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Abstract

Problems concerning covariance among independent variables are well

understood and dealt with by inverse regression methods like partial least

squares regression. However, covariance between dependent variables has only

received minor attention. Biological samples are often complex mixtures of

multiple covarying compounds. During multivariate calibration, analyte pre-

dictions may be mediated through relationships with interfering compounds,

which implies that the calibration model is not providing a direct link between

the multivariate measurements and the analyte of interest. This compromises

robustness and validity of the calibration model—important aspects when

applying the model to future samples and data sets. This study discusses issues

of calibration modeling when strong covariance structures exist among the

analyte of interest and interfering compounds.

We propose a projection-based method to diagnose whether indirect covari-

ance structures dominate the calibration model. The proposed method is tested

on a two-constituent Beer's law system consisting of 20 aqueous samples with

covarying amounts of fructose (analyte of interest) and riboflavin (interfering

compound). Transmission measurements are obtained on all samples in the

visual and near-infrared wavelength ranges. Riboflavin has strong absorption

in the visual region, whereas fructose exclusively absorbs in the near-infrared

region. Hence, predictions of fructose concentrations, obtained from the visual

wavelength range only, are fully mediated through riboflavin, whereas fructose

predictions obtained from the near-infrared wavelength range may be obtained

independent of riboflavin.
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1 | INTRODUCTION

The purpose of multivariate calibration is often to estimate analyte concentrations by a linear combination of the multi-
variate measurements. Collinearity among the independent variables is a well-known issue in, for example, spectros-
copy and is (easily) handled by data compression methods like partial least squares (PLS) regression.1 However, issues
related to collinearity between the dependent variables (collinearity between quantities of the analyte of interest and
interfering compounds) appears to be less known. Although Brown,2 Brown and Ridder,3 and Ridder et al4 presented
extensive theoretical and practical considerations for the collinearity between dependent variables, this still appears to
receive insufficient attention in multivariate calibration.

The quantitative information (for the analyte) provided by the calibration model may be mediated through an inter-
fering compound as illustrated in Figure 1, where α defines the proportion of analyte predictions estimated through the
indirect relationship with the interfering compound. In this paper, we discuss issues related to indirect predictions and
propose a method to diagnose the degree to which analyte predictions are mediated through an interfering compound.

Biological samples, for example, foodstuffs, are often complex multicomponent samples consisting of water, fats,
proteins, carbohydrates, etc.5 The concentrations of these components may be highly collinear, like previously observed
for dry matter and fat content in cheese.6 One may be interested in quantifying the dry matter content from near-
infrared (NIR) measurements. Nevertheless, due to collinearity between dry matter and fat content, dry matter predic-
tions may be (fully or partly) mediated through an NIR spectral basis related to fat. In such case, the calibration model
is not providing a direct link between the NIR measurement and dry matter content. Though such model may provide
dry matter estimates with small errors in the calibration data, the regression model is based on an indirect relationship
to fat content. This may be less problematic if the indirect relationship found in the calibration data is conserved in a
new sample to which the regression model is applied. Brown and Ridder3 and Kalivas et al7 even show how such an
indirect relationship may support the model in providing a smaller prediction error. However, as soon as the indirect
relationship in the calibration data is not representative for the new sample, which may happen due to several reasons
including seasonal changes when dealing with biological samples, calibration validity may be compromised.3,7,8 Model
validity is easier compromised when a model is built on indirect relationships rather than direct relationships. There-
fore, a tool to diagnose indirect relationships in multivariate regression modeling is useful.

