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Abstract

In applied spectroscopy, the purpose of multivariate calibration is almost exclusively to relate analyte concentrations and

spectroscopic measurements. The multivariate calibration model provides estimates of analyte concentrations based on

the spectroscopic measurements. Predictive performance is often evaluated based on a mean squared error. While this

average measure can be used in model selection, it is not satisfactory for evaluating the uncertainty of individual predic-

tions. For a calibration, the uncertainties are sample specific. This is especially true for multivariate calibration, where

interfering compounds may be present. Consider in-line spectroscopic measurements during a chemical reaction, pro-

duction, etc. Here, reference values are not necessarily available. Hence, one should know the uncertainty of a given

prediction in order to use that prediction for telling the state of the chemical reaction, adjusting the process, etc. In this

paper, we discuss the influence of variance and bias on sample-specific prediction errors in multivariate calibration.

We compare theoretical formulae with results obtained on experimental data. The results point towards the fact that

bias contribution cannot necessarily be neglected when assessing sample-specific prediction ability in practice.
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Introduction

Prediction uncertainty estimation is important for instance

when using spectroscopic measurements for telling the

state of a chemical reaction or doing process control.1

In such cases, a calibration model is fitted using a set of

spectroscopic measurements with corresponding reference

values. When applying the calibration model, for example

during production, reference values are (normally) not

available. Hence, one must solely rely on predicted values

when controlling the process. In such situation, good esti-

mates of sample-specific prediction errors are necessary

to judge the validity of the prediction. In this paper, we

compare sample-specific prediction errors obtained from

experimental data with the sample-specific errors derived

from theoretical formulae.

The most frequently used methods for investigating the

reliability of calibration models are cross-validation based

on the calibration data itself or prediction testing based on

independent dataset(s).2 Both these methods provide infor-

mation on average prediction abilities over the samples

tested, expressed as, e.g., a mean squared error (MSE).

But the methods give no information about how prediction

ability changes across samples. It is known, both theoretic-

ally and in practice, that the best predictions are obtained in

the center of the calibration data and also that the predic-

tion ability may decrease substantially as one moves away

from this center.3 Therefore, estimating the prediction abil-

ity of a calibration model by means of cross-validation or

prediction testing is not fully satisfactory and there is a

need for methods, which can give information on sample-

specific errors.4

For least squares linear regression, the situation is quite

simple as the predictor in a linear model is unbiased and

the variance of a prediction is easy to calculate using the

formula5

Eðŷ� yÞ2 ¼ s2 þ
s2

N
þ s2xTðXTXÞ�1x ð1Þ
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in which s2 is the random error of the linear regression

model, N is the number of calibration samples, X is the

centered calibration data (measurements), and x repre-

sents the measurement (centered according to the calibra-

tion data), for which one wishes to obtain the prediction, ŷ.

The true reference value for the sample of interest is given

by y. As can be seen from Eq. 1, prediction error changes

with the values of x.

However, due to collinearity in spectral data, data com-

pression methods such as partial least squares (PLS) regres-

sion or principal component regression (PCR) must be

used, and Eq. 1 cannot be applied directly when dealing

with spectral measurements. A good and pragmatic work-

around is to use component scores, obtained from, e.g.,

PCR, rather than the spectral measurements in Eq. 1.

However, predictions obtained from PCR (and PLS) are

biased due to omitting components in the model.6

This bias is not accounted for in Eq. 1 and therefore,

Eq. 1 is not satisfactory for the case of PCR (and PLS) as

will be shown in this paper.

Since Eq. 1 is obtained by applying standard formulae for

variance of linear combinations of a fixed vector, x, and a

random regression vector, b, an alternative possibility when

other calibration methods are used is to replace

ðXTXÞ�1s2 (the covariance matrix of b) with a bootstrap

alternative and substitute this alternative in the place of

ðXTXÞ�1s2 in Eq. 1. This approach can be used for any

calibration method.4

Faber and Kowalski7 based the sample-specific variance

of a prediction on the errors in x, y, and b as well as s2.

