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Abstract 17 

The present work aimed at determining the applicability of linear sweep voltammetry coupled to 18 

disposable carbon paste electrodes to predict chemical composition and wine oxygen 19 

consumption rates (OCR) by PLS-modeling of the voltammetric signal. Voltammetric signals 20 

were acquired in a set of 16 red commercial wines. Samples were extensively characterized 21 

including SO2, antioxidant indexes, metals and polyphenols measured by HPLC. Wine OCRs 22 

were calculated by measuring oxygen consumption under controlled oxidation conditions. 23 

Chemical variables and wine OCRs were predicted from first order difference voltammogram 24 

curves by PLS-regression. 25 

A significant number of fully validated models predicting chemical variables from voltammetric 26 

signals were obtained. This fast, cheap and easy-to-use approach presents an important potential 27 

to be used in wineries for rapid wine chemical characterization. 28 

Key words: PLS; polyphenols; electrochemistry; oxidation; wine analysis 29 
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1. Introduction 31 

Wine is a complex beverage consisting of hundreds of several components that experiment 32 

important changes during winemaking, many of which are definitely involved in wine quality 33 

perception (Sáenz-Navajas, Avizcuri, Ballester, Fernández-Zurbano, Ferreira, Peyron, et al., 34 

2015). At present, wet chemistry and advanced chromatographic procedures are able to provide 35 

reliable data that allow to monitor chemical evolution of wines during winemaking and thus, can 36 

be useful tools to establish quality control programs (Ma, Bueschl, Schuhmacher, & Waterhouse, 37 

2019; Márquez, Pérez-Navarro, Hermosín-Gutiérrez, Gómez-Alonso, Mena-Morales, García-38 

Romero, et al., 2019). However, these methods are expensive in terms of time, personal and 39 

instrumentation resources, and therefore, are usually not affordable by small wineries. For this 40 

reason, there is a great demand for rapid, cheap and easy-to-use analytical tools that can be used 41 

to monitor wine composition and predict wine maturation processes (Kilmartin, 2016). Given the 42 

importance of wine exposure to oxygen during winemaking, modern chemistry has focused on 43 

understanding redox reactions, in which phenolic compounds are the main substrate (Singleton, 44 

Orthofer, & Lamuela-Raventós, 1998). To this concern, voltammetric approaches are presented 45 

as interesting tools for determining the content of electroactive molecules and thus monitoring 46 

oxidation-related processes involved in wine evolution (Dhroso, Laschi, Marrazza, & Mascini, 47 

2010; Kilmartin, 2016). These methods have been applied to measure a range of antioxidants, 48 

including phenolic acids and flavonoids, ascorbic acid, SO2 and the general resistance to 49 

oxidation (Gonzalez, Vidal, & Ugliano, 2018; José Jara-Palacios, Hernanz, Escudero-Gilete, & 50 

Heredia, 2014; Kilmartin, Zou, & Waterhouse, 2001, 2002; Martins, Oliveira, Bento, Geraldo, 51 

Lopes, De Pinho, et al., 2008; Samoticha, Jara-Palacios, Hernández-Hierro, Heredia, & Wojdyło, 52 

2018; Ugliano, Slaghenaufi, Picariello, & Olivieri, 2020). Glass-carbon electrodes have shown to 53 

be suitable in the characterization of reducing ability of red and white wines mainly because this 54 

material minimizes ethanol interferences which dominate the signals in platinum and gold 55 

electrodes (Kilmartin, Zou, & Waterhouse, 2001, 2002; Martins, et al., 2008; Vilas-Boas, 56 

Valderrama, Fontes, Geraldo, & Bento, 2019). In recent times, disposable screen-printed 57 

graphite-based sensors are becoming more widely accessible and appear as an interesting 58 

Kommentert [TN1]: General comment. You use the term PC’s 
for PLS components. This is not fully correct. I suggest changing to 
PLS components. 
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alternative to monitor and diagnose wine oxidation effects by direct sample measurement with no 59 

sample dilution (Dhroso, Laschi, Marrazza, & Mascini, 2010; Gonzalez, Vidal, & Ugliano, 2018; 60 

Ugliano, 2016; Ugliano, Slaghenaufi, Picariello, & Olivieri, 2020).  61 

Even if the combination of voltammetric signals with multivariate statistical tools has been little 62 

explored, principal component analysis (Gonzalez, Vidal, & Ugliano, 2018; Ugliano, 2016) and 63 

partial least square regression modeling (Martins, et al., 2008) have been suggested  to be 64 

interesting approaches to provide valuable information when monitoring wine oxidation effects 65 

or providing wine fingerprinting. 66 

In this context, it was hypothesized that relationships between voltammogram regions and 67 

specific phenolic compounds as well as overall wine oxygen consumption rates (OCR) could be 68 

established by multivariate analysis following an untargeted voltammetric approach. Thus, the 69 

present work aimed at evaluating the applicability of linear sweep voltammetry coupled to 70 

disposable carbon paste sensors to predict chemical composition and wine oxygen consumption 71 

rates (OCR) by PLS-modeling in a set of commercial red wines.  72 

  73 
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2. Material and methods 74 

2.1. Wine samples 75 

A set of 16 red Spanish wines were studied. They were all purchased at a local store and were 76 

from different regions, grape varieties and vintages (detailed information is provided in Table S1 77 

of Supporting Information). 78 

2.2. Oxidation experiment 79 

Oxygen consumption rates of wines were determined from data collected in an oxidation 80 

experiment consisting of five consecutive air-saturation cycles as described in Ferreira, 81 

