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Heterogeneous Food Matrices Using
Raman Spectroscopy
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Abstract

Raman spectroscopy (RS) has for decades been considered a promising tool for food analysis, but widespread adoption has

been held back by, e.g., high instrument costs and sampling limitations regarding heterogeneous samples. The aim of the

present study was to use wide area RS in conjunction with surface scanning to overcome the obstacle of heterogeneity.

Four different food matrices were scanned (intact and homogenized pork and by-products from salmon and poultry

processing) and the bulk chemical parameters such as fat and protein content were estimated using partial least squares

regression (PLSR). The performance of PLSR models from RS was compared with near-infrared spectroscopy (NIRS).

Good to excellent results were obtained with PLSR models from RS for estimation of fat content in all food matrices

(coefficient of determination for cross-validation (R2
CV) from 0.73 to 0.96 and root mean square error of cross-validation

(RMSECV) from 0.43% to 2.06%). Poor to very good PLSR models were obtained for estimation of protein content in

salmon and poultry by-product using RS (R2
CV from 0.56 to 0.92 and RMSECV from 0.85% to 0.94%). The performance of

RS was similar to NIRS for all analyses. This work demonstrates the applicability of RS to analyze bulk composition in

heterogeneous food matrices and paves way for future applications of RS in routine food analyses.
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Introduction

For several decades, Raman spectroscopy (RS) has been

considered a potential and promising tool for food ana-

lysis.1,2 In the last 25 years, the field of RS has evolved

from academic laboratory instrumentation to robust com-

mercially available solution-based systems.3 But still, a very

limited number of RS applications has found its way into

commercial use in the food industry. Since food matrices

often are heterogeneous samples of high chemical complex-

ity, a major requisite for reliable food analysis is related to

representative sampling. The lack of appropriate tools for

representative sampling can therefore be highlighted as one

of the several factors that has prevented a widespread use

of RS in food analysis.

The unique potential of RS in food analysis is related to

the ability to capture subtle chemical distinctions in food

matrices in a nondestructive way. Whereas techniques such

as near-infrared spectroscopy (NIRS) provide commercial

solutions for assessment of bulk parameters such as fat and

protein contents, RS can potentially provide more accurate

estimates of features such as fatty acid composition,4

protein composition,5 and pigmentation.6 To benefit from

the latter possibilities, it would be advantageous if RS could

be used also to assess bulk chemical properties. In this way,

potentially expensive and complex hyphenated systems

(e.g., combinations of NIRS and RS) to cover a range of

different analytes would be avoided. An example of a bulk

chemical parameter in foods is intramuscular fat (IMF) con-

tent in meat. Since the fat is dispersed unevenly within the

muscle, it stresses the need for sampling a relatively large

volume of the muscle to get a representative spectrum.

Fowler et al.7 used a handheld Raman system with a spot

size diameter of 50 mm to assess IMF in lamb muscle, but

results were not encouraging, coefficient of determination

(R2
CV)¼ 0.02 and root mean square error of cross-valida-

tion (RMSECV)¼ 1.12%, indicating that sampling proced-

ures had to be improved. Collecting Raman spectra from
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homogenized meat,8 intact meat sampled at many spots,9

or using a wide area probe on three spots10 have shown

improvements (R2
CV from 0.64 to 0.85 with corresponding

RMSECV from 0.80% to 0.09%) but results are still not

conclusive. This emphasizes the need for further develop-

ment of representative sampling tools for RS.

Traditionally, Raman instrumentation has been restricted

to very small sample spots (often below a diameter of

1 mm). In addition, the conventional Raman backscattering

geometry has confined Raman analysis to the near surfaces

of a sample.11 Spatially offset Raman spectroscopy (SORS)

and transmission RS are alternative sampling approaches

providing means for depth penetration and representative

sampling.12,13 SORS is a relevant tool for food analysis and

is especially suited for layered food samples, such as for

instance intact fish, where analysis is dependent on pene-

trating the skin.14,15 Transmission RS is highly feasible in

food applications of samples of adequate thickness (typically

less than 20 mm), and the technique has been used to

assess bulk properties in different food matrices such as

protein contents of packed corn kernels16 and protein

and oil contents in soy beans.17,18 However, for food matri-

ces of greater and varying thickness, such as typical muscle

food samples, a backscattering geometry is a preferable

approach.

