Please cite as:

Velázquez, A. L., Galler, M., Vidal, L., Varela, P., \& Ares, G. (2022). Co-creation of a healthy dairy product with and for children. Food Quality and Preference, 96, 104414. https://doi.org/10.1016/j.foodqual.2021.104414

Co-creation of a healthy dairy product with and for children

[^0]
Highlights

- Healthy dairy products were developed using a co-creation approach with children.
- A multi-step setup was used: exploring-prototyping-refining-validating.
- Familiarity, hedonics, and healthiness drove children's choice of ingredients.
- Children used package graphics, claims, and incentives to promote their products.
- Co-creation with children allowed to develop highly liked healthy dairy products.

Abstract

Children's involvement in new product development may contribute to ensure that healthy alternatives meet their wants and needs. Co-creation is a potential approach to bridge the world of the child and the grown-up product developer. In this context, the objective of the present work was to explore the potential of a co-creation approach with children to develop a healthy dairy product. A total of 52 school-aged children (54% girls, 613 year old) recruited from an after-school club in Montevideo (Uruguay) participated in cocreation workshops. Two sessions were carried out. In the first session, children developed a dairy product using a set of ingredients and proposed strategies to promote their product. Children showed a high level of engagement during the activity and provided actionable ideas for product development. Three key factors drove the product formulation (familiarity, hedonics, and healthiness), whereas common communication strategies were proposed by the participants to promote their products. In the second session, children evaluated four products developed by the researchers based on children's ideas. The products showed high overall liking scores (5.9 to 7.9) despite the inclusion of novel and healthy ingredients and the lower sugar content compared to similar commercial products available in the Uruguayan marketplace. These results show the potential of involving children in the cocreation of healthy dairy products. Considering the lack of published studies regarding the use of co-creation approaches with children in the food domain, the present work provides useful insights for the implementation of co-creation to develop innovative products with and for children.

Keywords: Co-creation; product development; healthy eating; children; Dairy products

1. Introduction

Shifting to a healthier food environment is a major challenge our society is faced with, calling for new approaches by food science and technology (Lillford \& Hermansson, 2020). Unfortunately, to this date, healthy food is particularly underrepresented in the child segment (Chacon et al., 2013; Gimenez et al., 2017; Lavrisa \& Pravst, 2019; Mehta et al., 2012), indicating a need to develop healthy alternatives that children will actively choose. Healthiness alone is not a strong driver of children's food choice and can even have an adverse effect if it leads children to assume a reduced pleasurable experience (Marty et al., 2018). Children should therefore be closely involved in new product development (NPD) in order to ensure that healthy alternatives meet their needs.

In the early- $20^{\text {th }}$ century NDP was mainly a closed process that took place within companies. However, the need to respond quickly to the ever changing consumer demands has led companies to adopt an open innovation model, which assumes that good ideas come from both inside and outside the company (Chesbrough, 2003). This has been linked to co-creation practices, where consumers play a central role in the creation process (Prahalad \& Ramaswamy, 2002).

In the NPD context, co-creation is defined as a collaborative activity in which consumers and other potential stakeholders play an active role in the creation and selection of new products to be launched in the market (Ind \& Coates, 2013; OHern \& Rindfleisch, 2010). Through active involvement, it allows participants to reflect creatively on their own practices, making it a promising approach to tackle public health issues, where the reassessment of current practices is necessary, and the top-down solutions fall short (Leask et al., 2019). At the same time, it allows companies to launch products that fit consumer needs better which may increase the success of NPD (Roberts \& Darler, 2017).

A co-creation process ensures to the highest degree that children's voices are heard (Druin, 2002) in the shift to healthier food environments. Beyond the ideas themselves, co-
creative methods allow to generate extensive insights on children's eating practices and needs (Waddingham et al., 2018). The often-stressed need for consumer involvement in early stages of product development (Busse \& Siebert, 2018; Schifferstein, 2015; van Kleef et al., 2005) might be particularly relevant for child-focused products, to bridge the world of the child and the grown-up product developer. Further, as children are still developing their food preferences, an active and creative involvement can potentially empower them to find their own way to healthy and pleasurable diets.

Co-creation with children has been used in multiple areas, for example, architecture and urban environment design (Gennari et al., 2019; Ghaziani, 2021; Jelic et al., 2020), technology (Arnold et al., 2016; Havukainen et al., 2020), education (Borum et al., 2015; Kangas, 2010; Mack et al., 2019; Parsons et al., 2015) and marketing (Daems et al., 2017). In a first application in food product development by co-creation with preadolescents, Galler et al. (2020) showed that they were able to suggest actionable new food product ideas, using enabling and creative techniques in workshop-style and online settings. In their work, empowerment appeared as an interesting added value from co-creative approaches. Being in charge of their food choices, fulfilling their needs of autonomy, and the social connection in co-creation activities make this age group enjoy them, and potentially has an effect of encouraging them and their peers to acquire new and healthier practices.

Dairy products are regarded as healthy foods due to their high-quality protein and micronutrients content (Campmans-Kuijpers, Singh-Povel, Steijns, \& Beulens, 2016). Their intake has been associated with bone health in children and adolescents (Rizzoli, 2014). Several dietary guidelines around the world recommend the inclusion of dairy products in children's diets (Dror \& Allen, 2014). Although children's intake of dairy products is highly variable across countries, households with children have been reported to be more likely to purchase dairy products than those without children (Ortez et al., 2021). Due to their nutritional composition and frequent consumption, dairy products have been regarded as an
important carrier for the delivery of bioactive compounds with health benefits and functional properties (Kanekanian, 2019).

However, commercial dairy products targeted at children usually have a high content of sugar (Moore, Horti, \& Fielding, 2018). In this sense, Giménez et al. (2017) found that most of the dairy products targeted at children in Uruguayan supermarkets have an excessive content of sugar according to the criteria of the nutrient profile model of the Pan American Health Organization. This suggests the need to develop healthier dairy products with low sugar content targeted at children. Although the development of low sugar dairy products has been regarded as a major challenge for the food industry (Hutchings, Low \& Keast, 2019), recent research shows that sugar reductions up to 20-30\% are feasible without affecting adults and children's hedonic perception (Alcaire et al., 2017; Oliveira et al., 2016; Velázquez et al., 2020).

In this context, the objective of the present work was to explore the use of co-creation with children in the development of a healthy dairy products. Currently, food product development by co-creation with children is limited to the generation of new product ideas in a sketch, verbal, or written format (Galler et al., 2020), while food prototyping is rare even with adult consumers (Filieri, 2013). Food prototyping is regarded as a valuable tool since it facilitates the communication and improvement of ideas in the early stages of the NPD process (Olsen, 2015). The present study aimed to integrate food prototyping in the cocreation workshops to allow children to better express and improve their ideas. To go beyond regular products available in the Uruguayan market, vegetables and nuts were included as potential novel and healthy ingredients to encourage children to think out of the box. Considering that involving children in cooking activities improve children's acceptance of novel and healthier foods (Allirot et al., 2016; van der Horst et al., 2014), the co-creation of a healthy dairy product with children was approached as a cooking workshop. Given its exploratory nature, the study had no a priori hypotheses.

2. Methods

Building on the approach proposed by Galler et al. (2020) a multiple stage setup was used for co-creating a healthy dairy product with children: Exploring - Prototyping - Refining - Validating (Figure 1). Drawing on design thinking, prototype iterations were included to enable a rapid collaborative learning without the need of abstraction or sensory knowledge (Olsen, 2015). A brief explanation of each of the stages is provided below, followed by the detailed description of how they were implemented.

Exploring: Children were given the chance to experiment with a series of diverse ingredients, which encouraged them to reflect about their characteristics and potential use in a new healthy product. In this step, children were able to taste some ingredients, observe different textures, and discuss their sensory characteristics within their group.

Prototyping by children: This stage involved two different steps: Product prototyping and Concept prototyping. In the first step, children selected individual ingredients to create a product prototype. Once the prototypes were created, children tasted and analysed them, making suggestions for additional improvement. In the Concept prototyping step, children developed potential concepts and communication strategies to encourage other children to consume the product they had developed.

Refining by researchers: Researchers developed four final product prototypes based on children's ideas in a second prototyping iteration.

Validating with children: To measure children's acceptance of the products prototyped during the refining step, children tasted and evaluated the four products in a second session.

Figure 1. Workflow of the development of the dairy products co-created with children. the moderators and interacted with the children, whereas the third researcher supported the logistics of the activity and observed the session. In a preliminary session, children were introduced to the topic of healthy eating in a discussion format (Supplementary material 1). Results of the preliminary session are not shown in the present work. Then, two sessions were carried out to co-create healthy dairy products with children and to evaluate the developed products. Each session lasted a maximum of 45 minutes. All the sessions were audio recorded. The script for the sessions is presented in Supplementary material 2.