Carrascon, Bueno, Ugliano, and Fernandez-Zurbano (2015). Air saturations were carried out by 82 

gentle shaking 500 mL of wine contained in a closed 1-liter glass bottle, then the cap was opened 83 

to allow fresh air to enter the bottle. This procedure was repeated for each saturation until a final 84 

concentration of 5.6±0.1 mg L-1 of dissolved oxygen was reached. Then, wine samples were 85 

incubated in the dark (25±0.5 ºC) and dissolved oxygen was monitored at least once a day with a 86 

non-destructive Nomasense oxygen analyzer (Nomacorc S.A., Thimister-Clermont, Belgium) 87 

until 90% of oxygen was consumed or during 7 days. This cycle was repeated five times. 88 

2.3. Voltammetric measurements 89 

Electrochemical measurements were performed with a commercial Nomasense Polyscan 90 

electrochemical analyzer (Nomacorc, Belgium) using disposable screen printed sensors. The 91 

system consisted in three sensors: working and counter electrodes both screen printed carbon 92 

paste electrodes and reference electrode consisting of an Ag/AgCl electrode. A drop of sample 93 

was loaded onto the sensor, and linear sweep voltammograms were acquired between 0 and 1200 94 

mV at a scan rate of 100 mV s-1. A total of 122 voltammetric signals for each wine in duplicate 95 

were recorded, and further worked with averaged data. A new sensor was used for each 96 

measurement. Repeatability of the measurement was tested by three consecutive measurements 97 

of the same wine.  98 

2.4. Chemical characterization  99 
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Metals. Fe, Cu, Mn, Zn and Al were quantified by inductively coupled plasma optical emission 100 

spectroscopy (ICP-OES) with previous microwave-assisted digestion of samples as described by 101 

Gonzálvez, Armenta, and De La Guardia (2008). 102 

Low molecular-weight polyphenols by GPC-UPLC. Compounds were analyzed in the first 103 

fraction eluting (55:45:1, ethanol:water:formic acid) from a Gel Permeation Chromatography 104 

(GPC) column filled with TSK Toyopearl gel (HW-50F) as described in Gonzalez-Hernandez, 105 

Avizcuri-Inac, Dizy, and Fernandez-Zurbano (2014). Accordingly, a total of 21 anthocyanins 106 

were quantified by UPLC-MS-DAD and 21 flavonols, 24 acids and derivatives and 11 flavanols 107 

by UPLC-MS. 108 

Other polyphenol-related measurements. Trolox equivalent antioxidant capacity (TEAC) was 109 

measured (Rivero-Pérez, Muñiz, & González-Sanjosé, 2007) as well as total polyphenolic content 110 

by both Folin-Ciocalteu method (Singleton, Orthofer, & Lamuela-Raventós, 1998) and total 111 

polyphenol index (TPI) estimated as absorbance at 280 nm (Ribéreau-Gayon, 1970) of samples 112 

diluted 1:100 in deionized water in 1-cm-quartz cuvettes. Mean degree of polymerization was 113 

calculated as the ratio of total flavanol units (extension + terminal) to terminal units (calculated 114 

as the difference between before and after thiolysis) by acid-catalyzed degradation in the presence 115 

of toluene-α-thiol according to the method described by Labarbe, Cheynier, Brossaud, Souquet, 116 

and Moutounet (1999) but with some modifications as described by Gonzalo-Diago, Dizy, and 117 

Fernandez-Zurbano (2013). Determination of monomeric (MP), small polymeric pigments (SPP) 118 

and large polymeric pigments (LPP) was carried out as described elsewhere (Harbertson, 119 

Picciotto, & Adams, 2003). MPs were the group of compounds bleachable with bisulphite, while 120 

SPP and LPP were resistant to bisulphite bleaching. SPP did not precipitate with ovoalbumin, 121 

different to LPP. Levels of MP, SPP, and LPP were expressed as absorbance at 520 nm. 122 

Absorbance measurements. Absorbance at 420, 520 and 620 nm of undiluted wine was measured 123 

using glass cuvettes with optical paths of 1, 2, 5 or 10 mm. Measurement which provided 124 

absorbance readings between 0.3 and 0.7 were considered as recommended by the OIV (2009a). 125 

Measurements were carried out in a Shimazdu UV-1800 (Shimadzu Corporation, Tokyo, Japan) 126 

spectrophotometer.  127 
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Conventional oenological parameters. pH was determined by Infrared Spectrometry with Fourier 128 

Transformation (IRFT) with a WineScanTM FT 120 (FOSS), which was calibrated with wine 129 

samples analyzed in accordance with official OIV (International Organization of Vine and Wine) 130 

practices; free and total sulfur dioxide were determined by the aspiration/titration method 131 

(Rankine method) recommended by the OIV.  132 

Measured Redox potential. This parameter, which is not a truly redox potential as recently 133 

discussed  (Danilewicz, Tunbridge, & Kilmartin, 2019), was measured using a Pt electrode fitted 134 

to a Ag/AgCl reference electrode model 50 58 from Crison (Alella, Barcelona) and a 135 

microprocessor 6230N from Jenco Instruments (San Diego, CA). Measurements were recorded 136 

in a glove chamber (Jacomex, France) with a level below 0.002% (v/v) of oxygen in gas phase. 137 

