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Abstract: Inflammatory bowel disease is characterized by extensive intestinal inflammation, and
therapies against the disease target suppression of the inflammatory cascade. Nutrition has been
closely linked to the development and suppression of inflammatory bowel disease, which to a large
extent is attributed to the complex immunomodulatory properties of nutrients. Diets containing fish
have been suggested to promote health and suppress inflammatory diseases. Even though most
of the health-promoting properties of fish-derived nutrients are attributed to fish oil, the potential
health-promoting properties of fish protein have not been investigated. Fish sidestreams contain
large amounts of proteins, currently unexploited, with potential anti-inflammatory properties, and
may possess additional benefits through bioactive peptides and free amino acids. In this project, we
utilized fish protein hydrolysates, based on mackerel and salmon heads and backbones, as well as
flounder skin collagen. Mice fed with a diet supplemented with different fish sidestream-derived
protein hydrolysates (5% w/w) were exposed to the model of DSS-induced colitis. The results show
that dietary supplements containing protein hydrolysates from salmon heads suppressed chemically-
induced colitis development as determined by colon length and pro-inflammatory cytokine produc-
tion. To evaluate colitis severity, we measured the expression of different pro-inflammatory cytokines
and chemokines and found that the same supplement suppressed the pro-inflammatory cytokines IL-
6 and TNFα and the chemokines Cxcl1 and Ccl3. We also assessed the levels of the anti-inflammatory
cytokines IL-10 and Tgfb and found that selected protein hydrolysates induced their expression.
Our findings demonstrate that protein hydrolysates derived from fish sidestreams possess anti-
inflammatory properties in the model of DSS-induced colitis, providing a novel underexplored
source of health-promoting dietary supplements.
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1. Introduction

Intestinal homeostasis is to a large extent maintained by a balance between the host
immune system, the gut epithelium, dietary metabolites and, importantly, the gut mi-
crobiome [1]. Intestinal inflammation is the basis for a vast number of celiac and bowel
pathologies, and manifests symptoms such as diarrhea, abnormal weight loss, fatigue, pain
and malnutrition [2–4]. It is usually triggered by the combination of tissue damage and
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inciting environmental factors, such as gut microbes, but also dietary components that
increase intestinal permeability [5,6].

Inflammatory bowel disease (IBD) consists mainly of Crohn’s disease (CD) and ulcera-
tive colitis (UC). Although its exact etiology remains unclear, it is mainly characterized by
an excessive inflammatory response in a genetically pre-disposed host with flare ups and
relapses due to environmental factors such as antibiotic administration, microbial dysbiosis
or dietary factors [7]. Chemically-induced colitis models are broadly utilized for the study
of inflammatory disease pathogenesis because they successfully simulate human intestinal
inflammatory diseases [8]. Specifically, dextran sodium sulfate (DSS)-induced colitis is a
widely used animal model for the study of intestinal inflammation, as it is able to simulate
acute, chronic and relapsing intestinal inflammation by modulating DSS concentration and
administration frequency [9].

Standard treatment of intestinal inflammation includes immune suppressant or anti-
inflammatory drug administration; yet, up to 40% of patients do not respond to a specific
drug and there is still limited evidence that could be used to predict a patient’s response to
a particular treatment [10]. In addition to therapy with such drugs, dietary interventions
are an important component of combating IBD. The recommended first-line treatment for
CD is exclusive enteral nutrition (EEN), which is a specialized, explicitly liquid nutritional
formula destined for short-term consumption [11]. Other diets have also emerged, whose
basic principle is the elimination of foods that exacerbate IBD symptoms, with the specific
carbohydrate diet (SCD) and a diet low in fermentable oligo-, di- and monosaccharides
and polyols (FODMAPs) being the most effective ones [12]. In any case, the connections
between IBD and diet are vast, and patients are advised to follow a well-balanced diet,
such as the Mediterranean, avoiding pitfalls of the Western and American diets, such as
the high consumption of processed foods and vegetable oils or the poor intake of fruits
and vegetables [13–16].