This is useful when comparing error contributions. The

expression by Faber and Kowalski is also the basis for stu-

dies of Andersen and Bro8 and Skou et al.1

Other approaches can be found in Fernandez-Ahumada

et al.9 and Zang and Fearn.10 Fernandez-Ahumada et al.9

handle uncertainties in input data in an error-in-variable con-

text giving rise to an alternative expression for prediction

error. Zang and Fearn10 use an approximation procedure for

estimating the prediction variance for PLS regression.

Nevertheless, the above-mentioned studies put little

emphasis on the bias contribution. In this paper, we will

use the prediction error formulae for PCR (see Mandel11

or Næs and Mevik5) as a basis for discussing sample

dependent prediction errors more generally. This leads to

an investigation of the relative size of the variance and bias

contribution for different number of components included

in the model. It will be shown that the bias may play an

important role in addition to the variance as represented in

Eq. 1. In particular, it is important to take the bias into

consideration if the number of relevant components is

not selected in a satisfactory way. As a part of the discus-

sion, we will distinguish between three different types of

bias, namely the omitted-variables bias, the least squares

effect bias and the bias occurring when the calibration sam-

ples are not representative for the predicted sample. The

three types of bias are explained in further details in the

Materials and Methods section below.

The error and bias formulae for PCR will be compared

with the true squared error ðŷ� yÞ2 and true bias ðŷ� yÞ
in a prediction testing situation. To the authors’ knowledge,

this has not been done before. This investigation has two

scopes: First of all, it will be a check of the realism of the

theoretical formula in real prediction situations. Secondly, it

will be an investigation of the true variability of a prediction

error around the estimate given by the formulae.

The structure of the observed errors as a function of the

formulae will be studied using Loess, which is a nonpara-

metric regression method useful for indicating tendencies.12

In addition, there will be a discussion of the different

phenomena involved in prediction error estimation, these

results also point towards the fact that the bias contribu-

tion cannot necessarily be neglected when assessing pre-

diction ability and variability in practice for each new sample

measured.

Materials and Methods

Model and Estimation

The data, spectra, and chemical concentrations, for calibra-

tion are given by XðN� KÞ and yðN� 1Þ, respectively. The

focus here is on building a prediction equation for y based

on X, using a linear model given by

y ¼ 1b0 þ Xbþ e ð2Þ

where 1ðN� 1Þ is a column vector of ones, b0ð1� 1Þ is the

offset, and eðN� 1Þ is the error. Note that var eð Þ ¼ s2 is

the same as in Eq. 1 and denotes the random error of

the model. Since the variables (columns) of X are highly

collinear for applications in spectroscopy, one needs a

data compression method such as PCR or PLS. For calibra-

tion, one usually assumes that both X and y are centered

column-wise. When using the model for prediction of a

new sample, xð1� KÞ, one centers x according to X and

usually adds the original mean of y to the prediction.

The procedure used for PCR is based on the singular

value decomposition of X

X ¼ USPT ð3Þ

Here, columns of UðN�M) are the left singular vectors

of X, SðM�MÞ is a diagonal matrix containing singular

values and columns of PðK�MÞ are the right singular vec-

tors of X. Here, M denotes the number of non-zero singular

values. Both U and P are orthonormal. Using all the singular

vectors U, the model in Eq. 2 can be reformulated as

y ¼ 1g0 þUgþ e ð4Þ
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where g0ð1� 1Þ is the offset and gðM� 1Þ are the regres-

sion coefficients. For PCR, one uses a limited number of

components, A, determined by for instance cross-valida-

tion, i.e., one uses the reduced model

y ¼ 1g0 þUAgA þ f ð5Þ

Here, UAðN� AÞ is defined as the first A columns of U,

corresponding to the A largest eigenvalues of XTX,

gAðA� 1Þ are the first A regression coefficients, and

fðN� 1Þ is the error. For a new sample to be predicted,

one projects the new sample, x (after centering) onto PS�1

(Eq. 3) to calculate the corresponding uð1�MÞ and then

uses the first A values of u in Eq. 5 with the estimated

regression coefficients.

For the closely related PLS regression, the main differ-

ence lies in how the U is calculated by maximizing the

covariance between y and linear functions of X.