Therefore, wine was firstly poured in a 4 mL vial where the electrode was introduced (with no 138 

agitation) and measurement was recorded after 35 min. Then, the electrode was cleaned with 139 

milliQ water and introduced in a solution containing equimolar amounts (0.01 M) of ferro- and 140 

ferricyanide supplied by Panreac (Barcelona, Spain). This solution has a known redox potential 141 

of 220 ±10 mV a 25°C (vs. Ag/AgCl(s)). If the measured redox potential was in this range, the 142 

electrode was rinsed again with water and was then ready for subsequent measurements. In case 143 

the measured redox potential differed more than 10 mV from the expected 220 mV value, the 144 

diaphragm of the electrode was cleaned with a solution of thiourea (<6%) and HCl (<2%) (Crison, 145 

Alella, Barcelona). All analyses were performed in duplicate. 146 

Chemical data (average, maximum and minimum) are presented in Table S2 of Supporting 147 

Information. 148 

2.5. Data treatment 149 

2.5.1. Determination of wine oxygen consumption rates 150 

The oxygen consumed in the five saturation cycles was calculated for each wine (as the average 151 

among three independent saturation cycles per sample) as the difference between the dissolved 152 

oxygen at the beginning and at the end of each cycle. Then, the oxygen consumed for each 153 

saturation was plotted against the days employed to consume the oxygen. The five points 154 

(accumulated O2 consumed at the end of each saturation, time in which saturation ended) 155 
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followed a straight line which was adjusted by least square regression. The ordinate at time 1 day 156 

was taken as the initial oxygen consumption rate. The slope was taken as the average oxygen 157 

consumption rate (Ferreira, Carrascon, Bueno, Ugliano, & Fernandez-Zurbano, 2015). Data are 158 

available in Table S3 of Supporting Information. 159 

2.5.2. Exploration of raw voltammetric signals 160 

First derivative voltammograms allow to improve the separation between anodic waves in 161 

comparison with raw voltammograms (Gonzalez, Vidal, & Ugliano, 2018). Thus, first order 162 

difference voltammograms curves were calculated for all wines. Further Principal Component 163 

Analysis (PCA) was calculated in order to analyze the dominating types of variability for these 164 

curves and, if possible, to reduce the initial number of variables.  165 

2.5.3. Modeling OCRs and chemical variables from voltammetric signals 166 

The main purpose was the prediction by regressing calibration of the chemical variables from the 167 

voltammograms.  The general model is given by  168 

𝑌𝑌 = 𝑋𝑋𝑋𝑋 + 𝐹𝐹 169 

where, for a sample size 𝑛𝑛 (𝑛𝑛 = 16), 𝑋𝑋 (16,121) represents the input matrix with the differences 170 

between two consecutive voltammetric measurements, 𝑌𝑌(16,97) the output matrix with the 171 

chemical variables, 𝑋𝑋(121,97) is the matrix of regression coefficients and 𝐹𝐹(16,97) the matrix of 172 

residuals. 173 

Single response models are analyzed. Then, Ssingle 𝑌𝑌 - variable Partial Least Square regression 174 

method is used for every chemical variable and the whole spectrum of voltammograms (𝑋𝑋). 175 

Therefore, the prediction by regressing for one single 𝑦𝑦 data on 𝑋𝑋 was as follows: 176 

𝑦𝑦𝑖𝑖 = 𝑋𝑋𝑏𝑏𝑖𝑖 + 𝑓𝑓𝑖𝑖, 177 

where, 𝑦𝑦𝑖𝑖  (16,1) are the vectors that represent every one of the chemical variables 1 ≤ 𝑖𝑖 ≤ 97  for 178 

the red wine sample set and, 𝑏𝑏𝑖𝑖  (121,1)  and 𝑓𝑓𝑖𝑖  (16,1)  are respectively, the vectors of regression 179 

coefficients and residuals. 180 

Kommentert [TN3]: Question. Do you anlyse only single 
response models. Maybe highlight more explicitly. 

Kommentert [cf4R3]: Ok! 
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Firstly, the input variables 𝑋𝑋 are enhanced in two ways, they have been filtered applying a 7 points 181 

window Stavizki-Golay smoothing; and, on the other hand they have been standardized to 182 

comparable noise levels. Likewise, chemical variables 𝑦𝑦𝑖𝑖;1≤𝑖𝑖≤92  have been standardized. 183 

With this considerations, a first PLS model was computed. Taking the ratio between sample size 184 

and number of variables into account, variable selection has not been considered, in order to avoid 185 

the problem of overfitting. Therefore, for every single chemical variable, the whole spectrum on 186 

the X has been considerate in one PLS model. The model was validated using full cross validation. 187 

Then, those models with validated explained variance greater than 25% and presenting root mean 188 

squared error (RMSE) between the 9% and the 12% of the range were considered. Considering 189 

the size of the sample, and the number of factors that explain the main information of the 190 

𝑋𝑋 −variables, only models with less than or equal to four PCsPLSs, have been considered.  191 

All the analyses have been carried out with Unscrambler X 10.5.1, Matlab R2018a, R 4.0 and 192 