To obtain an analyte prediction, which is independent of interfering compounds, the regression vector should be in
the net analyte signal (NAS) space.9–11 The NAS is the part of the analyte signal that is in the null space of signals of all
interference.9 Hence, the magnitude of an NIR spectrum projected onto the true NAS is insensitive to interfering sig-
nals, and the prediction obtained from such projection is independent of interfering compounds.9–11

FIGURE 1 Prediction of an analyte of interest from multivariate measurements. Predictions may be based on a direct relationship

between the multivariate measurements and the analyte of interest or mediated through an interfering compound, where α determines the

degree to which predictions are mediated through the interfering compound
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When applying data compression methods for regression, like PLS, the prediction error uncertainty is composed
of a random error, an estimation error (variance contribution), and a model error (bias contribution).12,13 It is well
known that the random error is constant, whereas the estimation error will increase and the model error will
decrease with increasing model complexity. This is also known as the bias/variance tradeoff.12,13 An analyte predic-
tion is independent of interference if the model error equals zero (i.e., the regression vector is in the true NAS
space). However, as the optimal PLS model (the one providing the minimum mean squared error) is found by
balancing the variance and the bias contribution, a model error (i.e., bias) will in most practical situations be present
when using PLS for regression. This is especially true if the analyte and interferent are highly, but not perfectly cor-
related in sample concentrations of calibration data. In NAS theory, the analyte and interferent are two compounds,
but depending on the measurement noise, they may, in practice, be indistinguishable and span a one-dimensional
space.2 In such case, the model is not selective toward the interferent, but the bias contribution to the mean squared
error may be relatively small due to collinearity among concentrations of the analyte and interferent. Therefore, it
may not be cost effective (in terms of mean squared error) to improve model selectivity (i.e., decreasing the model
error) at the expense of increasing the variance contribution (i.e., estimation error), and the PLS model will not be
fully selective.

Brown and Ridder3 estimated selectivity (i.e., the degree to which an analyte prediction depends on the concentra-
tion of an interferent) by investigating the relationship between the sample-specific prediction bias and the
concentration of the interfering compound. This approach works well when concentrations of the analyte and inter-
ferent are orthogonal (or if the sensitivity equals one). When concentrations of the analyte and interferent covary, the
selectivity could be poor, but this may not manifest as a proportional prediction bias due to the collinearity between
concentrations of the analyte and interferent.3 However, if the selectivity toward an interferent is poor, the covariance
between the analyte predictions and concentrations of the interferent will increase as compared to the covariance
between reference values of the analyte and interferent.14 In this paper, we will use this altered covariance to estimate
how analyte predictions depend on an interfering compound.

In a previous study, Eskildsen et al15 suggested to split the explained analyte variation into a direct and indirect part
by projection/orthogonalization. But only the analyte variation orthogonal to the variation of the interfering compound
was found to be direct. However, an analyte and an interfering compound may covary while being estimated from inde-
pendent chemical information. Therefore, the approach15 is a simplification and may provide misleading results. To
diagnose indirect relationships in multivariate regression models, it is necessary to consider the relationship between
the regression vector (related to the analyte) and the pure signals of both the analyte and interfering compounds.2,3 This
is further elaborated in the subsequent section of this paper. Eskildsen et al15 additionally suggested to calculate the
coefficient of determination (between concentrations of the analyte and interfering compound) using the reference
values as well as the predicted values. If, for example, the analyte is modeled through indirect correlation to an interfer-
ing compound, then predictions of the analyte and the interfering compound will originate from a similar linear combi-
nation of the multivariate measurements. In that case, the magnitude of the covariance between the analyte and
interfering compound will be higher among the predicted values as compared to the reference values. This approach
was also applied by Eskildsen et al.8

In a situation with high covariance between quantities of the analyte and an interfering compound, Rinnan
et al16 calibrated the regression model on a subset of the available samples. The subset was selected so the analyte
variation was as close to orthogonal as possible to the variation of the interfering compound. This approach avoids
that indirect relationships are being incorporated into the regression model due to covariance between quantities
of the analyte and interfering compound but will not avoid effects of overlapping signals. As this approach16 is
restricted to calibrate on a subset of the available samples, the number of calibration samples as well as the con-
centration range of both analyte and interfering compound may be limited. The approach16 is a pragmatic explor-
ative method and may provide information on whether an analyte can be modeled independent of an interfering
compound.