The shortcomings of the conventional backscattering

geometry related to representative sampling have been

met by different strategies. Sample rotation during spectral

collection is among the more advanced approaches. An

example of this approach was provided by Beattie et al.,19

who used a laser, focused as a line 7 mm long, to acquire

Raman spectra of roasted meat tissues clipped to a rotating

stage. In this way, an estimated sampling volume of 1.5 cm3

was obtained. One of the milestones in representative

Raman analysis has been the development of wide area

RS, also denoted volumetric or global illumination Raman.

Here, a defocused laser beam is used to illuminate a larger

area within the sample, and multiple collection fibers cover-

ing the same sample area are used for photon collec-

tion.3,20,21 Wikström et al.22 used this approach in the

comparison of sampling techniques for in-line monitoring

of pharmaceutical unit operations (i.e., wet granulation pro-

cess). Their results revealed that wide area RS provided

significant advantages over standard backscattering

approaches both in terms of enhanced sampling volumes

and robustness towards fluctuations in sampling distances.

Subsequently, commercial solutions for wide area RS have

been made available, and the technique has found a range of

applications within pharmaceutical, biomedical, and chem-

ical analysis.11 Surprisingly, wide area RS has not been much

used in food analysis. Kim et al.23 have shown that wide

area RS improves classification of rice into geographic ori-

gins compared to the conventional backscattering geom-

etry. We have used a commercial wide area RS system to

explore Raman analysis in a variety of applications, from

prediction of water holding capacity and pH in porcine

meat10,24 to measuring ASTA color values (American

Spice Trade Association standard for measuring color in

spices) and Sudan I content in paprika powder.25 Recently,

it was shown that wide area RS could be used in scanning

mode, by moving the laser probe over the sample during

analysis. With such an approach, Wubshet et al.26 showed

the first application of RS as a rapid tool for estimating

calcium and ash contents in bone and meat mixtures after

mechanical deboning of chicken meat. The same approach

was recently also used to characterize chemical variation of

poultry by-products fed into a bioprocess27 and for quan-

tification of collagen contents in ground meat.5

Moving a wide area RS probe around a sample surface

opens the possibility for representative sampling of rather

heterogeneous samples. Therefore, in the present study,

wide area RS was evaluated for assessment of bulk chemical

properties (i.e., fat and protein contents) of heterogeneous

food matrices. Three different sample sets comprising three

different food matrices, and thus different levels of hetero-

geneity, were studied: (i) fine ground poultry by-products;

(ii) fresh intact and homogenized pork; and (iii) coarsely

ground salmon by-products. For all sample sets, the per-

formance of RS was compared to results obtained using

NIRS. To the authors’ knowledge, this is the first time

wide area RS is critically evaluated for assessing bulk chem-

ical properties of foods.

Materials and Methods

Sampling of Pork, Poultry, and Salmon By-Products

A 5 cm thick slice of longissimus lumborum was excised

from pig carcasses (n¼ 99) at the cutting line two days

post-mortem. All animals were slaughtered in accordance

with Norwegian guidelines in a commercial slaughterhouse.

Sample collection was carried out over two two-day peri-

ods, with two weeks in between each sampling. Sampling

was not controlled for age, sex, or breed of the pigs. A sub-

sample from the center of longissimus lumborum sample

weighing approx. 80 g was cut out, vacuum packed, and

stored at �20 �C. Samples were thawed at 4 �C overnight

and spectra from intact samples were recorded with Raman

and NIRS. After spectra were recorded from the intact

samples, each sample was cut into smaller pieces and

homogenized for approximately 5 s using a Krups Type

708 A food processor (Krups, Germany). Homogenized

samples were scanned again with Raman and NIRS.

Samples were subsequently frozen at �20 �C for determin-

ation of IMF content.

The poultry by-product sample material was collected

from a poultry processing plant (Bioco, Norway). Five by-

product fractions were selected, consisting of chicken skin,

and carcasses from chicken and turkey, both before and

after mechanical deboning. These fractions were either
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pure or mixed together to make 52 samples with unique

chemical composition. The samples were finely ground on-

site in an industrial grinder (Seydelmann, Germany) with a

7.9 mm grinder plate and immediately measured with NIRS.