Validation

The fit of a calibration model (e.g., PCR) is estimated from

the residuals (f in Eq. 5) as the mean squared error of

calibration (MSEC)

MSEC ¼

PN
n¼1 f

2
n

N� K� 1
¼

PN
n¼1ðŷn � ynÞ

2

N� K� 1
ð6Þ

where K is the number of variables in X. If K is larger than

N, the fit is typically approximated by replacing K with the

number of PCR components, A. Here, A is chosen large

enough to expect that components beyond A carry no

systematic information. This is further discussed in the

Results and Discussion section below.

The estimation of prediction ability is most frequently

done by cross-validation or prediction testing based on an

independent dataset with both X and y measured. In this

study, we use the leave-one-out cross-validation (LOOCV)

scheme for model selection.14 During LOOCV, the nth

sample is left out during parameter estimation (Eq. 5).

The nth sample is then predicted using the estimated par-

ameters. One then typically calculates mean squared error

of cross-validation (MSECV) from Eq. 7

MSECV ¼

PN
n¼1ðŷn � ynÞ

2

N
ð7Þ

When doing prediction testing, one estimates the param-

eters (Eq. 5) on a calibration dataset and then apply the

estimated parameters to an independent prediction data-

set. One then typically calculates the mean squared error of

prediction (MSEP) given by Eq. 8

MSEP ¼

PNP

n¼1ðŷn � ynÞ
2

NP
ð8Þ

where NP corresponds to the number of samples in

the independent prediction dataset. The advantage

of these two measures (MSECV and MSEP) is that

they are based on direct testing on real data. The cross-

validation estimates the average prediction ability of pre-

dictors estimated using different subsets of the calibration

data. In prediction testing, on the other hand, one tests the

properties of a given equation with parameters already

estimated. This can be done at any point in time, also

after some time of use of the prediction equation. Cross-

validation and prediction testing measures are slightly

different methods but they seem to be used interchange-

ably in the literature. The focus in this paper is on predic-

tion testing.

Prediction Error for PCR

For PCR, the prediction error as a function of u for a new

sample has a simple formula5

Eðŷ� yÞ2 ¼ s2 þ
s2

N
þ s2

XA
a¼1

u2a þ �
XM

m¼Aþ1

umgm

 !2

ð9Þ

where u represents elements of u and g represents the

elements of g (Eq. 5). The first term in Eq. 9, s2, is from

the random error. For estimating the random error in the

model given by Eq. 2, one can use the MSEC given by Eq. 6.

The subsequent term in Eq. 9 represents the variance con-

tribution (estimation error) from the A components used

in the PCR model

Eðŷ� EŷÞ2 ¼
s2

N
þ s2

XA
a¼1

u2a ð10Þ

and the last term in Eq. 9 is the square of the bias contri-

bution (model error) due to omitting components in

the model

Eðŷ� yÞ ¼ �
XM

m¼Aþ1

umgm ð11Þ

As seen above, the random error and the variance con-

tribution is similar to the one for least squares regression

(Eq. 1), but Eq. 9 also has the bias contribution. The vari-

ance contribution increases, whereas the bias contribution

decreases with increasing A (i.e., more components in the

model). In practice, one must balance the two contribu-

tions with respect to each other. When the decrease of

bias obtained by incorporating a new component is smaller

than the extra variance contribution of the same compo-

nent, it is advantageous to stop incorporating more
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components in the model. In other words, when the pre-

diction error becomes small enough, it is better to elimin-

ate the components beyond a certain point A in order

to avoid increased variance. In Fig. 1, this phenomenon is

illustrated. Hence, the true prediction error represents a

compromise of the variance contribution and the bias con-

tribution. Note that the random error, which is constant, is

neglected in Fig. 1.

In the present paper, we will take these formulae (Eqs. 9

to 11) as point of departure and study the relative size of

the two contributions as well as how they relate to true

errors as measured by ðŷ� yÞ2 and to the true bias mea-

sured by ðŷ� yÞ. For this purpose, estimates of the regres-

sion coefficients, ĝ, are used as the true g is unknown. This

will provide us with both an indication of the usefulness of

the formula and an idea about its precision in practice.

Note that the sample-specific prediction uncertainty can

be estimated by plugging in estimates from the calibration.

This means that the formulae can be used also in new con-

texts much later without saving the calibration data.