Romano et al17 and Aben et al18 used principles from partial correlation analysis to investigate structures among
multiple data sets. Consider three data sets, A, B, and C. Partial correlation analysis provides, for example, information
on how much variation of C can be explained by A conditioned on B. In this present paper, we wish to resemble the
idea of partial correlation analysis into a context of diagnosing indirect relationships in regression models. We aim at
understanding how much analyte variation can be explained from the multivariate measurements conditioned on inter-
fering compounds. The general idea, limitations, and prerequisites of the proposed method are presented in the subse-
quent section.
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2 | THEORY

Having fitted the multivariate linear calibration model between reference values of the analyte of interest, c1(n � 1),
and the multivariate measurements, X(n � m), the predictions are obtained by

bc1 ¼Xbb ð1Þ

where bc1 n�1ð Þ contains predicted analyte quantities and bb m�1ð Þ contains the estimated regression coefficients. Both
X and c1 are assumed column-wise mean centered.

From classical least squares, we get

X ¼CST ð2Þ

where C(n � r) contains (mean-centered) quantities of analyte and interfering compounds and S(m � r) contains the
pure signals at unit concentration of analyte and interfering compounds. For simplicity, in Equation 2, we neglect
the error term containing, for example, random instrumental noise.

Substituting Equation 2 into Equation 1 returns,

bc1 ¼CSTbb ð3Þ

If we consider a two-constituent system, consisting of the analyte of interest and an interfering compound, Equation 3
is expressed as

bc1 ¼ c1,c2½ � sT1
sT2

" #bb¼ c1s
T
1
bbþ c2s

T
2
bb ð4Þ

where c2(n � 1) contains concentrations of the interfering compound and s1(m � 1) and s2(m � 1) are pure signals at
unit concentration (i.e., the chemical bases) of analyte and interfering compound, respectively.

From Equation 4, it is clear that bc1 is made up of a vector sum with contributions from both the analyte of interest

(c1sT1 bbÞ and the interfering compound (c2sT2 bbÞ. To evaluate the calibration model, it is common to plot bc1 against c1.
The average error term is obviously important. But the slope, a of the linear least squares fit between c1 and bc1, describ-
ing the relation between c1 and bc1 (Figure 2A), is also important. The slope a is given by cT1bc1

c1k k2. Substituting the expres-

sion for bc1, given by Equation 4, into cT1bc1
c1k k2 returns,

FIGURE 2 (A) Relationship between predicted (bc1) and measured (c1) analyte quantities. (B) Relationship between predicted (bc ⊥
1 ) and

measured (c ⊥
1 ) analyte quantities orthogonalized with respect to an interfering compound
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cT1bc1
c1k k2 ¼

cT1
c1k k2 c1s

T
1
bbþ c2s

T
2
bb� �

¼ sT1 bbþ cT1 c2
c1k k2 s

T
2
bb ð5Þ

Hence, the relationship between c1 and bc1 is given by two model dependent constants, namely, sT1 bb and sT2 bb, as well as
a data set dependent constant, cT1 c2

c1k k2 Equation 5.

To obtain good direct predictions, bb should have the direction of s1 while being (nearly) orthogonal to any interfer-

ing signals in the calibration data (i.e., sT2 bb¼ 0). This ensures the model to, exclusively, fit on the chemical basis related

to c1 and the relationship between c1 and bc1 would be given by sT1 bb (Equation 5). For a good and direct model, the bb��� ���
is scaled so sT1 bb is close to 1.5,19 These observations are also evident from Equations 4 and 5.

Hence, the proportion to which bc1 is mediated through c1 is given by sT1 bb, and the proportion to which bc1 is medi-
ated through c2 is given by sT2 bb. Whereas both the proportions (sT1 bb and sT2 bb) are model-dependent constants and
therefore conserved when the model is applied to future data sets, c2 is data set dependent.