Additionally, dietary products that possess anti-inflammatory properties, and have
been shown to alleviate inflammation in different disease settings, could possess a support-
ive role in the treatment of IBD. Indeed, nutrients and components derived from the diet can
modulate intestinal inflammation by directly shaping the microbiota of the intestine and
their excreted metabolites, and by exhibiting intricate immunoregulatory effects, including
macrophage polarization [17–20]. Examples of such dietary compounds include vitamin
D, fermentable fibers and curcumin [13]. Omega-3 polyunsaturated fatty acids (PUFAs),
such as the plant α-linoleic acid and the fish eicosapentaenoic (EPA) and docosahexaenoic
acid (DHA), are potent anti-inflammatory dietary constituents [21]. Interestingly, fish oil
induces a powerful anti-inflammatory effect in the settings of intestinal inflammation and
ameliorates colitis symptoms in animal models [22–24]. However, current evidence is
insufficient to recommend intake of omega-3 fatty acids in clinical practice, although some
beneficial trends can be noted [25–27].

The fish industry worldwide produces large quantities of sidestream biomass, which
includes heads, gills, hearts, viscera, bones and roe and almost half of this is treated as
waste material [28]. During recent years, conventional and alternative “green” extrac-
tion methods allowed for the valorization of fish sidestreams by extracting high-value
compounds including fish oils such as omega-3 EPA and DHA [29]. Although the ma-
jority of fish-derived nutritional supplements consist of fish oil and are extracted from
tissues of oily fish, there are many other highly nutritional biologically active compounds
found in fish sidestreams, such as vitamins, collagen, chitin, minerals and polyunsaturated
fatty acids (PUFAs), as well as high amounts of protein [30–33]. Although most often
discarded, fish sidestream proteins, especially bioactive peptides, may have important
beneficial properties, which are currently underexplored. In this study, selected nutritional
supplements prepared from hydrolyzed fish-derived sidestream proteins [34] were tested
in vivo for their potential to suppress inflammation, in the murine model of acute intestinal
inflammation induced by DSS.
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2. Results and Discussion
2.1. Fish-Derived Protein Hydrolysates Partly Suppress DSS-Induced Colitis Development

To investigate the potential anti-inflammatory effect of fish sidestream-derived protein
hydrolysates (Table 1) in acute intestinal inflammation, we used the murine DDS-induced
colitis model, which is broadly used as a model of inflammatory bowel disease. The
composition of the different supplements and their organoleptic properties have been
recently described and are presented in Supplementary Table S1 [34]. We introduced six
female mice per group to a diet supplemented with 5% w/w of the respective extract for
10 days to allow mice to become accustomed to the new diet. Soy protein at a concentration
of 5% was used as control to simulate similar protein intake, as fish-derived supplements
contained a substantial amount of protein and because soy is the predominant source
of protein in the control murine diet. We then proceeded to the intestinal inflammation
protocol according to which 3% w/v DSS was administrated in drinking water for five
consecutive days, followed by a three-day recovery period [35]. Mice were weighed daily
and simultaneously disease progression was scored (Figure 1A).

Table 1. List of tested supplements and their composition.

Supplement Composition

HMB
HSB
HSH
HMH

HSH + C

Hydrolysate Mackerel Backbone
Hydrolysate Salmon Backbone

Hydrolysate Salmon Heads
Hydrolysate Mackerel Heads

50% Hydrolysate Salmon Heads + 50% Collagen
Collagen 100% Collagen
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Figure 1. The effect of dietary supplements on colon length and spleen weight of mice with DSS-induced colitis. (A) 
Graphical illustration of the experimental design. (B) Representative intestines from each diet group. (C) Length measure-
ments of the total intestines. (D) Hematoxylin and eosin tissue staining of colon tissue sections. White asterisks indicate 
tissue damage and loss of crypts; white arrow indicates infiltration of inflammatory cells. (E) Blinded histological scoring 
performed on H&E-stained colonic tissue. (F) Representative spleens from each diet group. (G) Weight measurements of 
the total spleens normalized to total body weight. Graphs represent median ± SD and an unpaired t-test was performed. 
* p < 0.05, ** p < 0.01, *** p < 0.001. 