A sub-sample of 400 g was taken out and stored at 4 �C

until further analysis by RS.

Fifty-five samples of approximately 3 kg of by-products

from the production of Atlantic salmon (Salmo salar) were

obtained from a Norwegian by-product processing plant

(Biomega AS, Norway). The samples included varying

amounts of heads, skin, backbones (with muscle residues),

gutted whole salmon, and belly flaps/trimmings, in addition

to mixtures of these by-products. The samples were coar-

sely ground in an industrial Wolfking grinder (Wolfking Inc.,

USA) with a 30 mm grinder plate prior to the NIRS and

Raman measurements. After spectroscopic investigations,

the ground samples were further homogenized in a

Grindomix GM 200 (Retsch, Germany) before fat and pro-

tein content determination.

Raman Spectroscopy

Raman spectra were recorded with a Kaiser RamanRXN2

multichannel Raman analyzer (Kaiser Optical Systems, Inc.,

USA) equipped with a 785 nm laser at 400 mW and a probe

hybridization array typing probe operating at a working dis-

tance of 250 mm. At optimal working distance, the laser

spot size is 6 mm in diameter on the sample. The collection

fibers of the probe are arranged so that Raman scattering is

collected from a wider area than the point of illumination.

With current excitation wavelength, the penetration depth

in muscle tissue could be estimated to at least 1 cm (all

information provided by the instrument manufacturer).

The power level at sample surface was measured to be

approx. 210 mW with LaserCheck (Coherent Inc., USA).

Each sample was moved under the probe to scan most of

the sample surface, as shown in Fig. 1. Pork samples was

scanned in the spectral range from 600 to 1800 cm�1 with a

resolution of 1 cm�1 and an acquisition time of 60 s

(four acquisitions of 15 s), where one spectrum was rec-

orded from each sample. Poultry by-products were scanned

in the range from 600 to 1800 cm�1 with a resolution of

0.3 cm�1 and an acquisition time of 80 s (four acquisitions of

20 s). Salmon by-products were scanned in the range from

600 to 1800 cm�1 with a resolution of 1 cm�1 and an acqui-

sition time of 60 s (12 acquisitions of 5 s). Three spectra

were recorded from each poultry and salmon by-product

sample. Instrument setup and experiment was controlled

using iC Raman version X software (Mettler Toledo,

Switzerland).

Near-Infrared Spectroscopy

Near-infrared spectra from pork were recorded with a

prototype instrument, designed to measure in interactance

mode as described by Wold et al.28 A halogen light source

of 50 W was used to illuminate the sample in two rectangu-

lar regions of approximately 2 mm� 20 mm. Distance

between the two illuminated regions was �24 mm. The

system collected the light that was transmitted into the

meat and came up again in a small area of 4 mm� 4 mm

between the two illuminated rectangles. The collected light

had then traveled to a depth of �13 mm.29 The spectra

consisted of 20 evenly spaced wavelengths in the region

760–1100 nm. A total of 100 spectra were collected over

2 s. There was no contact between sample and instrument,

working distance to sample was 20 cm.

In the case of the poultry and salmon by-product sam-

ples, a Perten DA7440 Process NIR Sensor (Perten

Instruments, a Perkin Elmer Company, USA) was used to

obtain spectra in reflectance mode at a 25 cm working dis-

tance. The spectral range was 950–1650 nm with a reso-

lution of 5 nm. The samples were spread out on a board

(40 cm� 40 cm) and each spectrum was acquired at an

average of 10 s of acquisition while the samples were

moved manually under the spectrometer to scan most of

the sample surface. Three and four spectra, for poultry and

salmon, respectively, were obtained for each sample and a

different surface was scanned each time to obtain repre-

sentative sample spectra. The average spectrum was used

for further analysis. The spectra were transformed from

reflectance to absorbance units.