If sT2 bb¼ 0, then bc1 is not influenced by c2 (Equation 4). However, evaluating this is difficult in practice because s2
(as well as s1) is not necessarily known. An alternative approach of assessing this, which will be pursued here, is to use
orthogonalization with respect to c2. This is done by multiplying both sides of Equation 4 with (I�P) where I(n� n) is
the identity matrix and P(n� n) is the projection matrix given by c2 cT2 c2

� ��1
cT2 . We then obtain

bc ⊥
1 ¼ c ⊥

1 sT1 bbþ0sT2 bb ð6Þ

where bc ⊥
1 n�1ð Þ and c ⊥

1 n�1ð Þ are bc1 and c1 orthogonalized with respect to c2, respectively, and 0(n� 1) is a vector of
zeros (the contribution from the interfering compound is canceled in Equation 6).

The relationship between c ⊥
1 and bc ⊥

1 is again given by the slope term a⊥ of the linear least squares fit (Figure 2B).

The slope term a⊥ is given by c ⊥
1

Tbc ⊥
1

c ⊥
1k k2 . Substituting the expression for bc ⊥

1 , given by Equation 6, into c ⊥
1

Tbc ⊥
1

c ⊥
1k k2 , returns,

c ⊥
1

Tbc ⊥
1

c ⊥
1k k2

¼ c ⊥
1

T

c ⊥
1k k2

c ⊥
1 sT1 bbþ0sT2 bb� �

¼ sT1 bb ð7Þ

Now, the term cT1 c2
c1k k2 s

T
2
bb (the degree to which c2 affects the relationship between c1 and bc1) is calculated by subtracting

Equation 7 from Equation 5 (i.e., subtracting the two slope terms, sketched in Figure 2, from each other).

cT1bc1
c1k k2�

c ⊥
1

Tbc ⊥
1

c ⊥
1k k2

¼ cT1 c2
c1k k2 s

T
2
bb ð8Þ

Hence, if the two slope terms presented in Figure 2 are identical, then Equation 8 equals zero and c2 is not impacting
the relationship between c1 and bc1. However, if Equation 8 is different from zero, then c2 has an impact on the relation-

ship between c1 and bc1. The degree to which bc1 is mediated through c2, sT2 bb is obtained by multiplying each side of

Equation 8 by c1k k2
cT1 c2

. If c1 and c2 are orthogonal, which could be the case when applying an experimental design, it is evi-

dent that sT2 bb cannot be estimated from the proposed procedure. In such case, sT2 bb should be estimated by the procedure
of Brown and Ridder.3

When multiple interfering compounds are present, Equations 4–8 are expanded with extra terms corresponding to
the number of extra interfering compounds. The influence of multiple interfering compounds may be investigated by
deflating the interfering compounds one at a time. In such case, expressions corresponding to Equation 8 will be
archived for each interfering compound. Hence, in the case of two interfering compounds, it would be a matter of solv-
ing two equations with two unknowns.

For the method to be valid, data are assumed to follow the principles of Beer's law, as also indicated by Equation 2.
Furthermore, X must be measured, and quantitative information on the analyte of interest as well as (all) interfering
compound(s) is required. Reference measurements of the analyte and interfering compounds should be reasonable with
independent and identically distributed noise.
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In many industrial (and academic) systems, extensive knowledge of both the analyte and interfering compounds
often exists. However, in systems of biological nature, this kind of extensive knowledge may not be available. Neverthe-
less, if only (one or) a few interfering compounds are known, the orthogonalization procedure may still be applied. One
could still evaluate the difference in the two slope terms presented in Figure 2. If the two slope terms are different, it is
a consequence of the analyte being mediated through variation associated with the interfering compound. If the two
slope terms are identical, this could indicate that the model is fitting solely on the analyte information in X. However, it
could also be the case that the analyte is mediated through an interfering compound for which quantitative information
is not available.

3 | MATERIALS AND METHODS

3.1 | Model system

A simple two-constituent model system was prepared to test the projection procedure outlined in the previous section.
The model system was made with fructose as analyte of interest and riboflavin as interfering compound. The model sys-
tem was constructed with high covariance between quantities of fructose and riboflavin to allow fructose concentra-
tions to be modeled through its correlation with riboflavin concentrations. Spectroscopic measurements in the visual
and NIR wavelength ranges were obtained as independent variables. First, fructose concentrations were modeled from
the visual range of the spectroscopic measurements containing only signals from riboflavin, returning an indirect
model. Then, fructose concentrations were modeled from the visual and NIR range of the spectroscopic measurements
containing both signals from riboflavin and fructose in order to facilitate a direct model.