DSS administration rapidly damages the mucosal barrier of the intestine, leading to 
inflammation and significant weight loss. None of the supplements hindered weight loss 
(Figure 2). On the contrary, two nutritional supplement groups, the HMB and HMH, ex-
hibited accelerated weight loss (Figure 2A,C), which may be due to a lower tolerance to 
mackerel sidestream-derived diets [34]. Notably, among the different experimental 
groups, the group receiving HMH protein hydrolysates as supplement showed higher 
water consumption compared to the control group (6.77 mL +/− 0.73 SD vs 5.24 mL +/− 
0.42 SD per mouse, respectively), which possibly explains the increased weight loss and 
some of the results presented below (Figure S1A). The remaining groups exhibited similar 
water consumption to that of the control group, suggesting that the observed effects were 

Figure 1. The effect of dietary supplements on colon length and spleen weight of mice with DSS-induced colitis.
(A) Graphical illustration of the experimental design. (B) Representative intestines from each diet group. (C) Length
measurements of the total intestines. (D) Hematoxylin and eosin tissue staining of colon tissue sections. White asterisks
indicate tissue damage and loss of crypts; white arrow indicates infiltration of inflammatory cells. (E) Blinded histological
scoring performed on H&E-stained colonic tissue. (F) Representative spleens from each diet group. (G) Weight measure-
ments of the total spleens normalized to total body weight. Graphs represent median ± SD and an unpaired t-test was
performed. * p < 0.05, ** p < 0.01, *** p < 0.001.

DSS is a chemical toxin which causes tissue damage by disrupting the epithelial
monolayer lining of the intestine. As a result, pro-inflammatory luminal content, consisting
of microorganisms and their metabolites, among others, ingress in the underlying tissue,
leading to an exacerbated immune response and inflammation, central mediators of which
are intestinal macrophages [9,36,37]. Macrophages also play a key role in the subsequent
termination of inflammation and the healing of the intestine [24]. Major parameters
reflecting DSS-induced intestinal inflammation severity include body and spleen weight,
colon length, diarrhea and rectal bleeding [38].

As expected, the colon of DSS-treated mice significantly contracted due to inflamma-
tion and tissue damage in comparison to the non-DSS control group (Figure 1B,C). Notably,
the HSH nutritional supplement diet group exhibited significantly less colon contraction
compared to the DSS control group, suggesting that the HSH supplement administration
suppresses intestinal inflammation and tissue damage. In order to further support our data,
histological evaluation of DSS-induced tissue damage was performed using hematoxylin
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and eosin staining (H&E) in colon tissue sections (Figure 1D). As expected, the DSS-treated
control group exhibited extensive tissue damage, cell necrosis and loss of crypts (asterisk)
compared to untreated mice. Notably, HMB, HSB and HSH diet groups exhibited reduced
crypt loss, whereas HSH + C, HMH and Collagen groups displayed areas of broad in-
flammation triggering tissue damage (asterisks) as well as inflammatory cells infiltration
(arrow) (Figure 1D). In order to further assess DSS-induced tissue damage, blinded histo-
logical scoring was performed according to Chassaing et al. [38] (Figure 1E). In accordance
with the colon length measurements, HSH supplementation reduced DSS-induced tissue
damage, and in addition HSB and HSH + C significantly improved colon histological
features post DSS treatment (Figure 1E). Spleen is an organ with important hematopoietic
and immune functions, and it is known to expand during inflammation due to proliferation
of inflammatory cells, a phenomenon termed as splenomegaly [39]. The results show that
there was a clear tendency of the HSH diet group towards limited spleen enlargement
(p = 0.07), even though no statistical significance was reached (Figure 1F,G). This finding,
combined with the previous observations, indicates that, among all compounds tested,
the HSH dietary supplement exhibited the most potent result, which suggests a strong
anti-inflammatory effect that partly suppresses DSS-induced colitis in mice.