XLStat v2018. 193 

  194 



10 
 

3. Results and discussion 195 

3.1. Voltammogram profiles  196 

Figure 1 shows the first derivative voltammograms for the sample set. Two characteristic anodic 197 

waves with two maximal points and a minimal can be observed. The first maximal point and the 198 

minimal are around 420 mV and 600 mV, respectively. Differently, the second maximal point is 199 

around 730 mV. The derivative curve displays maximum values in the first maximal point (around 200 

420 mV) with a derivative current reaching values of 220 nA/mV. This can be explained because 201 

red wines contain high levels of components that are rapidly involved in oxidative reactions such 202 

as anthocyanins, ortho-diphenols and triphenols of gallic acids (Table S2), which usually occur 203 

at low potential (Kilmartin, Zou, & Waterhouse, 2002) and thus can be associated with this first 204 

anodic wave. The derivative current of the second anodic wave, which corresponds to less readily 205 

oxidizable compounds (Ugliano, 2016), has been associated with vanillic or coumaric acids, the 206 

meta-diphenols on the A ring of flavonoids such as catechin, SO2, certain amino acids and brown 207 

pigments related to oxidation reactions (Kilmartin, Zou, & Waterhouse, 2002; Makhotkina & 208 

Kilmartin, 2013).  209 

In order to shed light on specific linkages between compounds and voltammetric signals, PLS-210 

models have been built and discussed. 211 

3.2. Predicting OCR from voltammetric signals 212 

PCA was calculated with the derivative voltammetric signals. The first three PCs retain 91% (82% 213 

in validation) of original variance. This result shows that voltammetric information can be 214 

retained by three independent and non-correlated variables. Remarkably, even big efforts were 215 

invested in building PLS-models predicting chemical variables and OCRs from these three PCs, 216 

validated models could not be obtained, which could have simplified the prediction task. A 217 

possible explanation is that This is probably because we have no guarantee that the selected 218 

principal components are associated with the outcome. In fact, it is a possible drawback of PCR 219 

method (PCA + regression), where the selection of the principal components to incorporate in the 220 

model is not supervised by the outcome variable. 221 
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As detailed in the material and methods section and in a previous reference (Ferreira, Carrascon, 222 

Bueno, Ugliano, & Fernandez-Zurbano, 2015), two different OCRs were defined for red wines: 223 

the initial OCR, that corresponds to the rate of oxygen consumption during the first 24 h, and the 224 

average OCR, that refers to the average rate of consumption for the rest of the experiment. Initial 225 

OCRs are significantly faster and far more variable (0.54 – 8.22 mg O2/L/day) than the average 226 

rates (0.365 -0.792 mg O2/L/day). Interestingly, potentials in the first anodic wave, specifically 227 

in the 355-475 mV range (marked in green in Figure 2), present a significant negative correlation 228 

with the initial OCR (r < -0.54; P < 0.05 in all cases), while for the average OCR no significant 229 

correlation with potentials (i.e., X variables) could be established. This is a surprising result, 230 

because we had expected that higher potential signals would be related to higher contents of 231 

readily oxidizable substrates and thus to higher oxygen consumption rates. However, this result 232 

is completely equivalent to that obtained in a previous paper, in which chemical compositional 233 

parameters were just poorly positively correlated or not correlated at all with initial and average 234 

OCRs, respectively; while significant negative correlations with some chemicals were observed 235 

(Ferreira, Carrascon, Bueno, Ugliano, & Fernandez-Zurbano, 2015). In a further attempt to 236 

investigate the relationship between OCRs (initial and average) and voltammetric signals (first 237 

derivative), PLS models were calculated. Unfortunately, modeling failed to capture validated 238 

models for initial and average OCRs, thus we could not validate one of our initial hypothesis. 239 

Conversely, if a previous step consisting in the prediction of initial OCR from voltammetric 240 

potentials, but not considering the second voltammetric wave (600-1000 mV), which corresponds 241 

to less readily oxidizable compounds (Ugliano, 2016)selection of variables, in which 242 

voltammetric signals belonging to to the second anodic wave were not considered (600-1000 243 

mV), a validated model explaining 62% of original variance for initial OCR was obtained. The 244 

model included 8 voltammetric signals with half of them displaying positive (at 20, 100, 1050 245 

and 1130 mV: marked in orange in Figure 2) and the other half negative (300, 440, 520 and 1140 246 

mV: marked in blue in Figure 2) relationships with initial OCR (Figure S4 of Supporting 247 

Iinformation). Not surprisingly, the highest positive contributions to initial OCRs correspond to 248 

voltammetric signals measured at very low potentials (10 and 100 mV). It is not clear to which 249 

Kommentert [TN5]: Potential. Is that the X variables? 

Kommentert [UdW6R5]: Yes, they are 

Kommentert [TN7]: Emphasise that this is not based on variable 
selection in the PLS models. 

Kommentert [cf8R7]: Ok! L 256 

Kommentert [TN9]: These are not presented in loadings plots 
here, right? 