3.2 | Sample preparation

Two stock solutions were prepared: one stock solution with D(�)-fructose (VWR International, Leuven, Belgium)
and one stock solution with riboflavin (Sigma-Aldrich, St. Louis, MO, USA). Fructose and riboflavin were dissolved
in water to make the two stock solutions of concentrations 10% w/V and 3.5 � 10�7 M for fructose and riboflavin,
respectively.

In total, 20 samples were prepared by mixing varying amounts of the two stock solutions and adding water to a total
volume of 10 ml. The samples are presented in Figure 3. The added volume of each stock solution was used as reference
values.

FIGURE 3 Relationship between riboflavin and fructose (reference values) in calibration data
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3.3 | Spectroscopic measurements

Spectroscopic measurements were obtained using a quartz cuvette with a path length of 2 mm using a FOSS
NIRSystems XDS Rapid Liquid™ Analyzer (FOSS Analytics A/S, Hillerød, Denmark). The spectral range was from
400 to 2500 nm, and measurements were obtained at every 0.5 nm. However, only the spectral range from 410 to
2315 nm was included in the study. A total of 32 scans were obtained per measurement, and samples were measured in
triplicates. Triplicates were averaged, and the average spectrum was used for further analysis.

3.4 | Data analysis

Data were analyzed using MATLAB Version R2019a (9.6.0.1072779, MathWorks Inc., Natick, MA, USA). In order to
obey Beer's law, spectroscopic measurements were converted from transmission % into absorbance (A = log1/T). Prior
to modeling, the spectroscopic measurements were preprocessed by Savitzky–Golay first derivative (window size of
41 data points, corresponding to 10 nm on each side of the center point, and second-order polynomial)20,21 and mean
centered. Furthermore, riboflavin and fructose concentrations were mean centered. The nonlinear iterative partial least
squares (NIPALS) algorithm22 was used for PLS regression. All PLS models were built with univariate reference values
(i.e., y-block). The number of latent variables included in each PLS model was determined by a 10-fold random subset
cross-validation.

4 | RESULTS AND DISCUSSION

The preprocessed spectroscopic measurements (colored by riboflavin concentration) are presented in Figure 4. The
region from 1830 to 2130 nm was removed due to noise.

Riboflavin stock solution is yellow and therefore absorbs light in the region from 400 to 500 nm.23 This is also
clearly observed in Figure 4. In contrast, the fructose stock solution is transparent and thus will not absorb light in the
visual region. Due to overtones of molecular vibrations (primarily third overtones of the O–H stretching vibrations from
the hydroxy groups), fructose absorbs electromagnetic radiation between 900 and 1000 nm in the shortwave NIR
region.24 It should however be noted that also the hydroxy groups of riboflavin will absorb in the same region. Further-
more, fructose will absorb at 2270 nm due to a combination tone of O–H and C–C stretching.25

Constructing calibration models using the visual region (410–700 nm) will result in direct and robust predictions of
riboflavin content. Predictions of fructose content, obtained from the visual region, will however be fully mediated
through the relationship with riboflavin. However, constructing calibration models using both the visual and NIR
region should result in direct and robust predictions of both riboflavin and fructose concentrations. In the following,
this will be investigated using the projection-based diagnostics method outlined in the theory section of this paper.