2.1. Participants

Purposive convenience sampling was used to recruit children. A total of 52 schoolaged children were recruited from an after-school club in Montevideo, Uruguay. All children (54% girls, 44% 6-8-years old, 56% 9-13-years old) participated in the first session, whereas 43 children (49% Girls, $44 \% 6$-8-years old, $56 \% 9-13$-years old) attended the second session. One of the parents of each child signed an informed consent form to allow his/her participation in the study. All children provided verbal assent to participate which was recorded. Ethical approval was obtained from the Ethics Committee of the School of Chemistry of Universidad de la República (Uruguay).

2.2. Co-creation of dairy products

The age ranges were selected based on how usual activities were organized in the club. This enabled collaboration between children within a short time frame dedicated to the co-creation workshops. Due to the restrictions associated with the COVID-19 pandemic, children worked in their usual groups to maintain the social bubbles at the club. Groups corresponded to children in the same age range: 6 to 8 years old or 9 to 13 years old. Children worked in small groups (3-5 children) to assure that all children in the group could participate in the activities. The activity was conducted in a separate quiet room at the social club.

2.2.1. Exploring and Prototyping: Development of products and concepts by children

A wide range of ingredients were selected for the study, including dairy products, vegetables, fruits, spices, grains, and nuts (Table 1). Ingredients were selected by the researchers based on availability in the country. Most children were expected to be familiar with the selected fruits and vegetables, as they are among the most consumed in the country (Observatorio Granjero, 2021). Recipes of dairy products (e.g. smoothies, mousses, etc.)
available in websites and blogs were also considered for ingredient selection. Except for sugar, all the ingredients are recommended by the Uruguayan dietary guidelines (Ministerio de Salud Pública, 2016). Detailed information about the ingredients presented to children is shown in the Supplementary material 3.

Table 1. Ingredients given to children to develop a healthy dairy product prototype.

Base dairy product	Vegetables	Fruits	Spices \& sugar	Grains \& nuts
Milk	Pumpkin puree	Banana	Vanilla	Oats
Yogurt Dairy dessert	Cucumber Beetroot puree	Strawberries Blueberries	Cinnamon peel	Puffed quinoa
Chia				

Exploring and product prototyping

First, children were asked to create their own healthy dairy product and were told they should work as a team to develop the product. One of the researchers asked children what a dairy product was and which dairy products they knew. Then, children were presented with the six base dairy products with different textures. They were asked to observe them in order to identify what each product was and to indicate if they had tried each of the products before. They were also presented with the other ingredients in the following order: vegetables, fruits, spices \& sugar, and grains \& nuts. Children were free to touch, smell and taste these four groups of ingredients, but they were not forced to do it. Given that the study was performed in the context of the COVID-19 pandemic, tasting was mediated by the researcher in charge of the group. When a child asked to try an ingredient, the researcher handed a small portion to each child to avoid the sharing of utensils. The
researcher encouraged all children to describe and discuss the ingredients and share their previous experiences.

After the exploration step, children engaged in the creation of the product prototype. Each group of children received a set of kitchen utensils which included: a hand mixer, a blender, a spatula, a set of measuring spoons, two bowls (large and medium), a cutting board, four tablespoons and one knife (supervised by a researcher). Children were free to choose as many ingredients as they wanted for developing their product. The following rules applied: 1) only one dairy base should be used, and 2) at least one ingredient from the other groups should be included. Once the children in each group had selected the ingredients, they started to prepare their product. Although children were mostly autonomous in the development stage, the researchers closely monitored the activity and helped children in some activities without interfering with their decisions. For example, they cut ingredients for young children or moderated the discussions within the group.

After children finished the development part, they evaluated and refined their products (Product tasting \& qualitative evaluation, Figure 1). The researcher served a small portion to each child so they could taste and evaluate their own product prototype. Children were prompted to discuss how they perceived the product, whether they liked it or not, and if they would make any improvements.

Concept prototyping

Children developed a concept prototype as communication strategy for their created products, by creating a poster similar to those usually found in bus stops. The poster was an adaptation from the newspaper brainstorming technique (Gray et al., 2010) used by Galler et al. (2020) to a more realistic context of a bus stop commercial, mimicking bus-stop posters ubiquitous in the area. The template included multiple fields that covered different
product promotion aspects: product name, ingredients, sensory characteristics, promotional image, and product benefits (Supplementary material 4).

2.3. Refining: development of the final products by researchers.

Four final products were developed using the ideas developed by the children (most frequent ingredients andsuppl combinations used in the different groups, as well as children's comments during the co-creation workshop). Only the milk dessert and the yogurt were considered for the formulation of the new products, since most of the groups selected one of them as dairy base. One of the most used vegetables (carrot, pumpkin or beetroot) was used as a central ingredient of the final products. Then, the ingredients that were more frequently used in combination with these specific vegetables were selected, considering a maximum of 6 ingredients per product. Grains and nuts were not included (except for grated coconut in one final product) given heterogeneity in children's views on their inclusion during the first session. Six percent of added sugar was used for all products given that this quantity was observed to be enough for children to create well-accepted products during the prototyping step. This represents more than 40% sugar reduction compared to commercial milk desserts targeted at children (approximately 12% added sugar) and 10-20\% sugar reduction compared to yogurts targeted at children (approximately 7-9\% added sugar) in Uruguay. Based on a pilot tasting by the research team, four final dairy products were developed (Table 2).

Table 2. Formulation of the final products developed by researchers based on children's ideas.

Ingredients	D001	D002	D003	Y001
Milk dessert base	74	74	74	-
Yogurt	-	-	-	74
Sugar	6	6	6	6
Beetroot puree	-	5	-	5
Carrot puree	5	-	5	-
Pumpkin puree	13.7	-	-	-
Strawberry puree	-	-	7.5	7.5
Blueberries puree (big chunks)	-	-	-5	-
Banana puree	1	-	-	7.5
Cocoa	0.3	-	-	-
Vanilla				

Notes: Ingredients quantities are expressed in percentage (w/w)

2.4. Validating: evaluation of the refined product prototypes s by children.

In the second session, the validation of the refined product prototypes developed by the researchers was carried out. The concept prototypes and communication strategies proposed by children will be validated in future studies. Samples (20 g) were served in black plastic cups coded with 3 -digit random numbers at $8^{\circ} \mathrm{C}$. Four different sample presentation orders were considered. Due to practical aspects of the evaluation set up, all children in the same group evaluated the samples in the same presentation order. Still mineral water was used as palate cleanser.

The tasting session took place in the dining hall/courtyard of the social club. Children performed the activity in groups of up to 12 children. Children were distributed to two large tables and seated with space in between them, but no physical divider was used. They were invited to evaluate the four samples. They were told the products were developed based on the products they created during the first session. Children received a paper questionnaire and the samples one by one. They were asked to try each of the products and to rate their overall liking individually, using a 9-point hedonic scale (1=dislike very much and 9=like very much) with emoji anchors. The same scale was used for all children, regardless of their age.

Although 9-point hedonic scales are not the most frequent for 6-7 year old children (Laureati et al., 2015), previous studies have shown that children in this age range are capable of using such scales (Divert et al., 2017; Popper \& Kroll, 2011). The researchers monitored that children performed the evaluation individually and assisted them if they had any question. Once all children finished their evaluation, they were allowed to interact with each other. After children completed the questionnaire each sample individually, they were asked to guess the ingredients in the product. Then, one of the researchers revealed the actual ingredients in the sample. The session lasted between 15 and 20 min.

2.3. Data analysis

The frequency of use of the each of the ingredients in the prototypes developed by children was calculated. In the validation step, overall liking scores for the four refined product prototypes were analyzed using a mixed linear model considering sample as a fixed effect and children as random effect. In addition, descriptive statistics and histograms were performed. Statistical analyses were performed using R software version 3.6.2 (R core Team, 2019).

Children's comments during the sessions were analyzed to obtain an overview of their decision-making process and their perception of the prototypes. For this purpose, qualitative content analysis, based on a deductive-inductive coding approach, was used (Bengtsson, 2016; Elo \& Kyngäs, 2008; Krippendorff, 2004). Qualitative content analysis is a method to systematically evaluate written, verbal or visual communication material which aims to keep the systematic nature of content analysis without quantification (Mayring, 2004). Raw data consisted of the transcripts of the audio recordings of all the sessions. First, a deductive approach was used to qualitative analyze children's comments according to four main themes: i) selection of the ingredients and product prototyping, ii) prototype tasting, iii) concept prototyping, and iv) tasting of the refined product prototypes. Then, the
information within each theme was qualitatively coded based on an inductive approach, i.e., categories were identified as they emerged after reading the transcript of children's comments.

Three researchers participated in the data analysis, two of the researchers involved in the data collection and an additional researcher (not blinded to the objective of the study). One researcher performed an initial coding by reviewing the raw data several times, which was then independently checked by the other two researchers. Quotes for each category were selected and translated from Spanish to English for illustrative purposes.

