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Abstract: Near-infrared spectroscopy (NIRS) is widely used for quality and process control in the food industry. In the meat
industry, the method is still used mainly for determination of fat, water, and protein content, while new applications are emerg-
ing. In this paper,we report on how in-lineNIRS can be used to detect and sort chicken breast filletswith themyopathieswooden
breast and spaghetti meat from normal fillets. A total of 270 fillets were measured with 2 different near-infrared systems. The
near-infrared spectra contained information about protein content and water-binding properties that showed systematic
differences between the 3 quality classes. Wooden breast could be well separated from normal fillets (96% correct classifica-
tion), while spaghetti meat was slightly more difficult to separate from both normal and wooden breast because properties mea-
sured by NIRS were overlapping between the 3 groups. Two quite similar NIRS instruments had quite different classification
performance, which emphasizes the importance of optimizing spectroscopic instrumentation for different applications.

Key words: chicken, wooden breast, spaghetti meat, near-infrared spectroscopy, classification
Meat and Muscle Biology 4(2): 8, 1–8 (2020) doi:10.22175/mmb.10020
Submitted 17 February 2020 Accepted 23 April 2020

This paper was accepted as a contribution to the 2020 International Congress of Meat Science and Technology and the AMSA
Reciprocal Meat Conference.

Introduction

Near-infrared spectroscopy (NIRS) is a potent
method for industrial quality control and process
monitoring, and the potential for process optimiza-
tion is large (Grassi and Alamprese, 2018). NIRS
is an excellent tool for rapid and nondestructive
determination of fat, water, and protein in ground
meat, by measuring molecular vibrations involving
hydrogen bonds (e.g. C-H, O-H, and N-H). This
application is established for both at-line and in-line
monitoring, and different types of commercial near-
infrared (NIR) instruments are used for this. The
method has been reviewed for other potential meat
applications (Porep et al., 2015; Dixit et al., 2017)
and appears to be a promising method for rapid
and nondestructive determination of quality features

such as water-holding capacity, tenderness, pH, and
specific fatty acids. However, none of these potential
applications has reached the meat industry as a com-
mercial tool.

The main applied research and development ques-
tions related to NIRS and meat are (1) what kind of
quality features are possible to measure and (2) how
these can bemeasured in processwith satisfactory accu-
racy. New developments can therefore rely on novel
instrumentation that enables, e.g., better and more rep-
resentative sampling, or new applications for which
there are strong needs in the industry. There are at least
3 reasons why reported novel NIRS applications for
meat do not reach the market as commercial solutions:

1. The actual feasibility of the application is ques-
tionable (causality is not clear and application
is developed and tested to a very limited extent).
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2. There is a lack of instrumentation for certain appli-
cations that require particular performance with
regard to, e.g., speed, resolution, or sampling of
heterogeneous materials.

3. There is a lack of profitable business ideas. The ap-
plication must be economically viable for both the
meat processing company and the instrument vendor.

Representative sampling is often a limitation with
spectroscopic methods regarding heterogeneous foods.
NIR reflection was introduced as an on-line method for
fat determination of batches of ground meat (Tøgersen,
1999), and it works well since an average value can be
recorded over a large volume at the grinder outlet.
NIRS technology based on high-speed hyperspectral
imaging in combination with so called interaction mea-
surements enables sampling across the entire width of a
conveyor belt as well as about 10- to 15-mm depth into
the meat. This produces good estimates of fat in boxes
of meat trimmings (O’Farrell et al., 2010) and portions
of trimmings on a conveyor belt (Wold et al., 2011).
This technology enables automatic sorting of trim-
mings according to fat content (Wold et al., 2016)
and potentially an improved utilization of the meat
rawmaterial. Recently, there has been a focus on meas-
uring quality features related to the chemical state of
water in meat. Shifts occur in the absorption peaks
of water, and these are related to (1) how the water
is bound to macromolecules like proteins (Chung et al.,
2008) and (2) sample temperature (Buning-Pfaue,
2003). The former phenomenon is being industrially
utilized today for in-line detection of the woody breast
(WB) syndrome in chicken fillets based on NIRS abil-
ity to quantify protein and water binding in muscle
tissue (Wold et al., 2017; Wold et al 2019). Another
important process feature to monitor is the core temper-
ature during heat treatment of meat products. For food
safety reasons, the core temperature must exceed 72°C,
whereas to avoid unnecessary drip loss affecting qual-
ity and profitability it should not be too high. Since the
absorption of water in NIRS is sensitive to temperature,
it is possible to measure temperature in biomaterials.
Studies indicate that is possible to in-line monitor the
core temperature of liver pate and sausages when the
optical penetration depth is sufficient (O’Farrell et al,
2011; Wold et al., 2020).

In this article, we present a feasibility study on how
NIRS can be used for in-line detection of so-called spa-
ghetti meat (SM), a myopathy in chicken breasts. NIRS
is already being used for detection of WB, but the
growing incidences of SM creates a need for automatic
detection and sorting of this quality defect as well. The

objective of the study was to clarify whether it is pos-
sible to distinguish and classify the muscle myopathy
SM from WB and normal chicken fillets under indus-
trial conditions by the use of NIRS.