FIGURE 4 Spectroscopic measurements preprocessed by Savitzky–Golay first derivative and mean centered. Spectra are colored by

riboflavin concentration
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Figure 5 shows the results when fitting calibration models using the visual region of the spectroscopic measure-
ments only. The visual region is only affected by riboflavin absorption. Hence, the spectra in this region are in a one-
dimensional space, and consequently, the two PLS models (predicting riboflavin and fructose, respectively) are both
constructed using just one latent variable. As expected, almost perfect predictions are obtained for riboflavin concentra-
tions (Figure 5A and Table 1). At first glance, fructose predictions seem good (Figure 5B and Table 1). However, a closer
look at the pattern between reference and predicted fructose concentrations (Figure 5B) reveals similarities to the pat-
tern between reference riboflavin and fructose concentrations (Figure 3). This indicates that fructose is being modeled
through the indirect correlation to riboflavin. Moreover, regression coefficients (normalized to unit length) for ribofla-
vin and fructose coincide (Figure 5C). Hence, concentrations of riboflavin and fructose are predicted from the same
subspace (the chemical basis related to riboflavin) of the spectroscopic measurements when the visual region is
used only.

This is confirmed in Figure 6A, which shows a perfect least squares fit between predicted riboflavin and fructose
concentrations. When applying the orthogonalization procedure (Equation 6), Figure 6B shows that the predictions of
fructose are completely deflated (this is also observed from Table 2). The slope between reference and predicted values
(Figure 6B) is zero. Hence, predictions of fructose concentrations are fully mediated through riboflavin concentrations
when predictions are obtained using the visual region of the spectroscopic measurements only (Table 2). The term sT2 bb,

FIGURE 5 Predictions of (A) riboflavin and (B) fructose from preprocessed spectroscopic measurements obtained in the visual region.

(C) Normalized regression coefficients. Data are mean centered

TABLE 1 Results from calibration models

Visual region Visual + NIR region

#LV MSEC #LV MSEC

Riboflavin (interferent) 1 2.9 � 10�3 3 2.4 � 10�3

Fructose (analyte) 1 2.7 � 10�1 3 3.0 � 10�4

Abbreviations: #LV, number of latent variables included in the calibration model; MSEC, mean squared error of calibration.
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which is the proportion fructose is mediated through riboflavin, is equal to 0.85 (Table 2). This term is conserved if this
model is used in the future.

Figure 7 shows the results when fitting calibration models using the visual and NIR region of the spectroscopic mea-
surements. Again, perfect predictions are obtained for riboflavin content (Figure 7A and Table 1), and improved predic-
tions are obtained for fructose content (Figure 7B and Table 1). Now, the spectra are more complex, and both PLS
models are built with three latent variables. From Figure 7B, it is observed that the slope between reference and
predicted fructose is 1.00. The regression coefficients (normalized to unit length) for riboflavin and fructose are shown
in Figure 7C. The regression coefficients no longer coincide (like in Figure 5C), and the riboflavin PLS model is also
picking up information in the NIR region presumably due to the native O-H vibrations of riboflavin. Nevertheless, the
regression vector for fructose must be orthogonal to the riboflavin signal in the spectroscopic measurements. Otherwise,
fructose predictions are not independent of riboflavin. This is difficult to judge even in this very simple model system.
To investigate whether fructose predictions are independent of riboflavin, the orthogonalization procedure (Equation 6)
is once again carried out.

Figure 8A shows that the relationship between predicted riboflavin and fructose content is very similar to the rela-
tionship between reference riboflavin and fructose content (Figure 3). This is, of course, a reflection of the fact that con-
centrations of both riboflavin and fructose are well predicted when using both the visual and NIR region. Furthermore,
it indicates that predictions of fructose concentrations are obtained with no or little influence of riboflavin. Figure 8B
shows the predictions of fructose content when applying the orthogonalization procedure with riboflavin as interfering
compound (Equation 6). It is found that the slope between reference and predicted fructose concentrations, in the
orthogonalized data, is 0.98 (Figure 8B). This is a slight decrease as compared with the non-orthogonalized data
(Figure 7B). Hence, less variation is left in the predictions, as compared with the reference values, after orthogonaliza-
tion with riboflavin. This reveals that the fructose predictions are still (slightly) modeled by the chemical basis related
to riboflavin in the spectroscopic measurements, even though signals for both fructose and riboflavin are present in the
spectral data. When calculating the degree to which fructose predictions are mediated through the indirect correlations
to riboflavin, sT2 bb, it suggests that the fructose predictions (Figure 7B) are mediated by a factor of 0.02 through the ribo-
flavin content (Table 2).