3. Results

3.1 Co-creation of healthy dairy products with children

Based on researchers' observations, children showed a high level of engagement during the activity. During the exploration and product prototyping stage, age-differences in the expected outcome of the activity were observed. Older children were more pessimistic about obtaining a healthy and tasty product. The researchers often noticed facial and verbal expressions of disgust among the older children during the product prototyping step (e.g., "So disgusting! Ugh!"), whereas younger children were more positive and excited (e.g., "This will be delicious! It looks delicious!").

Although children were guided by a researcher along the activity, they organized themselves efficiently. Children adopted different strategies to ensure the participation of all the members of the team, such as dividing tasks among team members and creating a voting system to make decisions (e.g., "Let's vote! The candidate yogurt. The candidate milk" or "Who votes for carrot?"). Many times, some participants encouraged their peers to taste new ingredients (e.g., "Have you tried it?" or "How long ago did you try it? Try again"). Groups of older children were more autonomous than groups of younger children when
manipulating ingredients with utensils, but apart from preparation skills, no major differences in the ability to participate in the co-creation process were observed.

Exploration of the ingredients

Product prototypes developed by children

A total of 13 product prototypes were developed during the activity. Children used between 7 and 13 ingredients in their prototypes, as shown in Table 3. Yogurt and milk desserts were the most used dairy bases, whereas only two of the groups developed their prototypes using a different dairy base (yogurt mousse and milk). As shown in Table 3, the most frequently used ingredient was strawberry, which was present in over 90% of the products, followed by vanilla (69\%), sugar (69\%), blueberries (62\%) and coconut (62\%). Regarding vegetables, pumpkin (46\%), carrot (39\%) and beetroot (39\%) were the most frequently used.
Table 3. Ingredients included in the prototypes developed by children.

Ingredient	Products (translated to English)													Frequency of use* (\%)
	Double Mix	Fruity Fruity	Pumpchoco	Fruity Tutti	Delicious and Healthy Smoothie	Fruity Yogurt	Strawgur	Healing Yogurt	Maxi smoothiel Multi Fruit	Healthy Yogurt	Pink Yogurt	The Fruiterer	Multi Fruit	
Dairy														
Yogurt	-	-	-	-	-	1	1	1	-	1	1	1	-	46
Dairy dessert	1	1	-	1	-	-	-	-	1	-	-	-	1	39
Yogurt Mousse	-	-	1	-	-	-	-	-	-	-	-	-	-	8
Milk	-	-	-	-	1	-	-	-	-	-	-	-	-	8
Yogurt gel	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Chia milk dessert	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Vegetables														
Pumpkin	1	1	1	-	-	1	-	-	-	1	-	-	1	46
Carrot	-	-	-	1	-	-	1	-	1	-	-	1	1	39
Beetroot	-	-	-	1	1	-	1	-	,	1	1		-	39
Spinach	-	-	-	-	-	-	1	-	-	-	-	-	-	8
Tomato	-	-	-	-	-	-	-	1	-	-	-	-	-	8
Cucumber	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Fruits														
Strawberries	1	1	1	1	1	1	1	-	1	1	1	1	1	92
Blueberries	1	-	-	1	1	-	-	1	1	-	1	1	1	62
Pineapple	-	-	1	1	-	-	1	1	1	-		1	1	54
Banana	-	-	1	1	-	1	1	-	-	-	1	-	-	39
Apple	-	-	-	1	-	-	-	-	-	-		1	-	15
Orange	-	-	-	1	-	-	1	-	-	-	-	-	-	15
Spices \& sugar														
Vanilla	1	1	1	1	1	1	-	1	1	-	-	-	1	69
Sugar	1	-	1	1	-	-	1	1	1	1	-	1	1	69
Lemon juice	-	1	-	-	-	-	1	-	-	-	1	-	1	31
Cocoa	-	1	1	1	-	-	-	-	-	-		-	-	23
Peppermint	-	1	-	-	1	-	-	-	-	-		-	-	15
Cinnamon	-	-	-	-	-	-	-	-	-	-	1	-	-	8
Lemon peel	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Grains \& nuts														
Coconut	1	-	1	-	1	1	1	1	-	-	1	-	1	62
Chia	-	-	-	1	-	1	-	-	-	-	-	-	-	15
Nuts	-	-	-	-	-	-	-	-	1	-		-	-	8
Quinoa	-	-	-	-	-	-	-	-	-	1		-	-	8
Oats	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Flax	-	-	-	-	-	-	-	-	-	-	-	-	-	0
Total number of ingredients	7	7	9	13	7	7	11	7	8	6	8	7	10	

Notes: *Percentage of products that included the ingredient. Oats was only added individually as decoration.

Factors underlying the selection of the ingredients

The analysis of children's comments during the activity provided insights on why ingredients were selected. Three factors emerged as drivers of product formulation: hedonics, familiarity, and healthiness.

When exploring the ingredients, children frequently referred to their liking (e.g. "Pineapple is delicious", "This is mint, yummy!") or disliking of the ingredients (e.g. "Yuck! I don't like cucumber", "Beetroot, gross!"). Although many children showed a strong aversion to vegetables, others expressed positive hedonic reactions (Table 4). Children often mentioned the influence of cartoon characters or a role model when discussing their liking of vegetables (e.g. "I like carrots because of Bugs Bunny..." or "My grandfather always ate cucumber in the morning, he loved it, and I also like cucumber like my grandfather").

For the creation of the products, children tended to select or avoid ingredients based on their liking (Table 4). Hedonics influenced the type of vegetables children selected. They tended to use vegetables with a light flavor and to avoid vegetables with a strong flavor. In addition, children tried to minimize the quantity of vegetables they used in their products (e.g. "Beetroot, but just little... Half spoon, otherwise is too much..." or "An invisible spoon!"). Children also relied on flavor masking to reduce the intensity of vegetable flavor (e.g. "Add all (the banana), then it won't taste like pumpkin") (Table 4).

Familiarity was another relevant factor underlying the selection of the ingredients, particularly the selection of the dairy base. Although new textures (e.g., yogurt gel or chia milk dessert) triggered children's curiosity, they mainly selected familiar dairy products for their prototype development, i.e. yogurt and milk dessert. As shown in Table 4, when discussing the selection of the dairy base, children often referred back to commercial dairy products or products prepared by their parents. Similarly, children often selected vegetables that were quickly recognized (pumpkin and carrot purees: "This smells like pumpkin", "This is carrot!") compared to vegetables they struggled to identify (spinach puree: "It smells like
grass", "I don't eat grass!"). In addition, children felt more comfortable with well-known ingredient combinations. As shown in Table 4, children frequently mentioned typical fruit combinations, whereas they tended to reject unfamiliar combination of fruits and vegetables or dairy products with vegetables. Furthermore, children expressed disliking for ingredients they had never tasted (e.g., I don't like chia because I've never tried it).

Finally, children also considered healthiness to decide their product formulation by minimizing the amount of sugar added to their products as they perceived it as an unhealthy ingredient, as exemplified by the following conversation:

Child A: Sugar! Sugar! Who votes for sugar?
Child B-Eh... I don't know... sugar isn't healthy
Child C - If it is not healthy, we'd better not add it...
Child A - Then why did you say sugar?
Researcher - Well, you can add a little
Child A - It will be sweet...
Child C - I want a healthy yogurt!
Child B - We could add a little....

Interestingly, children had a very clear idea of how they wanted their product to be in terms of texture and appearance when served. For this reason, they frequently reserved part of the ingredients to modify the final product (e.g., adding pieces of fruit) or to decorate it.

Table 4. Example of quotes related to the main factors influencing children product development.

Factor	Example quotes
Hedonics	Because the milk dessert is tasty
	Yogurt, because I love it!
	Strawberry, it is my favorite fruit!
	We can add strawberry, which people usually like...
	I would add spinach... I love spinach
	I love beetroot!
	Pumpkin, it's ok...
	That's so disgusting! I don't like beetroot...
	Youst we add a vegetable? ... it's what I hate the most
	That's so I don't like vegetables
	... think carrot because it has a light flavor, and the fruit will
	be more noticeable...
	Add all (the banana), then it won't taste like pumpkin
	Yes! We add all, we made a fruit salad and there is no
	pumpkin flavor
	This one! It doesn't have flavor!
	If we add lemon peel, it will cover up the vegetable flavor
	My grandmother/mother makes it
	Like Danone...
	I remember that my mother bought me a big pot (of yogurt) and I ate it all!!
	Ah ... Danette ... Like that?
	Milk, because I know what to combine it with...
	Blueberry and strawberry, the typical dessert combination.
	No! How are we going to put pumpkin with strawberry? Where have you
	seen that?
	Yogurt with vegetables?
	No, that doesn't go well with yogurt, not at all (Talking about vegetables)

Tasting and qualitative evaluation of the product prototypes

After children tasted their developed prototype, they frequently compared it with wellknown commercial products. A 62\% of the groups stated that they were happy with their developed prototypes. However, all the groups identified several improvement opportunities, which were mostly related to flavor. For instance, 69% of the groups wanted to increase sugar quantity, as exemplified by the following quotes:

I think we should have added sugar...
...it lacks a lot of sugar.
Mmm... I love it, we just need to add sugar

I didn't hate the pumpkin, but it lacks sugar
Other frequent modification was the removal of vegetables, even if they were not perceived in the final prototype:

I didn't like it... because it has too much carrot.
From the beginning, I said no pumpkin
Child A - We should have not added pumpkin...
Child B - The pumpkin isn't even perceived!
Children also mentioned adjustments to the quantity of other ingredients, including changing sourness (e.g., by reducing or increasing the quantity of lemon juice), reducing bitterness (e.g., by reducing the quantity of cocoa) or enhancing flavor (e.g., by adding more vanilla). The addition of other ingredients as topping or to modify the flavor were also mentioned. For instance, many children added cocoa to their cup or expressed they would like a version with cocoa. However, heterogeneous views on the inclusion of ingredients within the category grains \& nuts were observed: some children wanted to include those ingredients as toppings, whereas others preferred not to. The specific reasons for not wanting to include these ingredients in the final formulation were rarely verbalized beyond disliking (e.g., "Disgusting!", "I don't like chia because I've never tried it").