Reference Analysis

Homogenized meat and salmon by-product samples were

thawed at 4 �C before determination of IMF or total fat

content. This was done using a low field nuclear magnetic

resonance instrument (@nTEK, Norway) and a one-shot

method for estimation of fat content as described by

Sorland et al.30 Approximately 3 g of homogenized sample

was transferred to a Teflon nuclear magnetic resonanceFigure 1. Illustration of scanning path with Raman probe.
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(NMR) tube and temperature was adjusted to 40 �C before

NMR measurement. From each homogenate, two sub-sam-

ples were analyzed with two replicates from each sub-

sample. The average value from homogenates was used as

IMF or total fat content reference.

The reference measurements for poultry by-products

were performed at an external laboratory (ALS

Laboratory). Two parallels from each sample were analyzed.

The Dumas method,31 as used for total N and protein con-

tent, was determined as 6.25 times the N-total. Fat content

was determined with an internal method at the ALS

Laboratory based on pulsed NMR. Samples were dried in

an oven to determine the moisture content. After that, sam-

ples were stabilized at 50 �C and resonance of samples was

determined. The fat content was determined automatically

by comparing the resonance of the sample with a calibration

curve established using the certified olive oil content.

Protein content in salmon by-product was analyzed at a

second external laboratory (Eurofins Agro Testing Norway

AS, Norway). Nitrogen was determined by a modified

Kjeldahl method following Nordic Committee on Food

Analysis protocols.32 A conversion factor of 6.25 was

used to calculate protein content from N-total. Fat and

protein content were calculated as percentage of total

weight for all samples.

Pre-Processing of Spectra and Data
Analysis

Pre-processing of spectral data was done to give comparable

spectra for further analysis, by reducing or removing the

effect of baseline offset, scattering, and particle size effects.

Raman spectra were baseline corrected and fluorescence

background was removed using a modified polyfit method

as described by Lieber and Mahadevan-Jansen,33 which is an

iterative method for fitting a polynomial curve as baseline.

To compare results from baseline correction and normal-

ization, Raman spectra were subjected to standard normal

variate (SNV) transformation after baseline correction.34

NIR spectra from each sample were averaged before pre-

processing by applying SNV along the entire spectrum.

Partial least squares regression (PLSR) was used for

determining relationship between fat or protein content

and spectroscopic data. PLSR extracts information in the

spectra that is important for explaining variation in the ref-

erence measurements when making models.35 PLSR models

used the entire recorded spectrum for RS and NIRS to

make models and were validated using leave-one-out

cross-validation.

The ratio of prediction to deviation (RPD) value gives a

quick appraisal of a model and is calculated as the standard

deviation (SD) of the reference values divided by the

models RMSECV.36 The RPD statistic is a useful tool to

compare model performance when reference measure-

ments vary for different models, which makes values for

R2 and RMSECV difficult to compare directly. An RPD

value larger than 2.0 is recommended for rough screening

purposes, values above 3.0 are considered good to very

good, while values over 4.1 are considered excellent and

can be used for any application. RPD values below 2.0 are

not recommended for prediction purposes. Coefficient of

variation (CV) was calculated as SD divided by the mean for

a given variable, which shows variation in relation to the

mean in the data set and is an unbiased way to compare

variations in different data sets.

Pre-processing of Raman spectra was done in Matlab

v.R2016b (The MathWorks Inc.). Pre-processing of NIR

spectra and data analysis was carried out using The

Unscrambler v.11.0 (CAMO Analytics AS, Norway).

Results and Discussion

Reference Measurements

Total fat and protein content were determined in poultry

and salmon samples, while only fat content was analyzed in

pork samples (Table I). All sample sets showed good vari-

ation in fat content, with CV at 0.20 or higher. Variation in

protein content was relatively small for salmon samples,

evidenced by a CVof only 0.08, but it was higher for poultry

samples. Pearson correlation coefficient between fat and

protein content was �0.82 and �0.24 for poultry and

salmon, respectively. The high correlation for poultry sam-

ples might make it difficult to separate the effect of fat

content on the models for protein content and vice

versa, while this should be insignificant for the salmon

Table I. Reference statistics of pork and by-products from poultry and salmon. All values are expressed as percentage of total weight,

except N and CV, which are unitless.

