ratio. Calculation of SNR was based on the
ratio between the average spectrum intensity and the standard
deviation of the estimated noise, similar to Guo et al.34 An
SNR value was calculated for each spectrum using Eq. 1.

SNR ¼ meanðIÞ
sdðInÞ (1)

where I is the spectrum intensity and In is the estimated noise
intensity. Noise was estimated as the difference between the
spectrum and the smoothed version of the same spectrum,
using SG with polynomial order 2 and window size 9. The SNR
was compared across exposure times and data sets, and we
have reported the average SNR of each exposure time subset
(pre-processed versions).

Results and Discussion

Spectral Data

Figure 3 shows that there was a more prominent fluorescence
background in the chicken spectra compared to the salmon
spectra. This was expected since bone matrices are prone to
fluoresce.10 The fluorescence naturally increased with higher
exposure times. From the pre-processed spectra (Fig. 4), the
chemical bands are more easily distinguished. The chicken
spectra consist mainly of bands associated with fatty acids (e.g.,
1080, 1267, 1302, and 1441 cm�1).19,20 The peak at
1658 cm�1 may be associated with both the Amide I band
related to proteins and the olefinic stretch related to fatty
acids,19,20 which overlap. More importantly, another prom-
inent peak at 960 cm�1 is associated with phosphate (ν1PO3�

4 ), a
well known bone mineral.10,35 The salmon spectra are domi-
nated by bands associated with fatty acids, similar to the chicken
spectra. The most pronounced peaks are located in the region
above 1200 cm�1. This includes the bands at 1267 cm�1 and
1658 cm�1 which may be assigned to the Olefinic hydrogen
bend and the Olefinic stretch, respectively, of which both can
be related with unsaturated modes.19,20 Peaks related to sat-
urated modes, that is, at 1302 cm�1 and 1441 cm�1, can be
assigned to the methylene twisting deformations and the
Methylene scissor deformations, respectively.19,20 In the region
below 1200 cm�1, two noticeable peaks are located at
1004 cm�1 and 1080 cm�1, which originate from the aromatic
ring breathing of phenylalanine, and the liquid aliphatic C–C
stretch in gauche, respectively.19,20 Another important peak at
935 cm�1 is most likely related to the alkene C–H deformation
in polyunsaturated fatty acid moieties.36,37

Implication of Conveyor Belt Speed

Figure 4 shows pre-processed spectra at different exposure
times for both sample sets. As indicated, the SNR clearly
decreased with higher scanning speed. Note also that the
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spectra from chicken had considerably lower SNR than those
from salmon. Hence, in this context the chicken measure-
ments represent low SNR spectra, while the salmon mea-
surements represent high SNR spectra. The regression results
for both sample sets and all exposure times are summarized in
Fig. 5 (see additional results in the Supplemental Material).
There was a clear trend in performance as function of ex-
posure time for both sample sets, and as expected we ob-
tained higher root mean square errors (RMSECV) for shorter
exposure times. This was in essence due to lower SNR, as
apparent from the strong negative correlations between these

two (r = �0.96 for chicken and r = �0.99 for salmon).
Nevertheless, the models based on different exposure times
overall showed the same chemical signatures in the regression
vectors (Fig. 6), which was encouraging. Note, however, that
as the exposure time decreased, the most pronounced re-
gions in the regression vectors became less weighted.

The exposure time of 10 s was regarded a best case
reference and represented a rather slow conveyor belt speed,
while the 1–2 s exposure times represented highly relevant
conveyor belt speeds. With respect to model performance,
there seemed to be a critical exposure time limit around

Figure 3. Raw spectra from chicken (a) and salmon samples (b), colored according to exposure time.

Figure 4. Pre-processed sample spectra from chicken (a) and salmon (b) for all exposure times T.
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3 s–4 s. The graphs (Fig. 5) indicate that higher exposure times
gave only a marginal increase in performance, while decreasing
the exposure time below this limit had a more detrimental
effect. Such critical limits will vary depending on the food
properties related to Raman scattering cross sections and for
different target compounds. For instance, measurements on
low fat salmon muscle might increase the critical exposure
time limit due to weaker signals and lower SNR. Although the
estimation errors obtained at the lower exposure times in
these particular cases are close to acceptable for industrial
use, the rapid decrease in performance below 3 s–4 s il-
lustrates that it would be a definitive advantage with de-
velopments on instrument sensitivity and other efforts on
SNR optimization. In spite of the overall higher SNR levels
and the same relative decrease in SNR from 4 s to 2 s, there
was a more dramatic effect on the model performance for
salmon than chicken (Fig. 5). This may be because the %ash
model relies mainly on a single peak while the %EPA + DHA
model relies on more subtle spectroscopic changes in several
peaks, as can be seen from the regression coefficients in Fig.
6. This emphasizes that the critical SNR level in a predictive
might system depend on the complexity of the model.