Identical Predictions May Have Different Prediction
Uncertainty

From Eqs. 5 and 9, it is interesting to note that two samples

with the same predicted values ŷ can have different predic-

tion errors ðŷ� y). The reason for this is that different

constellations of u for two samples (e.g., with variation in

quantities of interfering compounds) may return the same

predicted values of the analyte of interest (Eq. 5). However,

the different constellations of u will return different

prediction errors (Eq. 9) for the two samples. A demon-

stration of this will be given, for the example, in this paper.

Different Types of Bias

It must be noted that bias contribution in Eq. 11 is only one

of several possible bias contributions that may occur in

practice. In order to clarify this, we will now discuss and

distinguish between three different types of bias.

The more intuitive type of bias is present if the calibra-

tion samples are not representative for the test samples to

be predicted. A typical example can be change of season

when estimating for a natural crop or drift of instruments.

This type of bias can typically be detected by plotting ŷ

versus y. This bias can take on any shape depending on

the situation. In this paper, we will, however, not deal

with this type of bias.

The bias described in Eq. 11 is due to omitting principal

components in the predictor. As long as components are

omitted in a model, this bias will always be there regardless

of how many samples are available in the calibration. This

bias varies from sample to sample depending on the pos-

itioning of u along components beyond component A. In

other words, this bias will not represent a systematic rela-

tion between ŷ and y, and will in practice look like random

noise. In the Results and Discussion section, we will, how-

ever, present a way to obtain an estimate of its size.

A third and well-known bias is the so-called least squares

effect.13 This is the bias of ŷ as a function of y (Eq. 12). Low

values/concentrations of a chemical constituent are often

overestimated, and the high values are underestimated.

This bias is more visible when prediction errors are larger.

However, the least square effect bias is always present

(like the omitting components bias) even for situations

where the parameters, in the linear model, are known exactly.

Say the linear predictor xTb is based on the true regression

coefficients in the model, standard distribution theory for the

normal distribution gives the following expected value of the

predictor ŷ conditioned on the value of y

ŷð yÞ ¼ bTDxyD
�1
y y ð12Þ

Here, the Dxy represents the true covariance of x and y
and D

�1
y represents the inverse of the variance of y. If the

sample size is large enough, the covariances and the vari-

ance of y can be estimated and then used as substitutes for

the true values. This will be done in the example below

(Results and Discussion section) to visualize the least

squares effect bias.

Data and Preprocessing

The data used for illustration originate from Nielsen

et al.15 In total, 523 wheat kernels were, individually, mea-

sured with near-infrared transmission spectroscopy.

Figure 1. Illustration of the principles underlying predictions

error. The variance contribution increases, while the bias contri-

bution decreases when model complexity increases (i.e., when the

number of components (# PC) increases).
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Transmission (T) was transformed into absorbance

by logð1TÞ to obtain absorption spectra (X). The spectral

range, included in this study, was from 860 nm to

1028 nm, with recordings at every second nanometer.

Reference variable (y) of protein content was determined

for each individual wheat kernel using the Kjeldahl analysis.

For a detailed sample description, see Nielsen et al.15

For calibration, 100 samples were randomly selected,

and the remaining 423 samples were used for prediction

testing. The major purpose of this study is to compare the

prediction error formulae with real prediction errors.

Therefore, the majority of samples are in the test set.

Spectra (X) were preprocessed by Savitzky–Golay

second-order derivative (window size of 21 points and

second-order polynomial). Prior to modeling, both X

and y were column-wise mean centered. Data were ana-

lyzed in Matlab version R2018a (v.9.4.0.813654, The

MathWorks Inc.).

Results and Discussion

The preprocessed X is presented in the supplementary

material (Figure S1). Likewise, the results from singular

value decomposition of X are presented for the first two

principal components (Figure S2). Figure S2a shows the

loadings, given by P in Eq. 3 and Figure S2b shows the

scores, given by US in Eq. 3. The decomposition is first

calculated on the calibration dataset. Then the prediction

dataset is projected onto the model to obtain score values

of the 423 prediction samples. By investigating leverages

and squared residuals (data not shown), we found that

the calibration data are representative for the prediction

samples. Hence, a bias is not introduced due to calibration

data not being representative for the test data.