Sample N Mean Min Max Range SD CV

Poultry Fat 52 21.22 10.95 43.25 32.30 8.08 0.38

Protein 52 15.88 9.49 24.60 15.11 3.20 0.20

Pork (Int and Hom) Fat 99 4.67 1.44 12.96 11.52 2.17 0.46

Salmon Fat 55 25.89 18.03 35.17 17.14 5.24 0.20

Protein 55 15.61 12.40 17.90 5.50 1.27 0.08

N: number of samples; SD: standard deviation in %; CV: coefficient of variation (ratio of SD to the mean); Int: intact; Hom: homogenized.
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samples. Taken together, all sample sets seem to be suitable

for modeling against spectroscopy, with a possible excep-

tion of protein content for salmon.

Ranking of sample sets in accordance with heterogeneity,

from least to most heterogeneous, gives the following order,

homogenized pork, poultry by-product, intact pork, and

salmon by-product. Poultry by-product was finely minced,

making it less heterogeneous than the intact pork. The

salmon samples contained coarsely ground by-product

from entire fish and were very heterogeneous.

Estimation of Fat Content with
Spectroscopy

Figure 2 shows baseline corrected Raman spectra colored

in accordance with the measured fat content. Visual

inspection showed a strong relationship between Raman

intensity and fat content for poultry by-product (Fig. 2a)

and homogenized pork (Fig. 2b), while the connection was

less clear for salmon by-product (Fig. 2c). The most pro-

nounced peaks in the Raman spectra from poultry and pork

were the ones assigned to saturated regions of fatty acids,

e.g., Raman peak at 1060 cm–1, assigned to out-of-phase

aliphatic C–C stretch, and peaks at �1300 and 1440 cm–1,

assigned to methylene twisting and scissoring deformations

(CH2), respectively.4 In spectra from salmon, peaks assigned

to unsaturated regions of fatty acids increased in intensity

relative to spectra from poultry and pork, e.g., peak

1270 cm–1, which can be assigned to in-plane olefinic hydro-

gen bend (¼CH).

The performance of models for estimation of fat content

in the three sample sets are summarized in Table II.

Figure 2. Baseline corrected Raman spectra from (a) poultry by-product, (b) homogenized pork, and (c) salmon by-product used for

making the PLSR models. Spectra are colored in accordance with the corresponding fat content of the sample, where fat content in

percentage is shown in the color bar for each individual plot.
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Raman models for poultry and homogenized pork were

excellent, the model for salmon was good, while the

model for intact pork was poor based on their respective

RPD values. Results were similar for NIR, but NIR gave

slightly better results for all models except for homoge-

nized pork. Even though the model for intact pork is not

very good, it shows a substantial improvement compared

to previously published studies using RS to estimate IMF in

meat.7,9 The result for intact pork is comparable to those

reported in Andersen et al.10 for RS, but the IMF range was

very limited in that study (0.8 to 1.6%), and the current

study shows that models hold true over larger spans of

IMF. Furthermore, results for homogenized pork show

that with representative sampling it was possible to achieve

excellent models with RS, encouraging further research to

improve sampling techniques.

In Fig. 3, predicted values from PLSR models and refer-

ence analyses are shown for Raman and NIR for intact and

homogenized pork. Results for RS and NIRS were similar

for both intact and homogenized pork. It was evident that

the samples with highest fat content was most deviant for

intact pork, which may be caused by non-representative

sampling where some of the fat was hidden from the spec-

troscopic probe.