In the closely related work by Wubshet et al.,10 where a
Raman system (standoff probe, 785 nm, spot size 6 mm) was
utilized for %ash estimation in similar chicken samples, an
RMSECV of 0.63% (of wet weight) was obtained with an ac-
cumulation time of 15 s × 4. We obtained a corresponding
RMSECV with 4 s exposure, which emphasize that the sampling
strategy employed in this study performs very well. Considering
that the exposure time was significantly decreased from 10 s to
1 s, the resulting error increase of only 0.2% is promising, also
taken into account that the error in the reference measure-
ments of ash concentration was 6.5% of measured value, similar
to the modeling error. The reference uncertainty gives a limit
for how well our model can perform. However, one should

consider in more detail the implication of the exposure time
reduction on the model itself. The main observation (Fig. 5) was
a decrease in number of latent variables (LVs) going from 2 s to
1 s exposure time, indicating that we lose some information by
employing an exposure time of 1 s. The regression vectors in
Fig. 6 clearly show that predictions are mainly based on the
mineral band at 960 cm�1. Moreover, it can be noted that fat
associated peaks are not prominent in the chicken model re-
gression vectors, and the correlation between %fat and %ash
reference values (r =�0.65) is not critical.

The regression coefficients for the %EPA + DHA models
(Fig. 6) show that the main positively correlated peaks are at
935 cm�1, 1264 cm�1, and 1663 cm�1. The first is most likely
related to the alkene C–H deformation in polyunsaturated fatty
acid moieties.36,37 The two latter can be associated with other
unsaturated modes.20,19 The main negatively correlated peaks
are at 1004 cm�1, 1081 cm�1, 1305 cm�1, and 1443 cm�1, of
which the two latter can both be associated with saturated fatty
acids.20,19 In such PLSR models there will always be some
uncertainty with respect to indirect modeling on other con-
stituents which co-vary with the analyte, as discussed thor-
oughly by Eskildsen et al.17 In this sample set, reference values
for %EPA + DHA did not correlate strongly with total poly-
unsaturated fatty acids (r = 0.40), but correlations were more
evident with total monounsaturated fatty acids (r =�0.77) and
total saturated fatty acids (r = 0.88). However, peaks associated
with unsaturated modes are clearly important for the model.
All peaks mentioned above are visible in models based on
different exposure times. However, the more subtle details
visible in the 10 s exposure model are gradually more com-
promised with decreasing exposure time. Additionally, the
models of exposure times below 4s have a decreasing com-
plexity with respect to number of LVs (Fig. 5). This reinforces
the impression that we lose information by decreasing expo-
sure time below the critical exposure time around 3 s–4 s.

Figure 5. Model performance metrics across different exposure times for ash estimation in chicken (a) and EPA+DHA estimation in salmon
(b). We show the RMSECV (solid line) and the coefficient of determination (R2

CV in dashed line). The number of latent variables (LV)
employed for each calibration is indicated.
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Reduction of Noise

Since SNR is the main limiting factor for model performance,
three different strategies for noise reduction were investi-
gated for potential improvement. Variable selection was
motivated by the apparently uninformative regions in the
regression vectors (Fig. 6) which could possibly contribute
with noise. Cross-validated results with applied sMC variable
selection are summarized in Table I. The effect on the per-
formance was moderate for 4 s and 2 s exposure times for
both chicken and salmon, but resulted in a reduction in
number of LVs in the models, which indicate more robust
models. For 1 s exposure time, the effect of variable selection
on the performance was slightly more pronounced in both
chicken and salmon data.

Another possible strategy to increase SNR is to place two
instruments in series on the conveyor belt and make pre-
dictions based on average spectra. In Table II we compare
the average performance based on the two single-replicate
versions of the data sets to the replicate-average versions.
For both chicken and salmon, the effect of replicate aver-
aging was evident. For chicken, the effect was particularly
apparent for 1s exposure time, where the RMSECV de-
creased by 0.18 %ash. For salmon, the effect was more
evenly pronounced across exposure times, with an RMSECV
decrease around 0.1 %EPA + DHA for the 1 s–4 s exposures,
while the impact for the 10 s exposure was less discernible.
Note that in most cases, the effect of replicate averaging was
approximately the same as doubling the exposure time for
the single-replicate set.