Figure 2 shows MSEC (Eq. 6) and MSECV based on

LOOCV (Eq. 7) for the 100 calibration samples. Figure 2

also shows the MSEP (Eq. 8) for the 432 prediction sam-

ples. Figure 2a shows the MSEs for the first 50 components,

whereas Fig. 2b is a zoom-in of Components 4 to 15.

As can be seen, the cross-validation indicates five compo-

nents as a good choice, but prediction ability for four com-

ponents is only slightly less precise. Also, the MSEP
indicates that five components is a good choice in this

case. The MSEC results show that the random error

(Eq. 9) is quite constant after five components. This indi-

cates that regardless of where one decides to estimate for

random error, it will be approximately the same as long as

more than four components are chosen. As an estimate of

the random error, s2, we will use the MSEC for 50 com-

ponents. It is very unlikely that there is any additional infor-

mation regarding protein in components further out, which

represent extremely small variability in the spectra.

The estimated regression coefficients, ĝ (Eq. 5), for the

different components are presented in Fig. 3a. The first five

components are strongly dominating, with a few significant

ones further out. Significance is here defined according to a

standard t-test, testing whether the slope-term (univariate

regression) between y and the individual columns of U (Eq.

4) is different from zero, with significance level 0.01. The

predicted protein values, ŷ, are plotted against the mea-

sured protein values, y, for a five-component PCR model,

in Fig. 3b. In Fig. 3b, the least square bias effect described

above is seen as a systematic tendency on top of the

random noise. Larger values of y are in general underesti-

mated and smaller values are in general overestimated. This

is clear from the orientation of the y ¼ x line relative to

the best fit (Fig. 3b). In the supplemental material (Figure

S3), the least squares bias effect is calculated (based on Eq.

Figure 2. Model fit expressed as mean squared error (MSE) as a function of number of principal components (# PC) in the model.

Mean squared error of calibration (blue), mean squared error of cross-validation using the leave-one-out scheme (yellow) and mean

squared error of prediction (red). (a) Components 1 to 50. (b) Magnification of the relevant part of (a) (Components 4 to 15).
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12) for the 100 calibration samples. As can be seen, this

follows nicely the general bias trend in Fig. 3b.

The phenomenon that the same predicted value

can have vastly different prediction error is illustrated in

Fig. 4. Figure 4 shows that the true error fluctuates

between exceedingly small and exceptionally large errors

for all values of the predictions. The same tendency is seen

if we use Eq. 9 for prediction error instead of the true

errors (data not shown). This may look a bit surprising,

but it is an effect of the fact that a predicted value of y
can be a function of quite different configurations of x

within the model space.

The variance contribution (Eq. 10) and the square of the

bias contribution (Eq. 11) are presented in Figs. 5a and 5b,

respectively. In Fig. 5a, the average variance contribution is

shown per principal component (prediction samples only,

i.e., data did not take part in fitting the PCR model). In

Fig. 5b, the average (again over prediction samples only)

squared bias is shown per model complexity (i.e., the bias

contribution at five principal components corresponds to

the bias for a five-component model). The true bias is

unknown since g is unknown, but the bias is here estimated

using the significant ĝ values from 1 up to 15 components.

This limit of 15 components is chosen in order to avoid too

much noise from components further out to take part in

the formula. These components are also, in most cases, of

little relevance for the constituent of interest. As can be

seen, the average variance contribution (Fig. 5a) increases

and the average bias (Fig. 5b) decreases as the number of

components increases. This corresponds exactly to the

general principle in Fig. 1, bias decreases and random

error increases with increasing model complexity. It is

observed that the variance increases slowly with increasing

number of components. The bias drastically decreases until

the optimal number of components is reached and then it

stays relatively low and constant. This behavior of variance

and bias with increasing number of components is usually

observed in practice.16

Figure 6a shows the true squared prediction errors

plotted against the estimated sample-specific prediction

errors (Eq. 9). Figure 6b shows the sample-specific true

bias (ŷ� y) plotted against the estimated bias (Eq. 11).

Both Figs. 6a and 6b represent the prediction dataset

(i.e., the data did not take part in fitting the PCR model).

Loess regression (0.5 bandwidth; second-order polynomial

model) is used for estimating the average tendency in the

two plots. Only samples marked as ‘‘Prediction (included)’’

were included during Loess estimation, in Figs. 6a and 6b.