When carrying out the orthogonalization step, we recommend fitting an additional regression model to X for the
interfering compound. If the reference uncertainty of the interferent is high, one may consider orthogonalization with

FIGURE 6 (A) Relationship between predicted riboflavin and fructose and (B) relationship between reference and predicted fructose for

orthogonalized data. Predictions are obtained from the visual region of spectroscopic measurements and data are mean centered

TABLE 2 Elements used for calculating sT2 bb (i.e., the degree to which estimates of fructose are influenced by riboflavin)

Wavelength region kc1k2 cT1 c2 a a⊥ sT2 bb
Visual region 33.2 32.6 0.84 0.00 0.85

Visual + NIR region 1.00 0.98 0.02

Notes: Reference values of fructose (analyte of interest), c1, and riboflavin, interfering compound), c2. Slope terms between reference and predicted fructose for
original and orthogonalized data, a and a⊥, respectively.
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respect to estimates of the interfering compound. This ensures that bc ⊥
1 (Equation 6) is located within the original X-

space. This is not necessarily the case if poor reference values of the interfering compound are used.
The method presented here uses principles from partial correlation analysis. Therefore, one needs to be careful

drawing conclusions on causal relationships between the multivariate measurements and analyte quantities. This is
especially true when the measurements are obtained from complex samples. In such situation, hidden compounds
(i.e., compounds with no reference values measured) may be present in the samples. These hidden compounds could
provide the indirect relationship between the multivariate measurements and the analyte. From the method presented
here, it is impossible to explore such relationships. Therefore, by using this method, one can conclude whether the ana-
lyte is mediated through variation related to specific interfering compounds.

FIGURE 7 Prediction of (A) riboflavin and (B) fructose from preprocessed spectroscopic measurements obtained in the visual and near-

infrared region. (C) Normalized regression coefficients. Data are mean centered

FIGURE 8 Relationship between (A) predicted riboflavin and fructose and (B) relationship between reference and predicted fructose for

orthogonalized data. Predictions are obtained from the visual and near-infrared region of spectroscopic measurements and data are mean

centered
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Moreover, if predictions of the interferent are used during orthogonalization, the method presented here will not
differentiate on whether the analyte estimates dependent on the interfering compound or vice versa. Take the example
presented in Figure 5. Are the fructose (analyte) predictions depending on riboflavin (interfering compound) or are
riboflavin predictions depending on fructose? The method presented here will not provide a direct answer to this.
Rather, the method tells how similar the two models are. To draw valid conclusions, one additionally needs to rely on
data and model interpretation. Figure 5 shows that riboflavin content is predicted better than fructose content. This
gives an indication that riboflavin is modeled from a direct relationship, whereas fructose is modeled from an indirect
relationship to the multivariate measurements. Also, knowledge of absorption signals related to fructose and riboflavin
should be considered.

The diagnostic method shown in this paper is based on the inner relations between the regression vector and the
signals of analyte and interfering compounds, respectively. Therefore, in contrast to the method outlined by Eskildsen
et al,15 this method considers whether the analyte is modeled from a subspace of the independent variables (a chemical
basis in the multivariate measurements) different from that used to model the interfering compound.

5 | CONCLUSIONS

In this paper, we show how analyte predictions, with small prediction errors, may be based (entirely or partly) on
signal(s) of interfering compound(s), compromising robustness of the regression model. Furthermore, we propose a
method to diagnose how indirect relationships between the analyte of interest and interfering compound(s) impact ana-
lyte predictions during regression modeling. The impact is a multiplication of two factors, namely, the concentration of
the interfering compound (data set dependent) and the inner product between the signal of the interferent and the esti-
mated regression vector for the analyte (regression model dependent). We estimate this inner product based on the con-
centrations without knowledge of pure signals.
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