Kommentert [UdW10R9]: No, they are not presented 
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species can correspond signals at 10 mV, although results derived from white wines (unpublished 250 

data) suggest that it may be copper, but this result should be further validated in future research. 251 

On its side, the signal at 100 mV could be related to the beginning of the anodic curve for ascorbic 252 

acid (Kilmartin, Zou, & Waterhouse, 2002; Makhotkina & Kilmartin, 2013). It has to be 253 

highlighted that the modeling of initial OCR from voltammetric signals with selection of 254 

variablesomitting voltammetric signals belonging to the second anodic wave (not based on 255 

variables selection in PLS) has to be considered with caution. Given the low number of samples 256 

and high number of predicting variables, overfitting can be occurring, thus this model only 257 

establishes preliminary relationships between voltammetric signals and initial OCR. This 258 

hypothesis should be confirmed in further investigations.  259 

3.3. Predicting chemical compositional variables from voltammetric signals 260 

Table 1 shows the chemical variables that could be satisfactorily modeled from voltammetric 261 

signals (9% < RMSE <12% RMSE between the 9% and the 12% of the range) (29 out of 95). 262 

Validated models explain between 23% and 74% (average = 47%) of original variance by full-263 

cross validation, which correspond to moderate-high correlation coefficients ranging from 0.5 to 264 

0.9 (average = 0.7). Explained variances by calibration reach values in the range of 48-99% and 265 

corresponding to correlation coefficients between 0.7 and 0.9 (average = 0.9). Figure 3 shows the 266 

voltammetric signals (in nA of anodic current per increment of mV in the working electrode) 267 

included in models and the sign and magnitude of their coefficients following a color code. Figure 268 

4 shows some examples of line plots representing the X-loadings corresponding to the first two 269 

PLSCs (for the plots of the rest of models see Figure S5 of Supporting information). These 270 

representations are useful in the interpretation and for confirming the validity of the predictive 271 

models. These plots represent the variables (potentials of the voltammograms) that are important 272 

for predicting the variables studied such as the concentration of the compounds.  273 

A group of flavonols (quercetin-3-O-glucuronide, syringetin-3-O-galactoside, isorhamnetin), 274 

anthocyanins (petunidin-3-O-glucoside, malvidin-3-O-glucoside, peonidin-3-O-(6-O-p-275 

coumaroyl) glucoside), flavanols (catechin, epicatechin, epigallocatechin, procyanidin B1 and 276 

B2) and important chemical variables such as mean degree of polymerization of tannins and pH 277 

Kommentert [TN11]: No selection of X-variables here, right? 

Kommentert [UdW12R11]: Effectively, no selection of 
variables 
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were satisfactorily modelled (% of explained variance > 50% by full-cross validation, i.e., 278 

correlation coefficients > 0.7). Similarly, validated models for large polymeric pigments (LPP) 279 

and free SO2 could explained 49% of variance in prediction (i.e., correlation coefficients of 0.7) 280 

and relatively high in calibration 63% and 92%, respectively.  281 

Slightly poorer models with explained variance by full-cross validation higher than 23%, yet with 282 

correlation coefficients higher than 0.5, were obtained for quercetin-3-O-galactoside, myricetin-283 

3-O-gluscoside, c-cinnamic acid, gallic acid ethyl ester, gallocatechin, two anthocyanins, 284 

monomeric pigments (MP), small polymeric pigments (SPP), total polyphenol index (TPI), 285 

antioxidant capacity-TEAC, absorbances at 420 and 520 nm, and for the measured redox 286 

potential. This suggesting that the related results can be presented as hypotheses to be further 287 

validated with a larger sample size. 288 

In the case of flavonols, leaving aside quercetin, myricetin-3-galactoside and myricetin, relevant 289 

derivatives from the quantitative point of view were modelled. In the case of flavanols and 290 

anthocyanins, all the most relevant quantitatively were satisfactorily modelled. By contrast, the 291 

ability to model cinnamic, hydroxicinnamic acids and their derivatives was very poor, and only 292 

two out of 24 components could be satisfactory modelled. Most remarkably, models for predicting 293 

compositional data for metals and for absorbance at 620 nm could not be derived from the 294 

voltammetric signals.  295 

It is interesting to note that models (Figure 3, Figure 4 and Figure S5 of Supporting Information) 296 

for flavonols, gallic acid ethyl ester, flavanols, and monomeric anthocyanins, including the overall 297 

measure of bleachable anthocyanins (MP), present positive coefficients for potentials belonging 298 

to the first anodic wave of voltammograms (mainly 140-600 mV), which is supported by the fact 299 

that these compounds are most readily oxidizable molecules of wines and thus involved in most 300 

rapid oxidative reactions (Ugliano, 2016). Differently, non-bleachable anthocyanins, named 301 

polymeric pigments (both small and large PP), can be predicted mainly from higher potentials, 302 

belonging mainly to the second wave of the first derivative of voltammograms (840-1160 mV). 303 

Among flavanols, epigallocatechin and gallocatechin show positive coefficients for lower 304 

potentials (180-250 mV) than the rest of flavanols measured (catechin, epicatechin, procyanidins 305 
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B1 and B2) (270-520 mV). This is well in accordance with previous reported results, that show 306 

that gallocatechins oxidize at the surface of carbon electrodes earlier than other readily oxidizable 307 

compounds, such as monomers and dimmers of (epi)catechin (Kilmartin, 2016). Remarkably is 308 

that non-acylated antocyanins present similar models positively contributed by positive 309 

voltametric signals at low (160-240 mV) and high (680-800 mV) potentials, while the models for 310 

coumaroly anthocyanins, mainly those with higher prediction ability (delphinidin and peonidin-311 

3-O-(6-O-p-coumaroylglucosides)), show positive coefficients mainly in the first anodic wave 312 

(180-480 mV), and thus they are more readily oxidizable.  313 

In summary, our results suggest that the voltammetric signal in disposable carbon paste electrodes 314 

is mainly the result of wine major flavonols, flavanols, anthocyanins, polymeric pigments, pH 315 

and free SO2, being poorly contributed by phenolic acids, metal cations or sulphite adducts. 316 