Concept prototypes developed by children: strategies to promote a healthy dairy

 product among childrenAll teams gave a name to the product they created. Table 3 shows the selected names, translated from Spanish to English. As shown, most of the prototypes were named after the ingredients included in the formulation.

In the description of their prototype, children referred to the dairy base and familiar ingredients included in the formulation (e.g., strawberry, cocoa). On the contrary, they were skeptical about mentioning the inclusion of vegetables. Children mentioned that the presence of vegetables could discourage other children to try the prototypes:

Don't tell them about the beetroot because they may not want it If we tell them that it has that (vegetable), maybe they won't want to try it and it's delicious.

When asked to think of the content of a poster, children often wanted to include images that showed the product and the fruit in an artistic way or children consuming the product:

A light purple background, then a river of the liquid appears... with pieces of strawberry and blueberries... and the brand is there... floating ... we add "delicious"

I would put a cup, a delicious one ... with a person eating it The poster has some children eating and running... like a happy story... The photo of the dessert... with a child eating the dessert

The use of images of cartoon characters or animals was also frequently suggested as a potential strategy to promote their prototypes:

A cartoon character, like a tiger that says (product name)
I want a picture of a rabbit with a yogurt in its hand... because I like rabbits and penguins... I want a rabbit or an animal...I want something that draws attention, something that says I want to try it...

When discussing how to motivate other children to try the prototype, the use of nutrient and health claims was frequently mentioned: ...that it doesn't have sugar... ...because it has lots of vitamins
...it gives you strength, it makes you grow up healthy
In addition, the fact that the prototypes were developed by children was identified as potential strategy to motivate children to try them (e.g. It's made by us, it's the best!). References to the delicious flavor and the novelty of the product were common as well (e.g., "It is yummy", "It is delicious", "Tired of the same yogurt? Then try the new yogurt"). Additionally, children made references to promotions and discounts (e.g., "Do it like the (supermarket name), 20\% discounts on purchases" o "Tastings, as in the (supermarket name) that give you samples", "The promotion would be a discount all year long", "It brings a keychain as a gift").

3.2 Validation: evaluation of the final products developed based on children's ideas

All the products received average overall liking scores close or higher than 6 in the 9-point hedonic scale. For exploratory purposes, average overall liking scores were calculated and compared using ANOVA. Results showed that there were no statistically significant differences $(p=0.69)$ between the four products developed based on children's ideas. Product D001 received an overall liking score of (7.9 \pm 1.6), followed by Y001 (7.1 \pm 2.4), D002 (6.9 ± 2.8) and finally product D003 (5.9 ± 3.1) (Figure 2).

Children often described the samples using positive hedonic terms (e.g. "I gave all of them a nine. I loved them" or "This is really awesome, it has banana"). Based on qualitative feedback, product D001 was one of the most liked products. Children used references to ice cream, chocolate, and cocoa to describe it. Products Y001 and D002 were described using words such as strawberry, banana flavor and ice cream. In addition, children referred to acidity and yogurt to describe product Y001 and usually mentioned lemon or orange as ingredient. Children found it difficult to identify the ingredients of product D003 and some of them described it as weird. Some children disliked the small pieces of
blueberries as they confused them with seeds, chia, or leaves. However, based on qualitative feedback, the product tended to be popular among older children. Although some children did not remember the name of the blueberries, they remembered the fruit.

Children rarely mentioned vegetables when trying to guess ingredients. They were extremely surprised to learn that the samples had indeed vegetables, as exemplified in the following quotes:

And I didn't perceive the beetroot flavor... and I don't like beetroot Does it have pumpkin? Oh no! Can I give it a one?

I liked them all ... even the ones with horrible vegetables

Figure 2. Distribution of liking scores given by children $(n=43)$ to each of the four final products developed based on their ideas: D001 (a), D002 (b), D003 (c), and Y001 (d). The description of the products is provided in Table 2.

4. Discussion

Involving children in the development of new products can contribute to encourage healthier eating patterns. Although co-creation with children has gained relevance in several areas of knowledge, examples in the food domain are still scarce. In this context, the present work explored the use of a multiple stage prototyping process (Exploring - Prototyping Refining - Validating). Results showed that with the proposed approach, starting from individual ingredients and comprising tasting, experimenting, and creating, children were able to generate actionable ideas that allowed the development of dairy recipes which were well accepted by the involved children. These results show the potential of involving children in the co-creation of healthy dairy products.

Children encouraged each other to try ingredients they would normally reject. As previous studies have shown, a creative and hands-on involvement can enhance children's willingness to expand their acceptance of food (Galler et al., 2020; Heim et al., 2009; Hojer et al., 2020; Walters \& Stacey, 2009). It should be highlighted that the creative involvement was highly engaging for participants, and, in accordance to the previous study from Galler et al. (2020), peer influence might play a positive role in these type of settings. Hojer et al. (2020) highlighted that helping each other in activities around fish preparation had a positive effect on children's fish acceptance helping them to overcome aversions. Similarly, a collaborative creation of a food blog led children to taste and cook things that their peers had posted (Galler et al., 2020).

Although children showed a positive attitude to try novel dairy products with fruits and vegetables, familiarity had a central role in the development process. Children chose ingredients and combinations they had tried before. Early studies have shown that familiarity and previous experience with food are major determinants of children's food preferences, whereas they tend to reject unfamiliar foods (Birch and Marlin 1982; Lafraire et al. 2016; Russell and Russell 2018). Recently, Hwang et al. (2020) showed that children were more
likely to choose familiar over unfamiliar innovative vegetable-based products. In the present study, the use of rules that pushed children to think outside the box was one of the critical factors to develop novel dairy products. In this sense, gamification has been shown to have potential to improve fruit and vegetable intake among adolescents (Yoshida-Montezuma, Ahmed, and Ezezika 2020).

Children selected ingredients based on hedonics, which matches the strong influence of liking on children's food choices (Marty et al. 2018b; Nguyen, Girgis, and Robinson 2015). It is worth mentioning that younger children showed a more positive attitude towards the idea of including vegetables in the development of dairy products, whereas older children showed a stronger aversion towards vegetables. Previous studies have reported a high heterogeneity in children's food preferences with age (Alfaro et al. 2020; Pagliarini, Gabbiadini, and Ratti 2005). As children grow, their food choices become more selective and complex (Cooke and Wardle 2005; Latorres, Mitterer-Daltoé, and Queiroz 2016). In this perspective, it has been reported that older children tend to decrease their intake of fruit and vegetables (Albani et al. 2017; Birch, Savage, \& Ventura 2007), which may be linked to the strong rejection of vegetables observed in older children. Despite the initial rejection, older children were willing to develop and taste innovative dairy products with vegetables. Previous studies have shown that providing children choice options increases their liking and intake of healthy foods, such as vegetables and fish (Altintzoglou et al., 2015; Rohlfs Domínguez et al., 2013). Having the opportunity of experimenting with the ingredients and actively choosing the ones to be included in their product prototypes is expected to have increased liking and willingness to try. Previous studies have shown that being able to freely choose increases the perception of autonomy, which can lead to increased motivation of engaging in a behaviour, such as eating healthy foods (Katz and Assor, 2006). Another factor that could have played a role in motivating children to overcome rejection to taste products with new ingredients is peer influence (Russell and Russell, 2018).

Interestingly, children implemented several well-known strategies to mask the flavour of vegetables they disliked, such as adding well-liked ingredients. Masking the taste of disliked foods or presenting them in a way that they are not recognizable has been previously reported to be a successful strategy to increase children's vegetable intake (Poelman, Delahunty, and de Graaf 2015; Rollins et al. 2021; Spill et al. 2011). In this sense, results from the present work suggest that dairy products containing pumpkin, beetroot and carrot may be well-accepted by children. Although children accepted products with vegetables, it is important to emphasize that they stressed that vegetables should not be a central factor in the promotion of the products as this would raise negative sensory and hedonic expectations.