DSS administration rapidly damages the mucosal barrier of the intestine, leading
to inflammation and significant weight loss. None of the supplements hindered weight
loss (Figure 2). On the contrary, two nutritional supplement groups, the HMB and HMH,
exhibited accelerated weight loss (Figure 2A,C), which may be due to a lower tolerance to
mackerel sidestream-derived diets [34]. Notably, among the different experimental groups,
the group receiving HMH protein hydrolysates as supplement showed higher water con-
sumption compared to the control group (6.77 mL +/− 0.73 SD vs. 5.24 mL +/− 0.42 SD
per mouse, respectively), which possibly explains the increased weight loss and some of
the results presented below (Figure S1A). The remaining groups exhibited similar water
consumption to that of the control group, suggesting that the observed effects were at-
tributed to the extracts’ properties and not to differences in DSS-containing water intake.
Food intake did not differ between the different groups studied (Figure S1B).

Throughout the experiment (5 days of DSS treatment and 3 days of recovery), colitis
severity was measured daily based on a disease scoring system ranging from 0 to 3,
as previously described [38]. During the first 5 days, no significant improvement was
observed in any of the diet groups (Figure 3). In fact, four out of the six diet groups (HSB,
HMH, HSH, and HMB) exhibited a higher disease score on day 4 compared to the DSS-
control group. However, from day 6 to day 8, during which DSS treatment was terminated,
no significant change in the recovery process was noted, and mice recovered from the
worsening observed on day 4 in some groups (Figure 3). Nevertheless, mice recovered fast,
suggesting that the supplements were not harmful to the intestine.

2.2. Nutritional Supplements Modulated Intestinal Inflammation through Cytokine and
Chemokine Regulation

The tolerogenic state of a healthy intestine is facilitated through a complex network of
interactions, which includes a variety of immune cells, such as dendritic cells, macrophages
and intraepithelial lymphocytes, as well as a range of important immune mediators, includ-
ing IL-4, IL-10 and TGFb [40]. Tissue-resident macrophages of a healthy gut may exhibit an
anti-inflammatory role by producing anti-inflammatory cytokines, such as IL-10, and there-
fore may contribute to the counterbalance of inflammatory events and the maintenance of
colon homeostasis [41,42]. However, in colitis, due to mucosal barrier disruption, activated
monocytes/macrophages infiltrate the colon, resulting in the secretion of pro-inflammatory
cytokines, such as TNF-α, IL-1b and IL-6, orchestrating the inflammatory response to tissue
damage [43]. To assess the possible anti-inflammatory actions of the tested supplements,
tissue samples were collected, and the expression of major pro-inflammatory cytokines
was measured.
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Figure 3. DSS-induced colitis disease progression. (A–F) Disease severity in each diet group was monitored daily and
scored as follows: Score = 0: normal stools. Score = 1: soft stools with positive hemoccult. Score = 2: very soft stools with
traces of blood. Score = 3: watery stools with visible rectal bleeding. Graphs represent median ± SD and 2-way ANOVA
statistical analysis was performed. * p < 0.05, ** p < 0.01.

Indeed, the expression of the aforementioned cytokines significantly increased in the
intestines of DDS-treated mice compared to control (Figure 4A–C). Mice that received
HSH as a nutritional supplement, which exhibited the least contracted colon and least
expanded spleen (Figure 1), also expressed reduced Tnf-α mRNA, the hallmark cytokine of
colitis and a therapeutic target, compared to the DSS-treated control group (Figure 4A). In
addition, the same group exhibited reduced mRNA levels of Il-6 in colon tissue (Figure 4B),
an observation also confirmed at the protein level in intestinal tissue homogenates and
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serum (Figure 5A,B). TNF-α protein levels in colon and serum were not detectable, pos-
sibly due to the short half-life of TNFα and the recovery period following termination of
DSS administration, during which the healing process had initiated. Interestingly, when
the HSH supplement was combined with collagen, the beneficial effect was not evident
(Figure 4A,B). This may be attributed to the reduction in the net amount of HSH by
half, which may not be enough to exhibit any anti-inflammatory action. Although the
HMB and HSB diet groups did not affect colon length, thereby suggesting that they may
not effectively suppress inflammation and tissue damage, significant reduction in Il-6
expression was observed (Figure 4B). The latter was also confirmed at the protein level in
tissue homogenates and serum from mice that received the HSB nutritional supplement
(Figure 5A,B). No differences in Il-1β expression were observed in any of the DSS-treated
groups (Figure 4C).
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quantified using ELISA. Graphs represent median ± SD and an unpaired t-test was performed. * p < 0.05, ** p < 0.01.