Regression coefficients for fat content models revealed

that models for intact and homogenized pork were very

similar and comparable to the regression coefficient for

poultry by-product (Fig. 4). These three regression coeffi-

cients were dominated by Raman regions assigned to satu-

rated carbons in fatty acids, e.g., Raman regions at �1300

and 1440 cm�1, assigned to methylene twisting and scissor-

ing deformations (CH2), respectively.4 The regression coef-

ficients for salmon by-product were clearly different from

the other three, which can be caused by higher amounts of

unsaturated fatty acids in the salmon samples. For instance,

the positive peak in the salmon regression coefficient at

approx. 1270 cm�1 can be assigned to in-plane olefinic

hydrogen bend (¼CH), and there was a more pronounced

peak at approx. 1660 cm�1, which can be assigned to ole-

finic stretch (C——C).4

Estimation of Protein Content Using
Spectroscopy

A summary of PLSR model performance for estimation of

protein content in poultry and salmon by-products is pre-

sented in Table II. Models were very good for poultry by-

product but poor for salmon by-product. RS and NIRS gave

similar results for both poultry and salmon, with Raman

offering marginally better model for poultry, while NIR

was slightly better for salmon. In general, the PLSR

models for protein content were worse than those for

fat content, when judged by their RPD values. It is well

known that muscle proteins provide lower Raman signals

than lipids. The Raman scattering cross section of the CH2

bend (around 1440 cm–1) has been estimated, showing up

to sixfold increase going from pure proteins to lipid com-

ponents.37 In addition, the optical scattering coefficient is

higher for adipose tissue than for lean muscle tissue.38 Both

features could most likely explain why protein content

models were worse than corresponding fat content

models. Another reason could be the lower CV for protein

content, especially for salmon.

Regression coefficients for the protein model from poul-

try were almost a mirror image of the regression coeffi-

cients from the fat content model (Fig. 5), probably a result

of the relatively high correlation between fat and protein

content. Negative peaks were mostly associated with fatty

acids, while many of the positive peaks probably can be

assigned to protein features, e.g., the broad amide I and

III bands at approx. 1645 to 1670 cm�1 and 1220 to

1300 cm�1, respectively.39 Regression coefficients were vis-

ibly different between poultry and salmon, where the most

apparent difference was the peak at approx. 1660 cm�1,

having opposite signs. This might be a consequence of the

overlap in the Raman spectrum for amide I and fatty acid

features, giving different outcomes for poultry and salmon.

Another important protein feature in the salmon regres-

sion coefficient plot was that the amino acid phenylalanine,

at �1004 cm�1, also referred to as a probe for protein

content.40 Two other peaks in the salmon regression

Table II. Summary of PLSR model statistics for fat and protein content in poultry and salmon by-products and intact and homogenized

pork.

Raman NIR

R2
CV RMSECV LV RPD R2

CV RMSECV LV RPD

Poultry (fat) 0.94 1.92 2 4.21 0.96 1.72 1 4.70

Pork, Hom (IMF) 0.96 0.43 2 5.05 0.94 0.51 5 4.25

Pork, Int (IMF) 0.73 1.13 2 1.92 0.78 1.01 4 2.15

Salmon (fat) 0.85 2.06 3 2.54 0.89 1.72 2 3.05

Poultry (protein) 0.92 0.94 4 3.40 0.91 0.99 4 3.23

Salmon (protein) 0.56 0.85 3 1.55 0.63 0.79 7 1.61

RMSECV: root mean square error of cross-validation, expressed in %, LV: latent variables in the PLSR model; Hom: homogenized; Int: intact.
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coefficient plot stand out as different from the poultry one,

namely peaks at approx. 1160 cm�1 and 1520 cm�1,

assigned to C–C single and double bonds, respectively, in

carotenoids.41 Carotenoids can be found in salmon muscle,

which is rich in protein, and carotenoids are therefore likely

to be correlated with total protein content.

Effect of Pre-Processing on Regression

Performance

All regression models in the previous sections were

obtained on baseline corrected Raman spectra as displayed

in Fig. 2. Several studies show the importance of a normal-

ization step in the pre-processing of Raman spectra, to

account for, e.g., differences in sample presentation, focus-

ing or sampling volumes, instrument drift (i.e., laser inten-

sity fluctuations), and to aid for calibration transfer between

instruments when conducting analysis outside of a labora-

tory setting over time.42,43 In many cases, normalization will

result in a simplification of the regression models (i.e.,

fewer PLS components used).44 Table III compares regres-

sion results for baseline corrected spectra with baseline

corrected and normalized (SNV) spectra. For the fat con-

tent models, models pre-processed with SNV performed

equally or poorer compared to only background correc-

tion. Also, contrary to the studies mentioned above,

there is no clear effect of model simplification by perform-

ing normalization. Clearly, as seen in Fig. 2, there is a high

correlation between the overall intensity levels and the fat

contents. When normalization is performed on such spec-

tra, one obviously stands the risk of removing some of this

information. The result of this is shown in Fig. 6 for IMF of

homogenized pork, where the spectra that have undergone

SNV transformation show a distinct trend in underestimat-

ing low and high IMF values. This effect will most likely

depend on the span of lipid contents in the sample set.