Sweetness was a key factor for children's liking of the developed dairy products, although they were aware of the potential negative health effects of sugar. These findings are in agreement with Takemi \& Woo (2017), who showed that multiple factors influenced children preference for high sugary dairy drinks, regardless of children's consciousness of the negative health outcomes of sugar intake. However, it is important to highlight that the products developed based on children's ideas had high overall liking scores, even if the added sugar content was lower than those commonly found in the Uruguayan market. In the case of the dairy desserts, added sugar reduction was approximately 40% compared to commercial products targeted at children. This agrees with results from previous studies (Velázquez et al. 2020, 2021) and stresses the feasibility of substantially reducing the added sugar content of dairy products without affecting children's product acceptance.

Children's ideas on how to promote the developed products were similar to those frequently used by the food industry to target their products at children (Elliott 2015; Elliott and Truman 2020; Qutteina et al. 2019), including the use of cartoon characters, nutrient and health claims and references to fun and emotional aspects of food consumption. Although these strategies are commonly used to promote products of poor nutritional quality
(Elliott and Truman 2020; Giménez et al. 2017), results from the present work suggest that they hold potential to promote healthy products. For instance, the use of cartoon characters has been reported to increase the attractiveness of fruit and vegetables snacks among children (Hémar-Nicolas et al. 2021; Pires and Agante 2011). Regulatory approaches restricting the use of these marketing strategies to healthy products may contribute to improve children's eating habits (Taillie et al. 2019).

Limitations of the study

The present work is one of the few published studies that explores the use of cocreation with children, providing them an active role in the generation of ideas and concrete prototypes of healthy food products. However, some limitations are worthy to highlight for future studies. In the present study, children in each group knew each other, as social bubbles were maintained due to the measures implemented by the club in the context of the Covid-19 pandemic. Although more heterogeneous groups may have generated more diverse ideas (Van Mechelen et al., 2014), group cohesiveness facilitated groups dynamics. Children encouraged each other to participate and implemented strategies which allowed a well-balanced participation (e.g., take turns). Nevertheless, future studies should consider the exploration of co-creation approaches with more heterogeneous groups. Such approaches should consider the inclusion of a phase where children get to know each other in order to make collaboration and interactions easier.

The lack of teamwork or peer pressure have been mentioned as group dynamics challenges during co-creation workshops with children (Van Mechelen et al., 2014; Vaajakallio et al., 2009). Although these behaviors were not observed in the present work, it is important to highlight that the flexibility of the facilitator to adjust to children's needs played a major role to ensure good group dynamics during the sessions. Therefore, future research should pay close attention to the facilitator's specific skills required to meet
children's needs in a diverse co-creation context. Considering that personality traits have been regarded as an important factor influencing co-creation process in NPD (Füller, 2010; Mandolfo et al., 2020), the influence of children personality traits and other demographic characteristics is also worthy of consideration in future research.

A strength of the present study was that children actively participated in the development of product prototypes. This was feasible because product preparation required a low level of cooking skills, which allowed younger children to be mostly autonomous during the prototyping phase. However, children's developmental skills may be a major limitation to implement co-creation approaches in more complex food products that require more advanced cooking skills, especially if younger children are involved (Dean et al., 2021). Cocreation of more complex products may require a higher involvement of the moderator and may limit children's autonomy. Future studies are needed to explore the use of co-creation with children for the development of more complex products.

Another limitation of the study was that the evaluation of the developed products was performed with the same groups of children. This means that children may have been biased towards high overall liking scores. Thus, additional validation of the developed products with other groups of children is needed.

5. Conclusions

The present study is one of the first to report the feasibility of co-creation with children in the food domain, where children could create and taste their own food prototypes. Results showed the potential of co-creation with children to develop actionable ideas and concrete prototypes of healthy products with high overall liking. Innovative dairy products with novel and healthy ingredients and low added sugar content were developed. Familiarity, hedonics and healthiness were identified as key drivers of children's choice of ingredients during the development of their prototypes. The potential of well-known marketing and communication
strategies to promote healthier products targeted at children was highlighted. Results also suggest the potential of co-creation approaches as a way to encourage children to think out of the box and develop preferences for new and healthy products. In particular, the hereby proposed process of exploring-prototyping-refining-validating, starting from the sensory exploration of novel ingredients and textures, was deemed as successful for the objective and engaging and fun for the participants. Further research is needed to extrapolate results of the present work to other children age groups and complex food product categories in order to evaluate the applicability of the proposed approach in the NPD process of healthy foods targeted at children.

Acknowledgments

The study was conducted as part of the project "Edulia - Bringing down barriers to children's healthy eating", which has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 764985. Financial support was also obtained from Espacio Interdisciplinario (Universidad de la República, Uruguay). Author P. Varela also received financial support from the Norwegian Fund for Research Fees for Agricultural Products (FFL) through the project "FoodForFuture" (project number 314318).

References

Albani, V., Butler, L. T., Traill, W. B., \& Kennedy, O. B. (2017). Fruit and vegetable intake: change with age across childhood and adolescence. British Journal of Nutrition, 117(5), 759-765. https://doi.org/DOI: 10.1017/S0007114517000599

Alcaire, F., Antúnez, L., Vidal, L., Giménez, A., \& Ares, G. (2017). Aroma-related crossmodal interactions for sugar reduction in milk desserts: Influence on consumer perception. Food Research International, 97, 45-50. https://doi.org/https://doi.org/10.1016/j.foodres.2017.02.019

Alfaro, B., Rios, Y., Arranz, S., \& Varela, P. (2020). Understanding children's healthiness and hedonic perception of school meals via structured sorting. Appetite, 144, 104466. https://doi.org/https://doi.org/10.1016/j.appet.2019.104466

Allirot, X., da Quinta, N., Chokupermal, K., \& Urdaneta, E. (2016). Involving children in cooking activities: A potential strategy for directing food choices toward novel foods containing vegetables. Appetite, 103, 275-285. https://doi.org/https://doi.org/10.1016/j.appet.2016.04.031

Altintzoglou, T., Skuland, A. V, Carlehög, M., Sone, I., Heide, M., \& Honkanen, P. (2015). Providing a food choice option increases children's liking of fish as part of a meal. Food Quality and Preference, 39, 117-123. https://doi.org/https://doi.org/10.1016/j.foodqual.2014.06.013

Arnold, L., Lee, K. J., \& Yip, J. C. (2016). Co-designing with children: An approach to social robot design. ACM Human-Robot Interaction (HRI).

Bengtsson, M. (2016). How to plan and perform a qualitative study using content analysis. NursingPlus Open, 2, 8-14. https://doi.org/https://doi.org/10.1016/j.npls.2016.01.001

Birch, L. L., \& Marlin, D. W. (1982). I don't like it; I never tried it: Effects of exposure on two-year-old children's food preferences. Appetite, 3(4), 353-360. https://doi.org/https://doi.org/10.1016/S0195-6663(82)80053-6

Birch, L., Savage, J. S., \& Ventura, A. (2007). Influences on the Development of Children's Eating Behaviours: From Infancy to Adolescence. Canadian Journal of Dietetic Practice and Research : A Publication of Dietitians of Canada = Revue Canadienne de La Pratique et de La Recherche En Dietetique : Une Publication Des Dietetistes Du Canada, 68(1), s1-s56. https://pubmed.ncbi.nlm.nih.gov/19430591

Borum N., Brooks E.P., Brooks A.L. (2015). Designing with Young Children: Lessons Learned from a Co-creation of a Technology-Enhanced Playful Learning Environment. In: A. Marcus (Ed.), Design, User Experience, and Usability: Interactive Experience Design. DUXU 2015. Lecture Notes in Computer Science (vol 9188). Springer, Cham. https://doi.org/10.1007/978-3-319-20889-3_14

Busse, M., \& Siebert, R. (2018). The role of consumers in food innovation processes. European Journal of Innovation Management, 21(1), 20-43. https://doi.org/10.1108/ejim-03-2017-0023

Campmans-Kuijpers, M. J. E., Singh-Povel, C., Steijns, J., \& Beulens, J. W. J. (2016). The association of dairy intake of children and adolescents with different food and nutrient intakes in the Netherlands. BMC Pediatrics, 16, 2. https://doi.org/10.1186/s12887-015-0524-3

Chacon, V., Letona, P., \& Barnoya, J. (2013, 2013/10/18). Child-oriented marketing techniques in snack food packages in Guatemala. BMC Public Health, 13(1), 967. https://doi.org/10.1186/1471-2458-13-967

Chesbrough, H. W. (2003). Open innovation: The new imperative for creating and profiting from technology. Harvard Business Press.