Chemokines are secreted factors that act as chemoattractants, inducing the migration
of leukocytes from the blood stream to the site of inflammation. Intestinal inflammatory
diseases, such as IBD, are characterized by the infiltration of neutrophils, monocytes and
lymphocytes; therefore, chemokines have been proposed as critical modulators of intestinal
inflammation [44]. Expression levels of two subfamily members of chemokines, CC and
CXC, were measured in colon samples (Figure 6). CXCL1 chemokine, also known as KC,
Groα and Gro1 oncogene, and CXCL2 chemokine, also termed as MIP-2, are members of the
CXC chemokine subfamily and share approximately 90% similarity. They are expressed in
macrophages, neutrophils and epithelial cells, are highly expressed in inflamed colon tissue
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and their main role is the recruitment of neutrophils to the infection site acting through
the CXCR2 receptor [45]. CXCR2 knockout mice have been shown to present modest DSS-
induced intestinal inflammation with reduced neutrophil recruitment and reduced kidney
injury [46,47]. Interestingly, the HSH and HSH + C nutritional supplements as well as the
HSB marginally downregulated the expression of Cxcl1 mRNA, potentially contributing to
a reduced inflammatory response (Figure 6A). When CXCL1 protein levels were measured,
the HSB group had indeed significant reduction in CXCL1, while the HSH group also
presented a strong tendency towards reduced CXCL1 levels (Figure 6C). On the contrary,
the HMH (which consumed more DSS-containing water) and collagen-administered groups
exhibited elevated expression levels of both Cxcl1 and Cxcl2 chemokine mRNA, indicating
a possible exacerbation of the inflammatory response through neutrophil recruitment
(Figure 6A,B).
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Figure 6. Evaluation of the expression of selected chemokines in DSS-induced colitis in mice. mRNA expression of (A)
Cxcl1, (B) Cxcl2, (C) Ccl2 and (D) Ccl3 was quantified using real-time PCR in colon tissue of the selected diet groups. Graphs
represent median ± SD and an unpaired t-test was performed. * p < 0.05, ** p < 0.01, *** p < 0.001.

Next, we aimed to investigate the expression levels of two members of the CC
chemokine subfamily that have been also found to play a significant role in intestinal
inflammation and disease severity. CCL2 chemokine induces monocyte, T cell and den-
dritic cell migration to inflammatory sites through CCR2 and CCR4 receptors. It has
been shown that CCR2-/- mice exhibit lower eosinophilic inflammation and DSS-induced
tissue damage [48], whereas CCL2 blockade results in decreased intestinal inflammation
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and colon tumorigenesis associated with chronic inflammation [49]. CCL2-/- mice exhibit
reduced colitis and mortality rate associated with restricted macrophage infiltration to
the colonic mucosa [50]. In accordance with the previous data, the HSH nutritional sup-
plement significantly lowered the expression of Ccl2 chemokine, further reinforcing its
anti-inflammatory potential (Figure 6C). Dietary supplements HSB and HMB marginally
downregulated Ccl2 expression in line with their anti-inflammatory potential observed
in Figure 4B.