For proteins, it is not easy to see a clear difference between

normalized and baseline corrected spectra from Table III.

Thus, more data collected over time is needed to draw

definitive conclusions about the need for normalization

when quantifying bulk properties from Raman spectra.

General discussion

Even though RS performed comparable to NIR in this study,

there are still needs to improve sampling and instrumental

shortcomings of RS. Firstly, even with wide area Raman

probes, the spatial area for recording spectra is still limited.

This may not be a problem for semi-heterogeneous dis-

crete units, as representative average spectra can be col-

lected over a large sample area using a scanning approach as

in the current study. Secondly, collection of high-quality

Raman spectra can be time consuming, independent of

sample size. In the current study, standard exposure

times based on previous experience was applied, resulting

in rather long total exposure times (i.e., from 60 to 80 s)

compared to acquisition times of NIR spectra (from 2 to

10 s). Measurement speed can be a limitation for applica-

tions where separate samples need to be analyzed real

time, for instance single samples passing by on a conveyor

belt. When analyzing continuous sample flows where the

overall composition over large sample volumes is of

Figure 3. Predicted and reference values from cross-validated

PLSR models for IMF content in pork. (a) RS intact pork, (b) NIRS

intact pork, (c) RS homogenized pork, and (d) NIRS homogenized

pork.
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Figure 4. Regression coefficients for total fat models from RS. (a) Poultry by-product, (b) homogenized pork, (c) intact pork, and (d)

salmon by-product.

Figure 5. Regression coefficients for protein models from RS. (a) Poultry and (b) salmon by-products.

Table III. PLSR models for fat and protein content from Raman spectra with different pre-processing procedures, only background

correction and background correction followed by SNV.

BC BCþ SNV

R2
CV RMSECV LV R2

CV RMSECV LV

Poultry (fat) 0.94 1.92 2 0.92 2.28 2

Pork, Hom (IMF) 0.96 0.43 2 0.90 0.69 1

Pork, Int (IMF) 0.73 1.13 2 0.74 1.13 1

Salmon (fat) 0.85 2.06 3 0.83 2.16 3

Poultry (protein) 0.92 0.94 4 0.91 0.98 5

Salmon (protein) 0.56 0.85 3 0.59 0.81 3

RMSECV: root mean square error of cross-validation, expressed in %; LV: latent variables in the PLSR model; BC: baseline corrected; Hom: homogenized;

Int: intact.
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interest, on the other hand, measurement speed is not as

important. Optimization in exposure times for collection of

adequate quality Raman spectra in industrial settings will be

needed and requires attention in future research. This may

be helped along by contemporary improvement in Raman

instrument design.

As pointed out by Wikström et al.,22 there are two main

benefits with the wide area Raman probe used in the cur-

rent study: (i) enhanced sampling volume and (ii) robustness

towards fluctuations in sampling distances. The former

point has already been discussed, but the significance of

the latter point should not be forgot when it comes to

practical use of RS for food quality applications. In industrial

environments, there is simply no time for fine adjustments

of the focusing distance. In addition, since we have a system

with almost constant sampling volume, this might explain

why normalization apparently is not needed for extracting

quantitative data on bulk chemical composition in the cur-

rent study. It could be hypothesized, however, that if minor

chemical components, i.e., fatty acid contents, are to be

modeled from such spectra, a normalization procedure

would be essential to extract this information in a quanti-

tative way, due to the large intensity variations in the bulk

chemistry bands. Taking these findings into account, we

therefore are starting to see the contours of a Raman

system for multicomponent analysis of heterogeneous

food samples. This could pave the way for future commer-

cial solutions for RS in the food industry, particularly in

applications where current solutions based on for instance

NIRS have limitations in chemical resolution (e.g., assess-

ment of fatty acid composition).

Conclusion

In the present study, RS was shown to successfully estimate

selected bulk properties of different food and food by-pro-

duct matrices utilizing a wide area Raman probe in conjunc-

tion with surface scanning, thus giving a representative

spectrum for each sample. This shows that RS can fulfill

the role as a tool for routine and continuous analysis of

foods in industrial relevant applications. Optimization of the

technique, both related to instrumental and practical imple-

mentation, is still needed to unlock the full potential of RS

in food analysis.
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