Clemens, R. A., Jones, J. M., Kern, M., Lee, S., Mayhew, E. J., Slavin, J. L., \& Zivanovic, S. (2016). Functionality of sugars in foods and health. Comprehensive Reviews in Food Science and Food Safety, 15(3), 433-470. https://doi.org/10.1111/15414337.12194

Cooke, L. J., \& Wardle, J. (2005). Age and gender differences in children's food preferences. British Journal of Nutrition, 93(5), 741-746. https://doi.org/DOI: 10.1079/BJN20051389

Daems, K., Moons, I., \& De Pelsmacker, P. (2017). Co-creating advertising literacy awareness campaigns for minors. Young Consumers, 18(1), 54-69. https://doi.org/10.1108/YC-09-2016-00630

Dean, M., O’Kane, C., Issartel, J., McCloat, A., Mooney, E., Gaul, D., Wolfson, J. A., \& Lavelle, F. (2021). Guidelines for designing age-appropriate cooking interventions for children: The development of evidence-based cooking skill recommendations for children, using a multidisciplinary approach. Appetite, 161, 105125. https://doi.org/https://doi.org/10.1016/j.appet.2021.105125

Divert, C., Chabanet, C., Schoumacker, R., Martin, C., Lange, C., Issanchou, S., \& Nicklaus, S. (2017). Relation between sweet food consumption and liking for sweet taste in French children. Food Quality and Preference, 56, 18-27. https://doi.org/https://doi.org/10.1016/j.foodqual.2016.09.009

Druin, A. (2002). The role of children in the design of new technology. Behaviour \& Information Technology, 21, 1-25. https://doi.org/10.1080/01449290110108659

Dror, D. K., \& Allen, L. H. (2014). Dairy product intake in children and adolescents in developed countries: trends, nutritional contribution, and a review of association with health outcomes. Nutrition Reviews, 72(2), 68-81. https://doi.org/10.1111/nure. 12078 Elliott, C. (2015). 'Big Food' and 'gamified' products: promotion, packaging, and the promise of fun. Critical Public Health, 25(3), 348-360. https://doi.org/10.1080/09581596.2014.953034

Elliott, C., \& Truman, E. (2020). The Power of Packaging: A Scoping Review and Assessment of Child-Targeted Food Packaging. In Nutrients (Vol. 12, Issue 4). https://doi.org/10.3390/nu12040958

Elo, S., \& Kyngäs, H. (2008). The qualitative content analysis process. Journal of Advanced Nursing, 62(1), 107-115. https://doi.org/https://doi.org/10.1111/j.13652648.2007.04569.x

Filieri, R. (2013). Consumer co-creation and new product development: a case study in the food industry. Marketing Intelligence \& Planning, 31(1), 40-53. https://doi.org/10.1108/02634501311292911

Füller, J. (2010). Refining Virtual Co-Creation from a Consumer Perspective. California Management Review, 52(2), 98-122. https://doi.org/10.1525/cmr.2010.52.2.98

Galler, M., Gonera, A., \& Varela, P. (2020). Children as food designers: The potential of co-creation to make the healthy choice the preferred one. International Journal of Food Design, 5(1-2), 125-131. https://doi.org/10.1386/ijfd_00015_3

Gennari, R., Matera, M., Melonio, A., \& Roumelioti, E. (2019). A Board-Game for CoDesigning Smart Nature Environments in Workshops with Children. In A. Malizia, S. Valtolina, A. Morch, A. Serrano, \& A. Stratton (Eds.). End-User Development (pp. 132-148). Springer International Publishing.

Ghaziani, R. (2021). Primary school design: co-creation with children. Archnet-IJAR: International Journal of Architectural Research, 15(2), 285-299. https://doi.org/10.1108/ARCH-07-2020-0132

Gimenez, A., Saldamando, L., Curutchet, M. R., \& Ares, G. (2017, Jun 12). Package design and nutritional profile of foods targeted at children in supermarkets in Montevideo, Uruguay. Cad Saude Publica, 33(5), e00032116. https://doi.org/10.1590/0102-311X00032116

Gray, D., Brown, S., \& Macanufo, J. (2010). Gamestorming: A Playbook for Innovators, Rulebreakers, and Changemakers (C. Wheeler, Ed.). O'Reilly Media, Inc.

Havukainen, M., Laine, T. H., Martikainen, T., \& Sutinen, E. (2020). A Case Study on Codesigning Digital Games with Older Adults and Children: Game Elements, Assets, and Challenges. The Computer Games Journal, 9(2), 163-188.
https://doi.org/10.1007/s40869-020-00100-w
Heim, S., Stang, J., \& Ireland, M. (2009, Jul). A garden pilot project enhances fruit and vegetable consumption among children. J Am Diet Assoc, 109(7), 1220-1226. https://doi.org/10.1016/j.jada.2009.04.009

Hémar-Nicolas, V., Putri Hapsari, H., Angka, S., \& Olsen, A. (2021). How cartoon characters and claims influence children's attitude towards a snack vegetable - An explorative cross-cultural comparison between Indonesia and Denmark. Food Quality and Preference, 87, 104031. https://doi.org/https://doi.org/10.1016/j.foodqual.2020.104031

Hojer, R., Wistoft, K., \& Frost, M. B. (2020, Oct 17). Play with Your Food and Cook It! Tactile Play with Fish as a Way of Promoting Acceptance of Fish in 11- to 13-YearOld Children in a School Setting-A Qualitative Study. Nutrients, 12(10). https://doi.org/10.3390/nu12103180

Hutchings, S. C., Low, J. Y. Q., \& Keast, R. S. J. (2019). Sugar reduction without compromising sensory perception. An impossible dream? Critical Reviews in Food Science and Nutrition, 59(14), 2287-2307. https://doi.org/10.1080/10408398.2018.1450214

Hwang, S. M., Alfalah, S., Kwon, J. M., \& Kudrowitz, B. (2020). Familiarity trumps playfulness: Exploring children's preferences for playful design of vegetables. International Journal of Food Design, 5(1-2), 43-64.
https://doi.org/10.1386/ijfd 000091
Ind, N., \& Coates, N. (2013). The meaning of co-creation. European Business Review, 25. https://doi.org/10.1108/09555341311287754

Jelic, A., Martin, M., Laursen, L., Tvedebrink, T., Fich, L., \& Oehlwein, L. (2020). Children, play, and the built environment: What can we learn from co-creation and embodied cognitive science? https://doi.org/10.13140/RG.2.2.11436.28803

Kanekanian, A. (2014) The health benefifts of bioactive compounds from milk and dairy products. In A. Kanekanian (Ed.), Milk and dairy products as functional foods, pp.122, Oxford, Chichester, UK: John Wiley \& Sons, Ltd.

Kangas, M. (2010). Creative and playful learning: Learning through game co-creation and games in a playful learning environment. Thinking Skills and Creativity, 5(1), 1-15. https://doi.org/https://doi.org/10.1016/j.tsc.2009.11.001

Katz, I., \& Assor, A. (2006). When Choice Motivates and When It Does Not. Educational Psychology Review, 19(4), 429. https://doi.org/10.1007/s10648-006-9027-y

Krippendorff, K. (2004). Content analysis: An introduction to its methodology (2nd ed.). Thousand Oaks, CA: Sage Publications.

Lafraire, J., Rioux, C., Giboreau, A., \& Picard, D. (2016). Food rejections in children: Cognitive and social/environmental factors involved in food neophobia and picky/fussy eating behavior. Appetite, 96, 347-357. https://doi.org/https://doi.org/10.1016/j.appet.2015.09.008

Latorres, J. M., Mitterer-Daltoé, M. L., \& Queiroz, M. I. (2016). Hedonic and Word Association Techniques Confirm a Successful Way of Introducing Fish into Public School Meals. Journal of Sensory Studies, 31(3), 206-212.
https://doi.org/https://doi.org/10.1111/joss. 12204
Laureati, M., Pagliarini, E., Toschi, T. G., \& Monteleone, E. (2015). Research challenges and methods to study food preferences in school-aged children: A review of the last 15years. Food Quality and Preference, 46, 92-102.
https://doi.org/https://doi.org/10.1016/j.foodqual.2015.07.010

Lavrisa, Z., \& Pravst, I. (2019, May 21). Marketing of Foods to Children through Food Packaging Is Almost Exclusively Linked to Unhealthy Foods. Nutrients, 11(5). https://doi.org/10.3390/nu11051128

Leask, C. F., Sandlund, M., Skelton, D. A., Altenburg, T. M., Cardon, G., Chinapaw, M. J. M., De Bourdeaudhuij, I., Verloigne, M., Chastin, S. F. M., GrandStand, S. S., \& Teenage Girls on the Move Research, G. (2019). Framework, principles and recommendations for utilising participatory methodologies in the co-creation and evaluation of public health interventions. Res Involv Engagem, 5, 2. https://doi.org/10.1186/s40900-018-0136-9

Lillford, P., \& Hermansson, A.-M. (2020, 2020/05/13/). Global missions and the critical needs of food science and technology. Trends in Food Science \& Technology. https://doi.org/https://doi.org/10.1016/j.tifs.2020.04.009

Mack, N. A., Rembert, D. G. M., Cummings, R., \& Gilbert, J. E. (2019). Co-Designing an Intelligent Conversational History Tutor with Children. Proceedings of the 18th ACM International Conference on Interaction Design and Children, 482-487. https://doi.org/10.1145/3311927.3325336

Mandolfo, M., Chen, S., \& Noci, G. (2020). Co-creation in new product development: Which drivers of consumer participation? International Journal of Engineering Business Management, 12, 1847979020913764. https://doi.org/10.1177/1847979020913764

Marty, L., Chambaron, S., Nicklaus, S., \& Monnery-Patris, S. (2018a). Learned pleasure from eating: An opportunity to promote healthy eating in children? Appetite, 120, 265-274. https://doi.org/10.1016/j.appet.2017.09.006

Marty, L., Nicklaus, S., Miguet, M., Chambaron, S., \& Monnery-Patris, S. (2018b). When do healthiness and liking drive children's food choices? The influence of social
context and weight status. Appetite, 125, 466-473. https://doi.org/https://doi.org/10.1016/j.appet.2018.03.003

Mayring, P. (2004). Qualitative content analysis. In U. Flick, E. von Kardoff, \& I. Steinke (Eds.), A companion to qualitative research (Vol. 1, Issue 2, pp. 159-176).