CCL3 chemokine, also known as MIP-1α, has also been associated with macrophage
recruitment as well as with granulocyte recruitment. It is involved in acute inflammation
as it acquires inflammatory, pyrogenic and chemokinetic properties through CCR1, CCR4
and CCR5 receptors [45]. As a consequence, CCL3-/- and CCR5-/- mice exhibit reduced
DSS-induced tumorigenesis [51], whereas CCR5-specific blockade attenuates intestinal
inflammation by dysregulated trafficking of both innate and adaptive immune cells [52].
The HMH and collagen supplements increased the expression of Ccl3 mRNA, whereas
the remaining supplements did not affect Ccl3 expression levels (Figure 6D). Overall,
although the fish sidestream-derived supplements HSB, HMB, HSH and HSH + C reduced
expression of the pro-inflammatory chemokines Cxcl1 and/or Ccl2, the HMH and collagen
supplements were found to upregulate pro-inflammatory chemokines (Figure 6); yet, no
significant differences were observed in disease progression or the macroscopic phenotype
of colitis (Figure 1).

IL-10 is an anti-inflammatory cytokine and a major regulator of intestinal homeostasis,
considering that the microbiota are in constant interaction with host immune systems,
triggering immune activation [53]. In that context, IL-10 is necessary to establish an
anti-inflammatory environment supporting microbial symbiosis. Intestinal inflammation
disrupts this balance through the induction of pro-inflammatory cytokines and chemokines.
In our study, acute intestinal inflammation was induced for five days through DSS admin-
istration and a subsequent three-day recovery period enabled us to examine the emergence
of repair and tissue-healing mechanisms. Therefore, we measured Il-10 and Tgfb expression
in tissue samples. TGFb is a key regulator of the intestinal immunity by inducing differen-
tiation and activation of regulatory T cells (Tregs), promoting epithelial cell proliferation
and supporting tissue repair [54]. Both the HMH and collagen dietary supplements signifi-
cantly upregulated the expression of these anti-inflammatory mediators (Figure 7), possibly
due to an increased leukocyte infiltration, also supported by the increased chemokine
expression shown in Figure 6, and/or to compensate for a more excessive inflammation.
In addition, tissues from the HSB and HMB diet groups exhibited increased expression of
Tgfb (Figure 7B), further confirming their anti-inflammatory potential.

A mechanism to reduce inflammation would be through direct modulation of pro-
or anti-inflammatory gene expression (i.e., macrophage polarization) [35,55]. Another
mechanism would be to block or hinder leukocyte—primarily macrophage—infiltration to
the inflamed tissue. It is not clear by which of the aforementioned ways the observed effects
of the supplements were mediated, since macrophage infiltration was not quantified. For
example, it could be possible that the HMH and collagen groups do not show a reduction
in the expression of the pro-inflammatory markers because the latter is masked by a larger
macrophage infiltration.
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Overall, some of the tested dietary supplements could have a beneficial role in the
alleviation of DSS-induced colitis symptoms caused by severe inflammation, as is also
seen in other studies with either DSS [56] or TNBS-induced colitis [57], using protein
hydrolysates of plant origin. The HSH supplement stands out as having the most potent
anti-inflammatory effect, which can be shown by the healthier colon length, tissue integrity
shown by histology and spleen weight, by the lower pro-inflammatory gene expression
and the reduction in pro-inflammatory chemokines. The HSB nutritional supplement had
also an anti-inflammatory potential, since it exhibited a tendency for reduced levels of
inflammatory markers, that is, lower Il-6 and elevated Tgfb expression, as well as reduced
tissue damage when examining colon samples histologically. On the other hand, the
HMH and collagen supplements might exacerbate inflammation, which is not unusual
for diets rich in animal proteins [58], although no significant differences were observed
in colon length and spleen weight. It should be noted, however, that the case of the
HMH supplement could probably be explained by the higher consumption of water
containing DSS.

The exact mechanism through which the examined supplements act in the above
settings of acute intestinal inflammation would be immensely difficult to define, and is
beyond the scope of this study. The former is justified by the tremendously complex
interplay between dietary components, host immunity, the intestinal barrier function
and the gut microbiota. It is highly likely that the tested protein hydrolysates of fish
origin modulated the composition of the gut microbiome, considering that animals were
exposed to the supplements for a total of 15 days (7 days prior to the experiment plus
8 days of the experiment) and the fact that intestinal microbiota may respond promptly to
modified diets [59]. In agreement with our hypothesis, tuna-derived fish supplements were
shown to ameliorate DSS-induced intestinal inflammation through short-chain fatty acid
production and microbiome modulation [60]. We have also recently shown that different
protein-containing dietary supplements affect the gut microbiome [61].