From another practical perspective, products on the
conveyor belt may vary in size and it might be desirable to
adjust exposure time according to product size in order to
optimize the SNR for each product. To investigate if mea-
surements from different exposure times can be used in the
same calibration, we applied the 10 s exposure model on the
shorter exposure data (4 s, 2 s, and 1 s) in a cross-validation
scheme. Two replicates were held out of all exposure time
subsets for each validation segment, where a model was built
on the 10 s exposure data and applied on the held out
samples of the shorter exposure data. The number of LVs
included in the models were predefined as three for %ash

Figure 6. Regression vectors for PLSR models for ash in chicken (a) and EPA+DHA in salmon (b) for all exposure times T.

Table I. PLSR results for ash in chicken (% of wet weight) and
EPA+DHA in salmon (% of total FA) before and after variable
selection.

Full spectrum Selected variables

Exp. time RMSECV LVa RMSECV LV No. variablesb

Chicken
1 s 0.84 2 0.76 2 199
2 s 0.70 3 0.68 2 204
4 s 0.63 3 0.61 2 211

Salmon
1 s 0.84 2 0.78 2 217
2 s 0.71 3 0.70 2 192
4 s 0.51 4 0.53 2 217

aLatent variables.
bNumber of selected variables.
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and four for %EPA + DHA estimation. Results are sum-
marized in Table III. The two data sets showed very similar
results when basing predictions on the 10 s exposure model
as when applying the original cross-validation scheme for the
separate exposure time subsets. Thus, it indicates that a
model built on 10 s exposure time measurements works just
as well for the spectra of 1 s exposure. This demonstrates
that smaller variations in exposure time between samples are
not critical to the performance of the system. A pre-
processing step involving spectral normalization is essen-
tial for this approach to work. One practical instrument issue
when varying exposure times may be the occurrence of
mismatch between acquired spectra and dark spectra.

Strategies to tackle this, either through pre-processing or
practical solutions, should be considered.

Impact of Heterogeneity on the Raman
Scanning Measurements

The results from CVANOVA showed that the differences in
cross-validation errors for homogenized and heterogenous
chicken samples were not significantly different for either the
2 s or 10 s exposure times (p-values of 0.47 and 0.36, re-
spectively). This indicates that the heterogeneity itself is not a
major challenge for the scanning strategy. However, it should
be noted that the sample surfaces in this experiment were
representative for the sample bulk composition and that the
heterogeneity of certain intact foods such as fish fillets is more
complex. Due to the still limited sampling volume of a Raman
scan, it is important to consider appropriate sampling strat-
egies in more detail when we encounter heterogeneity in
several dimensions of a product (e.g., in depth and transverse
to the scanning direction). An important step for suggesting a
robust sampling regime in such situations is to map the
composition profile of the product. In this work, we used
chicken samples with carefully designed heterogeneity and
salmon samples which were homogenous. Nevertheless, the
results provide a useful insight towards determining the
feasibility of a Raman surface scanning strategy, also for intact
and more heterogenous products like salmon fillets.

Conclusion

We have shown that spectra obtained from in-line Raman
scanning of single chicken and salmon samples have sufficiently
high quality for exposure times ranging from 10 s to 1 s. With
appropriate strategy developments, it is viable to use a wide area
illumination standoff Raman probe for fast in-line evaluation of %
ash and %EPA + DHA in complex foods. The SNR clearly de-
creases with higher scanning speeds, and it was evident from
model performances that SNR is a critical parameter. Efforts to
optimize SNR in a given system is therefore important. This can
be achieved through instrument improvements, variable selec-
tion and also by strategies based on flexible exposure times or
using Raman instruments in series. Furthermore, we confirmed
that the heterogeneity of the sample surface is not necessarily a
limitation for the scanning strategy, but for food products where
heterogeneity is more complex, it is likely important to consider
individual sampling strategies.
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Table II. PLSR results for ash in chicken (% of wet weight) and
EPA+DHA in salmon (% of total FA), using (i) only one of the
replicates for each sample and (ii) the mean of two replicates.

One selected replicate Replicate average

Exp. time RMSECVavg LVa RMSECV LV

Chicken
1 s 0.88 2 0.70 3
2 s 0.68 3 0.62 3
4 s 0.62 3 0.53 3
10 s 0.58 3 0.51 3

Salmon
1 s 0.85 2,3 0.75 2
2 s 0.74 3 0.64 3
4 s 0.54 3,4 0.43 4
10 s 0.43 4,3 0.38 4

aLatent variables.

Table III. PLSR results for ash in chicken (% of wet weight) and
EPA+DHA in salmon (% of total FA), using a calibration based on 10 s
exposure spectra on the shorter exposure data sets. Results from the
original cross-validation scheme is included.

Original
10 s calibration

Exp. time RMSECV RMSECV LVa

Chicken
1 s 0.84 0.83 3
2 s 0.70 0.70 3
4 s 0.63 0.62 3

Salmon
1 s 0.84 0.82 4
2 s 0.71 0.74 4
4 s 0.51 0.49 4

aLatent variables.
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