Figure 3. (a) Estimated regression coefficients (ĝ) for the different principal components (PC). The regression coefficients are

estimated using the calibration samples only. (b) Measured (y) versus predicted (ŷ) values of protein for calibration samples (blue) and

prediction samples (red) using a five-PC model. The mean squared error of calibration (MSEC) is 0.23 and the mean squared error of

prediction (MSEP) is 0.29.

Figure 4. True error ðŷ � yÞ2 as function of the estimate ðŷÞ for

prediction samples.
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Samples marked as ‘‘Prediction (excluded)’’ did not take

part in the Loess estimation. Figure 6a shows that the esti-

mated average prediction ability follows quite closely the

value from the formula, but as also seen, the distribution

around the average varies quite a lot with the size of the

error. Many values are quite small, but some are also large

both for small and large values of the formula. The similarity

between the average measured error and the formula sup-

ports the choices made above regarding estimate of bias (ĝ)

and the random error (s2). Figure 6b shows that there is a

clear relation between the average bias estimate and the

average true bias observed. The Loess estimate shows

approximate linearity, between estimated and true bias,

with a slope of �1. This clearly indicates that the bias

formula calculated as described makes sense for estimating

the true bias. In Fig. 6b (like in Fig. 6a), the distribution

around the average varies quite a lot, indicating that the

uncertainty of the bias estimate can be large.

Nevertheless, the size of the values also emphasizes the

need for not always neglecting the bias in the formula for

prediction error, although in this case the bias is smaller and

less important than the variance contribution. The average

difference between the true and estimated bias is �0.01.

Hence, in this case, the theoretical formula slightly over-

estimates the bias. The variance of the true bias is 0.29

and the variance of the estimated bias is 0.04. This differ-

ence is due to random fluctuations in the measured bias.

We did not find any relation between the estimated bias

Figure 6. (a) Estimated prediction error versus true error for each specific sample in the prediction dataset. The expected prediction

error (Eðŷ � yÞ2) is given by Eq. 9 and the true error is given by ðŷ � yÞ2. (b) Estimated bias versus true bias for each specific sample in the

prediction dataset. The estimated bias (Eðŷ � yÞ) is given by Eq. 11 and the true bias is given by (ŷ � y). Loess is used for estimating the

average tendency. Only samples marked with a red circle, Prediction (included), were included when estimating Loess. Samples marked

as Prediction (excluded) were excluded when estimating the average tendency using Loess.

Figure 5. (a) Average variance contribution (Eðŷ � EŷÞ2) of prediction samples for each principal component (PC). (b) Average squared

bias contribution (ðEðŷ � yÞÞ2) for the prediction samples as the number of principal components (# PC) increases in the model.
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(nor the true bias) and predicted values (ŷ). This suggests

that the bias estimate is not a function of the position in the

prediction space (data not shown).

The results for a four-component PCR model are pre-

sented in Figure S4. The results show larger prediction

errors for the four-component model (Figure S4a) as com-

pared to the prediction errors for the five-component

model (Fig. 3b). This is due to a larger bias in the

four-component model (Figure S4b) as compared to

the five-component model (Fig. 6b). The larger bias for

the four-component model is a result of the large ĝ value

for Component 5 (Fig. 3a), which will take part in the bias

contribution in the four-component model. Also, for the

four-component model, the prediction ability follows

the estimated prediction ability given by Eq. 9. The results

for the four-component model are similar to the results for

the five-component model (Fig. 6a) with a clear indication

of larger variance around larger squared errors (results not

shown). The difference is that in the case of a four-compo-

nent model, the bias contribution is stronger.

Conclusion

The present paper has demonstrated how the bias and vari-

ance contribute to the true prediction errors. In addition, a

distinction between different bias definitions has been given

and it has been demonstrated how they contribute to the

overall bias of a predictor. The results indicate that

the formulae for prediction error for the PCR method

can be used to assess average sample dependent prediction

ability, but they also show that the variability around the

average values can be substantial. This means that the

uncertainty of the estimate can be quite large. In addition,

it has been demonstrated that the bias contribution from

the PCR formulae should not always be neglected com-

pletely. We recommend estimating the regression coeffi-

cients in the PCR model and the contribution from the

bias from the prediction error formulae and incorporate

the bias in the overall estimation error if needed.
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