The tested supplements consist primarily of protein but also a fraction of minerals.
Lipids were actively removed and a remnant of 1–2% was present, thus their potential
contribution in the anti-inflammatory action is rather limited. The contribution of minerals
cannot be excluded, since minerals such as Zn possess anti-inflammatory actions. Neverthe-
less, the major content of the supplements is proteins consisting of a wide range of amino
acids. It has been exhibited that intestinal inflammation alters amino acid metabolism both
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in the immune and non-immune cells of IBD patients and their intestinal microbiome, thus
creating a shift in nutritional demands and utilization [62,63]. Possibly, each amino acid
has a distinct part in intestinal inflammation, with some exacerbating it and others sup-
pressing it [16,64,65]. For example, dietary glycine protected rats from chemically-induced
colitis by abrogating the production of pro-inflammatory cytokines and chemokines [66].
Interestingly, the HSH supplement, which had the most beneficial effect of the examined
extracts, is rich in glycine, as are the HSB and HMB extracts, which also presented some
anti-inflammatory action (Table S1). Notably, collagen has the highest glycine concentra-
tion, yet it presented an increase in both anti-inflammatory and pro-inflammatory markers;
thereby it would be over-simplistic to attribute the observed effects solely to a specific
amino acid. Instead, the entire amino acid profile of each extract and the potential action of
bioactive peptides should be accounted for.

Moreover, DSS-induced colitis in rats was alleviated when supplemented with threo-
nine, serine, proline and cysteine, in part through stimulation of mucin production and
equilibration of the gut microbiome [67]. With the exception of cysteine, the HSH, HSB
and HMB supplements contain considerable levels of the aforementioned amino acids.
Histidine downregulated the production of pro-inflammatory markers by macrophages
when offered in mice with colitis [68]. Arginine, which is found in important concentra-
tions in the examined fish extracts, reduced intestinal inflammation in rats and mice with
chemically-induced colitis [69–71]. Overall, the fish-derived protein hydrolysates that were
tested in this study contain considerable quantities of amino acids that have been demon-
strated to ameliorate symptoms of colitis, through modulation of amino acid metabolic
pathways. Taking everything into account, we propose that fish sidestream-derived protein
hydrolysates may contribute to the alleviation of intestinal inflammation and support
intestinal homeostasis.

3. Materials and Methods
3.1. Materials

Enzymatic protein hydrolysates based on mackerel heads (HMH), mackerel backbones
(HMB), salmon heads (HSH) and salmon backbones (HSB) were produced according to
Aspevik et al. (2021) [15] in the pilot raw material processing plant of Nofima AQUAFEED
Technology Center (Fyllingsdalen, Norway). Flounder skin collagen was kindly provided
by Seagarden (Karmøy, Norway). Chemical properties of protein hydrolysates based on
mackerel and salmon are shown in Supplementary Table S1 and in Aspevik et al. (2021) [15].
Chemical properties of protein hydrolysate of collagen are shown in Table S1. All other
chemicals were of analytical grade.

3.2. Animal Maintenance

Animal housing, handling and all procedures were according to national and EU
legislation on laboratory animal handling and approved by the University of Crete Ethics
Committee (license number 269904). C57BL/6 mice were maintained in a 12 h day/night
cycle and 21–23 ◦C conditions prior to treatment in a pathogen-free animal facility in the
Medical School of the University of Crete, Heraklion, Greece.