Conversely, it can be also suggested that voltammetric information is highly multidimensional 317 

and therefore can be satisfactorily used to predict many relevant chemical compositional data.  318 

Conclusions 319 

The voltammetric signals recorded from wines with disposable carbon paste electrodes are 320 

extraordinarily rich in compositional information from a relatively wide range of chemical species 321 

and parameters, which are suggested to be satisfactorily extracted using PLS. The best 322 

performance in modelling terms was in all cases obtained from the 1st derivative of the 323 

voltammograms. The voltammetric signals seem to be mainly influenced by major flavonols, 324 

flavanols, anthocyanins, polymeric pigments and free SO2, all of which could be satisfactorily 325 

modelled. Although oxygen consumption rates (OCR) could not be satisfactorily modelled, 326 

positive correlations with voltammetric signals and satisfactory models obtained after selection 327 

of variables for initial OTR (based on prior knowledge and not on PLS variable selection), allow 328 

to draw the hypothesis that OCRs have a potential of could being satisfactorily predicted and thus 329 

voltammetry could be also a suitable rapid tool for predicting OCR.  330 

The results presented in this work suggestconfirm that disposable carbon paste sensors measuring 331 

voltammetric signals and coupled to PLS-modeling have an important potential to be used in 332 

wineries for rapid, cheap and easy-to-use approach for wine chemical characterization and 333 

Kommentert [TN13]: Confirm is too string. 

Kommentert [UdW14R13]: Ok! 
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oxidation-related control. It is important to emphasiseemphasize that the number of samples is 334 

quite low and also that only the best models are selected for presentation in Table 1. Therefore  335 

Notwithstanding, the present work is a feasibility study and models must be validated on new 336 

data to confirm the results.  337 
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Figure captions 431 

Figure 1. First derivative voltammograms for sixteen Spanish red wines. 432 

Figure 2. First derivative voltammograms of wines with highest and lowest oxygen consumption 433 

rates among red wines. Regions marked in green present significant correlations with OCR. In 434 

orange voltammetric signals with positive and in blue with negative coefficients in the models 435 

predicting OCRs 436 

Figure 3. Maps with coefficients of variables included in validated PLS-models predicting 437 

chemical variables from voltammetric signals for red wines.  438 

Figure 4. The X-loadings for the two first PCLS components based on the PLS model for a) 439 
quercetin-3-O-galactoside, b) quercetin-3-glucoronide, c) catechin, d) epigallocatechin, e) 440 
malvidin-3-O-glucoside, and petunidin-3-O-glucoside. The red line represents the first PCLS and 441 
the blue the second PCLS line the second 442 

 443 

 444 

 445 

 446 

 447 



Table 1. Variables successfully modeled in the set of red wines (n=16) from voltammetric signals 
by PLS regression, % of explained variance by full cross validation (and the % of explained 
variance), the number of PLSs included in each model and the root mean squared error of 
prediction. 

 variable 
% explained variance P 

(number of PLSs) 
[% explained variance C] 

RMSE1 

fla
vo

no
ls

 quercetin-3-galactoside 41% (2) [75%] 0.48 
quercetin-3-glucuronide 58% (2) [76%] 0.47 
syringetin-3-galactoside 74% (2) [88%] 0.34 
myricetin-3-glucoside 44% (3) [83%] 0.39 
isorhamnetin 52% (2) [79%] 0.44 

ac
id

s a
nd

 
de

ri
va

tiv
es

 

c-cinnamic acid  48% (1) [57%] 0.63 

gallic acid ethyl ester 38% (2) [66%] 0.56 

fla
va

no
ls

 
 

catechin 64% (4) [93%] 0.25 
epicatechin 57% (4) [94%] 0.24 
epigallocatechin 55% (1) [69%] 0.54 
gallocatechin 37% (1) [57%] 0.63 
procyanidin B1 56% (2) [76%] 0.48 
procyanidin B2 63% (1) [80%] 0.43 

an
th

oc
ya

ni
ns

 
 

petunidin-3-O-glucoside 60% (4) [99%] 0.09 
malvidin-3-O-glucoside 65% (4) [99%] 0.08 
malvidin-3-O-glucoside-8-ethyl-
(epi)catechin 43% (4) [99%] 0.11 

malvidin-3-O-(6-O-p-
coumaroyl)glucoside 41% (1) [61%] 0.60 

peonidin-3-O-(6-O-p-
coumaroyl)glucoside 51% (2) [85%] 0.37 

po
ly

ph
en

ol
-r

el
at

ed
 

m
ea

su
re

m
en

ts
 

small polymeric pigments (SPP) 30% (1) [50%] 0.69 

large polymeric pigments (LPP) 49% (1) [63%] 0.59 

monomeric pigments (MP) 23% (3) [88%] 0.51 

mean degree of polymerization (mDP) 53% (1) [88%] 0.17 

total polyphenol index (TPI) 26% (1) [48%] 0.69 

antioxidant capacity-TEAC 29% (2) [65%] 0.57 

co
lo

r absorbance at 420nm 38% (1) [56%] 0.64 

absorbance at 520nm 38% (2) [72%] 0.51 

ot
he

r 
pa

ra
m

et
er

s pH 51% (1) [61%] 0.61 

redox potential 28% (2) [67%] 0.56 

free SO2 49% (4) [92%] 0.27 
1RMSE is given in z-units for a normal distribution. Given that 99.7% of normal values are between z=-3 and z=3, a RMSE of 0.6 
represents around 10% of the range.   
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Table S1. Information of wines employed in the study. 