Mehta, K., Phillips, C., Ward, P., Coveney, J., Handsley, E., \& Carter, P. (2012). Marketing foods to children through product packaging: prolific, unhealthy and misleading. Public Health Nutrition, 15(9), 1763-1770. https://doi.org/10.1017/S1368980012001231

Ministerio de Salud Pública. (2016). Guía alimentaria para la población uruguaya. Montevideo: Ministerio de Salud Pública.

Moore, J. B., Horti, A., \& Fielding, B. A. (2018). Evaluation of the nutrient content of yogurts: a comprehensive survey of yogurt products in the major UK supermarkets. BMJ Open, 8(8), e021387. https://doi.org/10.1136/bmjopen-2017-021387

Nguyen, S. P., Girgis, H., \& Robinson, J. (2015). Predictors of children's food selection: the role of children's perceptions of the health and taste of foods. Food quality and preference, 40, 106-109. https://doi.org/10.1016/j.foodqual.2014.09.009

OHern, M. S., \& Rindfleisch, A. (2010). Customer Co-Creation. In N. K. Malhotra (Ed.), Review of Marketing Research (Vol. 6, pp. 84-106). Emerald Group Publishing Limited. https://doi.org/10.1108/S1548-6435(2009)0000006008

Observatorio Granjero. (2021). Mercado Modelo. Anuario estadístico 2020. Montevideo: Ministerio de Ganadería, Agricultura y Pesca.

Oliveira, D., Reis, F., Deliza, R., Rosenthal, A., Gimenez, A., \& Ares, G. (2016). Difference thresholds for added sugar in chocolate-flavoured milk: Recommendations for gradual sugar reduction. Food Research International, 89, 448-453.

Olsen, N. V. (2015). Design Thinking and food innovation. Trends in Food Science \& Technology, 41(2), 182-187. https://doi.org/10.1016/j.tifs.2014.10.001

Ortez, M., Bir, C., Olynk Widmar, N., \& Townsend, J. (2021). Dairy product purchasing in households with and without children. JDS Communications, 2(1), 7-12.
https://doi.org/10.3168/jdsc.2020-19305
Pagliarini, E., Gabbiadini, N., \& Ratti, S. (2005). Consumer testing with children on food combinations for school lunch. Food Quality and Preference, 16(2), 131-138. https://doi.org/https://doi.org/10.1016/j.foodqual.2004.03.001

Parsons, S., Guldberg, K., Porayska-Pomsta, K., \& Lee, R. (2015). Digital stories as a method for evidence-based practice and knowledge co-creation in technologyenhanced learning for children with autism. International Journal of Research \& Method in Education, 38(3), 247-271. https://doi.org/10.1080/1743727X.2015.1019852

Pires, C., \& Agante, L. (2011). Encouraging children to eat more healthily: The influence of packaging. Journal of Consumer Behaviour, 10(3), 161-168. https://doi.org/10.1002/cb. 362

Poelman, A. A. M., Delahunty, C. M., \& de Graaf, C. (2015). Vegetable preparation practices for 5-6 years old Australian children as reported by their parents; relationships with liking and consumption. Food Quality and Preference, 42, 20-26. https://doi.org/https://doi.org/10.1016/j.foodqual.2015.01.005

Popper, R., \& Kroll, J. J. (2011). Consumer testing of food products using children. Developing Children's Food Products, 163-187. https://doi.org/10.1533/9780857091130.3.163

Prahalad, C. K., \& Ramaswamy, V. (2002). The co-creation connection. Strategy and Business, 50-61.

Qutteina, Y., Hallez, L., Mennes, N., De Backer, C., \& Smits, T. (2019). What do adolescents see on social media? A diary study of food marketing images on social media. Frontiers in psychology, 10, 2637. https://doi.org/10.3389/fpsyg.2019.02637

Rizzoli, R. (2014). Dairy products, yogurts, and bone health. The American Journal of Clinical Nutrition, 99(5), 1256S-1262S. https://doi.org/10.3945/ajcn.113.073056

Roberts, D. L., \& Darler, W. (2017). Consumer Co-Creation: An Opportunity to Humanise the New Product Development Process. International Journal of Market Research, 59(1), 13-33. https://doi.org/10.2501/IJMR-2017-003

Rohlfs Domínguez, P., Gámiz, F., Gil, M., Moreno, H., Márquez Zamora, R., Gallo, M., \& de Brugada, I. (2013). Providing choice increases children's vegetable intake. Food Quality and Preference, 30(2), 108-113. https://doi.org/https://doi.org/10.1016/j.foodqual.2013.05.006

Rollins, B. Y., Stein, W., Keller, K. L., \& Savage, J. S. (2021). Preschoolers will drink their GREENS! Children accept, like, and drink novel smoothies containing dark green vegetables (DGVs). Appetite, 162, 105148. https://doi.org/https://doi.org/10.1016/j.appet.2021.105148

Russell, C. G., \& Russell, A. (2018). Biological and Psychosocial Processes in the Development of Children's Appetitive Traits: Insights from Developmental Theory and Research. Nutrients, 10(6), 692. https://doi.org/10.3390/nu10060692

Schifferstein, H. N. J. (2015). Employing consumer research for creating new and engaging food experiences in a changing world. Current Opinion in Food Science, 3, 27-32. https://doi.org/10.1016/j.cofs.2014.11.004

Spill, M. K., Birch, L. L., Roe, L. S., \& Rolls, B. J. (2011). Hiding vegetables to reduce energy density: an effective strategy to increase children's vegetable intake and reduce energy intake. The American Journal of Clinical Nutrition, 94(3), 735-741. https://doi.org/10.3945/ajcn.111.015206

Taillie, L. S., Busey, E., Stoltze, F. M., \& Dillman Carpentier, F. R. (2019). Governmental policies to reduce unhealthy food marketing to children. Nutrition Reviews, 77(11), 787-816. https://doi.org/10.1093/nutrit/nuz021

Takemi, Y., \& Woo, T. (2017). Comparison of sweetness preference and motivational factors between Korean and Japanese children. Journal of Nutrition and Health, 50(1). https://doi.org/10.4163/inh.2017.50.1.53

Vaajakallio, K., Lee, J.-J., \& Mattelmäki, T. (2009). "It Has to Be a Group Work!": CoDesign with Children. Proceedings of the 8th International Conference on Interaction Design and Children, 246-249. https://doi.org/10.1145/1551788.1551843
van der Horst, K., Ferrage, A., \& Rytz, A. (2014). Involving children in meal preparation. Effects on food intake. Appetite, 79, 18-24. https://doi.org/https://doi.org/10.1016/j.appet.2014.03.030
van Kleef, E., van Trijp, H. C. M., \& Luning, P. (2005). Consumer research in the early stages of new product development: a critical review of methods and techniques. Food Quality and Preference, 16(3), 181-201. https://doi.org/10.1016/j.foodqual.2004.05.012

Van Mechelen, M., Gielen, M., vanden Abeele, V., Laenen, A., \& Zaman, B. (2014). Exploring Challenging Group Dynamics in Participatory Design with Children. Proceedings of the 2014 Conference on Interaction Design and Children, 269-272. https://doi.org/10.1145/2593968.2610469

Velázquez, A. L., Vidal, L., Alcaire, F., Varela, P., \& Ares, G. (2021). Significant sugarreduction in dairy products targeted at children is possible without affecting hedonic perception. International Dairy Journal, 104937. https://doi.org/https://doi.org/10.1016/j.idairyj.2020.104937

Velázquez, A. L., Vidal, L., Varela, P., \& Ares, G. (2020). Cross-modal interactions as a strategy for sugar reduction in products targeted at children: Case study with vanilla milk desserts. Food Research International, 130, 108920. https://doi.org/https://doi.org/10.1016/j.foodres.2019.108920

Waddingham, S., Shaw, K., Van Dam, P., \& Bettiol, S. (2018, Jan 1). What motivates their food choice? Children are key informants. Appetite, 120, 514-522. https://doi.org/10.1016/j.appet.2017.09.029

Walters, L. M., \& Stacey, J. E. (2009). Focus on Food: Development of the Cooking with Kids Experiential Nutrition Education Curriculum. Journal of Nutrition Education and Behavior, 41(5), 371-373. https://doi.org/10.1016/j.jneb.2009.01.004

Yoshida-Montezuma, Y., Ahmed, M., \& Ezezika, O. (2020). Does gamification improve fruit and vegetable intake in adolescents? a systematic review. Nutrition and Health, 26(4), 347-366. https://doi.org/10.1177/0260106020936143

Supplementary material 1. Question guide of the preliminary session

Question guide of the preliminary session held to introduce children to the topic of healthy eating through a group discussion
\square What foods are healthy? Why?
\square What foods are unhealthy? Why?
\square A series of 4 labels of fictious foods were presented to children. For each product, the following questions are asked: Do you think this product is healthy? Why?
\square An example of a nutrient declaration is shown, and the following questions are asked: Do you know what this information means? Have you read it?
\square Front-of package nutritional warning signs are shown and the following questions are asked: Do you know these symbols? What do you think they mean? What would you do if you find these symbols on a food?