3.3. DSS-Induced Colitis

Six female C57BL/6 mice, 6–8 weeks of age, were fed a normal chow diet (4RF21,
Mucedola, Settimo Milanese, MI, Italy) plus 5% w/w fish sidestream-derived protein hy-
drolysates for one week prior to the experiment initiation day or purified soy protein as
control. The control group was supplemented with purified soy protein throughout the
experiment. Then, they were treated with 3% w/v DSS (40kDa, A3261 Applichem, Darm-
stadt, Germany) in the drinking water for 5 days to initiate the inflammatory phenotype
and then left to recover for 3 days, before sacrifice. Disease score and animal weight were
monitored daily. Disease score was measured by placing every mouse in an empty cage
for 15 min where feces were collected and scored as follows: normal stool consistency—0,



Mar. Drugs 2021, 19, 312 12 of 16

soft stools—1, very soft stools with traces of blood—2 and watery stools with visible rectal
bleeding—3. Spleen, colon and blood serum were collected at the time of animal sacrifice,
and spleen weight and colon length were measured. Samples were stored in −80 ◦C for
further analysis.

3.4. RNA Isolation and Quantitative PCR

Colon tissue was homogenized using a mechanical homogenizer in TrizolTM reagent
(15596-026, ThermoFisher, Waltham, MA, USA) and total RNA was extracted according
to manufacturer’s instructions. Then, 5004 ng of total RNA was reverse transcribed using
a PrimeScript™ RT reagent Kit (Perfect Real Time) (RR037A, TaKaRa, Bio Inc, Kusatsu,
Shiga, Japan). Each sample was diluted five times and used as a template in duplicates for
two-step quantitative PCR reactions in a 7500 Fast Real-Time PCR Instrument (Applied
Biosystems®, Foster City, CA, USA) with 96-well Block Module as follows: start step 95 ◦C
for 3 min, and then 40 cycles of 95 ◦C for 10 s and 60 ◦C for 30 s followed by melting curve.
Amplification was performed using a KAPA SyBr® Fast Universal qPCR kit (KK4618,Kapa
Biosystems, Wilmington, MA, USA) The primers used are listed in Supplementary Table S2.
Data analysis was performed using mRNA levels expressed as relative quantification (RQ)
values, which were calculated as RQ = 2(-DDCt), where DCt is (Ct (gene of interest)—Ct
(housekeeping gene)). Actin mRNA was used as the internal control gene.

3.5. ELISA

Colon tissue was homogenized using a mechanical homogenizer in 1x PBS supple-
mented with CompleteTM Inhibitor Cocktail (11697498001, Merck, Kenilworth, NJ, USA)
protease inhibitors. Samples were centrifuged and supernatants were used for ELISA
assay. Blood serum was diluted 5 times in 1x assay diluent provided by ELISA kit and
used for cytokine measurement. Cytokine concentration of mouse IL-6 (431301, ELISA
Max™ Delux Set BioLegent, San Diego, CA, USA) and Cxcl1 (Mouse CXCL1/KC Du-
oSet Elisa, DY-453, R&D Systems, Minneapolis, MN, USA) was measured according to
manufacturer’s instruction.

3.6. Histological Analysis

For histopathological analysis, the large intestine of the mouse was removed, fixed in
buffered formalin and embedded in paraffin. Then, sections of 5µM were prepared, placed
on glass lesions and stained with hematoxylin and eosin (H&E) to assess inflammatory cell
infiltration and tissue damage. Blinded histological colon tissue scoring was performed
according to Chassaing et al. [38] based on epithelial tissue damage and inflammatory
infiltration into the mucosa, submucosa and muscularis/serosa, resulting in a total score of
0–36 points per mouse.

3.7. Statistical Analysis

Data shown in Figures 1 and 4–7 are shown in boxes min to max with median ± SD,
and the ones in Figures 2 and 3 are presented as mean ± SD. Statistical analysis was
performed using Graphpad Prism 7.0 (GraphPad Software, San Diego, CA, USA). A Mann–
Whitney t-test was performed to test statistical significance of each diet group to DSS control
diet. Tukey’s test was performed to test statistical significance between groups, confirming
the results. Differences with a p value < 0.05 are considered significant (* indicates p < 0.05,
** indicates p < 0.01, *** indicates p < 0.001).

4. Conclusions

Our findings demonstrate for the first time that fish sidestream-derived protein hy-
drolysates can suppress chemically-induced colitis. Recent evidence supports the health-
promoting properties of bioactive peptides. The present report provides evidence for a
new, underexplored source of dietary products with health-promoting properties.
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