 

set of wine code vintage grape variety origin time in barrel 
(months) 

% 
ethanol 

(v/v) 
pH TPI (a.u.) 

red wines 

R1 2008 Tempranillo Ribera del Duero 18 14.1 3.9 53.5 
R2 2007 Tempranillo Rioja >6 13.5 3.8 55.1 
R3 2008 Garnacha Campo de Borja >6 13.5 3.5 61.9 
R4 2010 Garnacha Campo de Borja >6 14.5 3.5 86.5 
R5 2012 Tempranillo Rioja 0 13 3.9 48.2 
R6 2012 Garnacha, Tempranillo Calatayud 0 14 3.8 62.2 
R7 2012 Tempranillo Ribera del Duero 6 13.5 3.7 60.8 
R8 2012 Syrah Vinos de la tierra de Castilla 0 14.5 3.7 69.0 
R9 2010 Tempranillo, Mazuelo, Graciano Rioja 3 13.5 3.5 52.2 
R10 2011 Garnacha Campo de Borja >6 15 3.4 57.9 
R11 2010 Tempranillo Toro 14 14.5 3.9 66.0 
R12 2008 Garnacha Campo de Borja 10 15 3.5 72.3 
R13 2009 Syrah, Merlot, Cabernet Sauvignon Cariñena >6 14.5 3.6 62.3 
R14 2010 Garnacha Campo de Borja >6 15.5 3.4 57.9 
R15 2012 Cabernet Sauvignon, Merlot Somontano 0 13.5 3.5 60.9 
R16 2012 Tempranillo Rioja 6 13.5 3.8 53.4 
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Table S2. Chemical characterization of the 16 red wines studied (data expressed as micrograms 
per liter, otherwise it is specified). Compounds marked in red were satisfactorily modelled from 
voltammograms.  

Compounds average max min 
Flavonols       

quercetin-3-galactoside 1.22 3.69 0.51 
quercetin-3-glucoside 1.57 14.58 0.00 
quercetin-3-glucuronide 8.86 19.99 3.00 
quercetin-3-rutinoside 0.04 0.62 0.00 
quercetin 3.05 5.88 1.75 
kaempferol-3-glucoside 0.16 1.36 0.00 
kaempferol-3-galactoside 0.07 0.31 0.00 
kaempferol-3-glucuronide 0.06 0.21 0.00 
kaempferol-3-rutinoside 0.30 0.52 0.15 
kaempferol 0.96 1.57 0.00 
syringetin-3-galactoside 1.47 3.13 0.55 
myricetin-3-galactoside 2.90 12.60 1.19 
myricetin-3-glucoside 3.45 13.43 1.20 
myricetin-3-glucuronide 1.57 1.90 1.35 
myricetin-3-rutinoside 1.18 1.21 1.17 
myricetin 4.39 7.36 2.48 
isorhamnetin -3-glucoside 0.48 4.48 0.00 
isorhamnetin -3-galactoside 0.11 0.22 0.00 
isorhamnetin -3-glucuronide 0.07 0.14 0.00 
isorhamnetin -3-rutinoside 0.14 0.22 0.00 
isorhamnetin 4.70 7.67 2.74 

Acids and derivatives       
gallic acid 35.14 56.12 22.30 
protocatechuic acid 1.10 2.33 0.61 
c-caftaric acid  3.13 9.75 0.00 
t-caftaric acid  57.79 120.89 21.56 
3,4-hydroxyphenylacetic acid 0.31 2.01 0.00 
cutaric acid 4.37 6.60 2.72 
vanillic acid 0.35 0.54 0.23 
caffeic acid 5.79 12.72 1.44 
syringic acid 1.06 1.73 0.70 
c-coumaric-acid 0.82 0.94 0.00 
coumaric acid 1.63 4.26 0.98 
c-cinnamic acid 7.73 10.10 5.42 
trans-cinnamic acid 17.48 22.10 12.26 
protocatechuic acid ethyl ester 0.19 0.47 0.00 
caffeic acid ethyl ester 0.79 1.33 0.00 
ferulic acid ethyl ester 0.00 0.00 0.00 
syringic acid ethyl ester 0.00 0.00 0.00 
ellagic acid 24.78 30.58 19.80 
gallic acid ethyl ester 2.23 4.06 1.35 
coumaric acid ethyl ester 0.52 0.94 0.00 
c-aconitic acid 1.99 2.48 1.56 
t-aconitic acid 1.45 3.50 0.00 
c-ferulic acid 0.36 1.48 0.00 
t-ferulic acid 0.34 1.60 0.00 

Flavanols       
procyanidin B1 10.75 27.66 3.27 
epigallocatechin 6.26 10.28 3.88 
catechin 7.48 23.04 3.56 
procyanidin B2 5.13 16.44 1.89 
epicatechin 5.10 18.88 2.72 
epigallocatechin gallate 2.57 3.74 1.73 
catechin gallate 0.05 0.40 0.00 
epicatechin gallate 0.95 1.26 0.00 
procyanidin A2 0.85 1.97 0.00 
gallocatechin 3.05 4.25 1.33 
gallocatechin gallate 0.82 2.99 0.00 

Anthocyanins       
B-type vitisin of delphinidin-3-O-glucoside 0.05 0.08 0.02 
cyanidin-3-glucoside 0.10 0.23 0.05 
petunidin-3-glucoside 1.98 9.48 0.03 
peonidin-3-glucoside 0.28 0.74 0.03 
malvidin-3-glucoside 17.13 75.60 0.16 
delphinidin-3-O-(6-O-acetyl) glucoside 0.02 0.02 0.02 
vitisin A 0.21 0.59 0.03 
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Table S2 contd. 
 