Supplementary material 2. Workshops scripts

Session 1

1. Welcome \& moderator introduction

Hello! How are you? Did you know we were coming today? We came last week. Do you remember us? (Guessing name game). I am (moderator's name), I am (moderator's name) and this is (assistant's name).

2. Introduction to the purpose of the workshop

Do you know what are we going to do today?
The idea is that you can create your own healthy dairy product with the ingredients we have here. At the end, you'll be able to taste your products.
\square Verbal assent: Children are asked if they want to participate and if there are any questions, emphasizing that the activity is voluntary.

You'll work as a team to create your own dairy product. First, you'll choose the ingredients for your product. Everybody must agree with the chosen ingredients. So, you will have to convince your team members if they don't want to add something you want.

3. Dairy products definition

Do you know what is a dairy product? (Prompt children to participate)
\square A brief explanation is provided after children's answer: Dairy products are products that are made with milk.

Which products made with milk do you know? (Prompt children to participate)

4. Ingredient's exploration

\square Present the ingredients in the following order: dairy base, vegetables, fruits, spices \& sugar and grains \& nuts. Let children guess the name of the ingredients. Allow children to observe and smell the ingredients. If they want to taste them, distribute a portion of the ingredient to each child.

Dairy products.

Today we brought different dairy products, which have different textures, to give you some examples of the types of dairy products you can create.

The ingredients are shown, and the following questions are asked: What is it? Do you know it? Have you tried it before? (Prompt children to participate)
\square Ask children to guess which ingredients were added to produce the texture (e.g., dairy gel, chia dessert, mousse). Complement children's discussion with a brief explanation of the ingredients added to the dairy bases.

Other ingredients:

We also brought other groups of ingredients. You should choose at least one ingredient from the other groups.

The ingredients are shown, and the following questions are asked: What it is? Do you know it?

5. Product development

Now that you have explored everything, you should choose which ingredients you want to use to create your own healthy dairy product.

First, you must choose the dairy base you want to use. You should choose only one dairy base. Discuss with your team which dairy product you want to use.
\square Allow children to discuss and select the dairy base on their own. Prompt all children to participate. If necessary, help children to reach a consensus.

You should choose at least one ingredient from the other groups. You can choose more than one of each ingredient's group. How much you add of each ingredient is up to you. You will decide everything by yourself. Are there any questions?
\square Allow children to prepare the product on their own. Prompt all children to participate. If necessary, help children to reach a consensus during the process.

Let's get started...
$\square \quad$ Help children if needed (e.g. cutting ingredients)

6. Product tasting

Let's taste your product!
\square Help children to serve the product
Now that you tasted your product... Did you like it? Why?
If you could prepare the product again, would you like to change something?
\square Prompt all children to participate in the discussion

7. Poster creation

You have created your new healthy dairy product. Now, you will create a poster like those you find in bus stops to promote your product among other children.
$\square \quad$ Use the template to guide the poster creation. Help children to fill the template and prompt all children to participate in the discussion

8. Session closure

Ask children if they enjoyed the session and thank them for participating

Session 2

1. Welcome \& moderator introduction

Hello! How are you? Did you know we were coming today? We came last week. Do you remember us? I am (moderator's name), I am (moderator's name) and this is (assistant's name).

2. Introduction to the purpose of the workshop

Do you remember what we did last week?
\square Give a summary of session 1 after children answer.
Did you like the products you created?
Some of you liked the products, but some of you said you didn't like them. You told us some things you would like to change. We took all your ideas and thought how we could make some products that you would like. Then, we created four products based on your ideas, but we want to know if you like them or not. So, today you will be the judges.
\square Verbal assent: Children are asked if they want to participate and if there are any questions, emphasizing that the activity is voluntary.

3. Product evaluation

Let's get started...
\square Distribute questionnaires and explain the scale to the children. Ask if there are any questions
\square Evaluate the products one by one. Ensure children evaluate each product individually

How much did you like it?
How does it taste? Do you know which ingredients we added?
Allow children to guess the ingredients and then tell children the ingredients of the product. Prompt all children to participate in the discussion

4. Session closure

\square Ask children if they enjoyed the session and thank them for participating

Supplementary material 3. Ingredients presented to children
Children were presented with dairy products with different textures: UHT whole milk (Conaprole, Uruguay), commercial plain skimmed unsweetened yogurt (Conaprole, Uruguay), dairy milk dessert, yogurt gel, yogurt mousse and chia milk dessert. The dairy milk dessert was prepared using UHT whole milk, $5.2 \% \mathrm{w} / \mathrm{w}$ starch (Purity HPC, Ingredion, Brazil), 0.1% w/w polyphosphate and 0.02% w/w carrageenan (Ticaloid® 710H Stabilizer Texture Innovation Center, TIC GUMS, PA, USA). Powdered ingredients were mixed with the whole milk and heated at $90^{\circ} \mathrm{C}$ under constant stirring for 5 min using a Thermomix (Vorwerk Mexico S. de R.L. de C.V., Mexico City, Mexico). The yogurt gel was prepared using 65% w/w plain skimmed yogurt, 32% w/w UHT whole milk and $3 \% \mathrm{w} / \mathrm{w}$ gelatin (Bloom 220, Abastecimientos, Uruguay). All ingredients were stirred for 5 min using a hand mixer (Robert Bosch, München, Germany). The yogurt mousse was prepared by whipping the plain skimmed yogurt for 8 min with a hand mixer. The chia dessert was prepared by hydrating $11 \% \mathrm{w} / \mathrm{w}$ chia seeds in UHT whole milk over 24 h . All dairy bases were stored for 24 h at $6-8^{\circ} \mathrm{C}$ prior to the workshop.

For the workshop, 300 mL of each base dairy product were served in a transparent disposable plastic cup with lid. All the vegetables, fruits, spices, cereals, and nuts were provided in small portions. For the vegetables, purees of pumpkin, beetroot, carrot, and spinach were made. Individual portions of 50 ml of vegetable puree were placed in transparent disposable plastic cups with lids and stored for 24 h at $6-8^{\circ} \mathrm{C}$ prior to the workshop. Tomato and cucumber were not processed. The fruits were packaged in individual portions before the session. Five medium strawberries $(\sim 150 \mathrm{~g})$ and three pineapple slices $(\sim 150 \mathrm{~g})$ were provided in disposable trays covered with transparent plastic film. Blueberries $(60 \mathrm{~g})$ were placed in transparent disposable plastic cups. A whole piece of banana, orange and apple were included in each ingredient set. All vegetables and fruits were washed before use. Children received the cacao, cinnamon, peppermint and all the grains and nuts $(70-80 \mathrm{~g})$ in resealable plastic bags. Vanilla, lemon juice, lemon peel and sugar (18g) were given in plastic cups with lids. Sugar was pre-weighed to provide children with 6 g per 100 ml of base dairy product to ensure a lower sugar content compared to the most popular commercial products in Uruguay (7-12\% added sugar). However, the restriction on sugar quantity was not mentioned to the children during the development of the activity.

Supplementary material 4. Poster template

What is it?

Which are the ingredients? What does it taste like? How does it feel? How does it look? What does it smell like?

What image would you include to promote your product?

Why should other children try it?

Team

Name	Age

[^0]: Ana Laura Velázquez ${ }^{\text {a,b*}}$, Martina Galler ${ }^{\text {c }}$, Leticia Vidal ${ }^{\text {a }}$, Paula Varela c, Gastón $^{\text {Ares }}{ }^{\text {a }}$
 ${ }^{\text {a }}$ Sensometrics \& Consumer Science, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República. By Pass de Rutas 8 y 101 s/n, CP 91000. Pando, Canelones, Uruguay
 ${ }^{\text {b }}$ Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Uruguay
 ${ }^{\text {c }}$ Nofima AS. P.O. Box 210, 1431 Ås, Norway
 *Corresponding author: Ana Laura Velázquez (alvelazquez@fq.edu.uy)