 

   

Compounds average max min 
B-Type vitisin of malvidin-3-oglucoside 0.02 0.02 0.02 
petunidin-3-O-(6-O-acetyl) glucoside 0.02 0.03 0.02 
malvidin-3-O-glucoside-8-ethyl-(epi)catechin 0.06 0.25 0.02 
delphinidin-3-O-(6-O-p-coumaroyl) glucoside 0.80 5.02 0.02 
malvidin-3-O-(6-O-acetyl) glucoside 0.03 0.05 0.02 
A-type vitisin of malvidin-3-O-(6-O-p-coumaroyl)glucoside 0.02 0.02 0.02 
petunidin-3-O-(6-O-p-coumaroyl) glucoside 0.05 0.17 0.02 
malvidin-3-O-(6-O-p-coumaroyl) glucoside 0.03 0.07 0.02 
peonidin-3-O-(6-O-p-coumaroyl) glucoside 0.04 0.14 0.02 
malvidin-3-O-glucoside-4-vinylphenol 0.03 0.05 0.02 
malvidin-3-O-acetylglucoside-4-vinylphenol 0.02 0.02 0.02 

Polyphenol-related measurements    
mean degree of polimerization of flavanols (mDP) 1.80 2.08 1.54 
small polymeric pigments (SPP) 0.54 0.76 0.26 
large polymeric pigments (LPP) 0.42 0.69 0.14 
monomeric pigments (MP) 0.42 0.91 0.25 
proanthocyanidins (mg/L, expressed as equivalents of  catechin) 840 1371 304 
protein-precipitable flavanols (mg/L, expressed as equivalents of  tannic acid) 1.32 2.26 0.48 
antioxidant capacity-TEAC (Mm,  expressed as equivalents of  Trolox) 40.47 63.50 29.53 
antioxidant capacity-Folin (mg/L, expressed as equivalents of  gallic acid) 2883 3354 2353 
free SO2 (mg L-1) 17.84 36.54 4.53 
total SO2 total (mg L-1) 48.30 73.60 14.40 

Color    
Abs 420 nm (au) 4.32 5.72 2.68 
Abs 520 nm (au) 5.46 7.72 3.72 
Abs 620 nm (au) 1.75 4.24 1.11 

Metals    
Al 0.14 1.17 0.00 
Cu 0.26 0.68 0.17 
Fe 2.44 4.07 1.46 
Mn 1.15 2.57 0.54 
Zn 0.63 1.33 0.22 

Redox Potential (mV) 14.50 59.00 -10.00 
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Table S3. Initial and average oxygen consumption rates for red wines (OCR) expressed as mg 
O2/L/day (average of three independent replicates) 

 

  
code Initial OCR Average OCR 
R1 1.73±0.56 0.60±0.03 
R2 7.70±0.49 0.59±0.03 
R3 2.82±0.54 0.58±0.02 
R4 1.80±0.07 0.68±0.00 
R5 7.89±0.40 0.66±0.02 
R6 0.54±0.40 0.65±0.02 
R7 1.62±0.65 0.52±0.03 
R8 0.89±0.26 0.61±0.02 
R9 8.22±0.56 0.40±0.03 

R10 6.12±0.49 0.47±0.02 
R11 5.73±0.35 0.79±0.03 
R12 5.43±0.30 0.72±0.02 
R13 2.52±0.62 0.55±0.03 
R14 3.45±0.31 0.37±0.01 
R15 0.80±0.15 0.54±0.01 
R16 2.39±0.51 1.27±0.04 
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Figure S4. Map with coefficients of variables included in validated PLS-model predicting 
initial oxygen consumption rate (initial OCR) from voltammetric signals. 
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Figure S5. 

a) FLAVONOLS 
 

a. syringetin-3-galactoside 

 

b. myricetin-3-glucoside 

 
c. isorhamnetin 
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b) ACIDS AND DERIVATIVES 

a. c-cinnamic acid 

 
b. gallic acid ethyl ester 

 

 
c) FLAVANOLS 

 
a. epicatechin 
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b. gallocatechin 

 

c. procyanidin B1 

 
 

d. procyanidin B2 
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d) ANTHOCYANINS 
 

a. malvidin-3-O-glucoside-8-ethyl-(epi)catechin 

 

b. malvidin-3-O-(6-O-acetyl)glucoside 

 

 
c. peonidin-3-O-(6-O-p-coumaroyl)glucoside 
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e) ANTHOCYANIC PIGMENTS 

 
a. SPP 

 
b. LPP 

 
c. MP 
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f) OTHER PARAMETERS 
 

a. mDP 

 
b. TPI 

 

 
c. TEAC 

 
d. absorbance at 420nm 
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e. absorbance at 520nm 

 
 

f. pH 

 
g. redox potential 

 
h. free SO2 
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