Materials and Methods

Samples

Skinless and boneless chicken breast fillets
(Musculus pectoralis major) were sampled directly
from the line in a commercial poultry processing plant
(Nortura Hærland, Hærland, Norway) 3 h after CO2

stunning, bleeding, and slaughter of the birds. The
birds were as hatched, 32–34 d old and of the strain
Ross 308. Average standard broiler live weight at the
processing plant is 2.1 kg. Samples were collected over
3 d in order to obtain fillets from different flocks, which
spanned a relevant bio-variability. A total of 90 normal,
90 WB, and 90 SM fillets were collected. All samples
were graded for WB and SM as well as white striping
(WS) by an experienced veterinarian based on visual
inspection and palpation of consistency.WBwere clas-
sified according to a scale from 0 (normal) to 3 (severe)
based on criteria defined by Bailey et al. (2015). The
WB sample group consisted of 1 fillet at level 1, 45 fil-
lets at level 2, and 44 at level 3 (severe). SM were clas-
sified according to a scale from 0 (normal) to 2 (severe).
Level 1 wasmild SM, in which limited parts of the fillet
were loose/stringy. At level 2, large parts or the entire
filet was stringy/spongy. The SM sample group con-
sisted of 35 fillets at level 1 and 55 at level 2. WS
was scored from 0 (no WS) to 3 (severe) according
to Bailey et al. (2015). WS of levels 1 and 2 occurred
frequently in both theWB and SM group. Moreover, in
the SM group, there were 14 samples with WB scores
of 1 and 2, and in the WB group there were 7 samples
with an SM score of 2 and 30 samples with an SM score
of 1. Average weights (with standard deviations in
brackets) for the normal, WB, and SM fillets were
197.4 g (25.6), 253.8 g (31.6), and 227.3 g (33.1),
respectively. The fillets were measured in movement
at high speed with an on-line NIR scanner in the pro-
duction hall. They were then packed in plastic bags and
transported to Nofima research lab and stored at 4°C
for further analyses the next day. Each fillet was then
measured with another NIR instrument in steady state
for comparison with the industrial measurements.
Nuclear magnetic resonance (NMR) relaxation curves
were measured on 30 samples from each of the 3 fillet
classes.
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NIR measurements

NIR instrument 1. The on-line NIR system used
in the processing plant was a QVision500 (TOMRA
Sorting Solutions, Leuven, Belgium), an industrial
hyperspectral imaging scanner designed for on-line
measurement of fat in meat on conveyor belts. The
instrument is based on interactance measurements in
which the light is transmitted into the meat and then
back scattered to the surface. Optical sampling depth
in the chicken fillets is approximately 15 mm. The skin
sides of the fillets were scanned on a moving conveyor
belt, and each NIR measurement took less than 1 s.
The scanner was placed 30 cm above the conveyor belt
so there was no physical contact between samples
and the instrument. The scanner collected hyperspec-
tral images of 15 wavelengths between 760 and
1,040 nm with a spectral resolution of 20 nm. The out-
put per sample scan was an image of the entire fillet
with a rather coarse spatial resolution as seen in
Figure 1B–1C. Each pixel represented a spatial area
of about 7 mm × 5 mm across and along, respectively,
the conveyor direction. The imaging capability of the
used system was, in this work, used mainly to obtain
one average spectrum from the whole fillet, but also
for inspection of protein distribution within the fillets.

NIR instrument 2. The other NIR instrument was
originally designed to measure fat in the muscle of live
salmon (Folkestad et al., 2008). Two halogen light
sources of 50W each illuminate the sample in 2 rectan-
gular regions of 5 mm × 20 mm size. Distance between
the 2 illuminated regions is 10mm. The system collects
the light that has penetrated down into the sample and
comes up again in a small area of 4 × 4 mm between the

2 illuminated rectangles. The system measures in the
exact same spectral region and has the same spectral
resolution as NIR instrument 1. The measurement prin-
ciple is also the same, but system 2 is not imaging
but measures deeper into the samples (about 20 mm).
The measurements were done in steady state on the
skin side of the fillets at the location indicated in
Figure 1A (while NIR system 1 obtained an average
spectrum from the entire skin side). The system is thor-
oughly described in O’Farrell et al. (2011). Each mea-
surement took 1 s. The temperature of fillets was 4°C.

NMR relaxation measurements

For 30 fillets of each fillet class, a cylindrical sample
of diameter 8 mm and height approximately 20 mmwas
excised from the same spot at which the second NIR
measurement was performed (Figure 1A). The entire
cylinder was weighted and placed in a sealed Teflon
container, which was inserted in the NMR probe.
Before measurement, the samples were thermostated
to 25°C. The transverse (spin-spin) relaxation time T2
was measured with a Maran Ultra Resonance 0.5 T
(Oxford Instruments, Oxfordshire, UK). T2 was mea-
sured using the Carr-Purcell-Meiboom-Gill pulse
sequence (Carr and Purcell, 1954; Meiboom and Gill,
1958). The T2 measurements were done with a tau value
of 150 μs. Data from 8,000 echoes were collected during
16 scans. The Carr-Purcell-Meiboom-Gill pulse
sequence data were analyzed using WinDXP software
(Resonance instruments, Oxfordshire, UK). To show
the distribution of water binding among the chicken
samples, we calculated a loosely bound water index:
the area under the T2 curve in the region 0.18–0.50 s di-
vided by the area in the region 0.02–0.1 s.

Figure 1. (A) Chicken breast with indicated measurement location for NIR instrument 2 (yellow region) and excised cylinder for NMR (blue region).
Chemical maps based on NIR instrument 1 showing estimated distribution of protein concentration in (B) normal, (C) moderate WB, and (D) severe WB.
NIR= near infrared; NMR= nuclear magnetic resonance; WB=wooden breast.
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Data analysis

Spectral preprocessing. The NIR spectra were linear-
ized using the logarithm of the inverse of the interac-
tance spectrum (T), log10(1/T). To reduce the effects
of light scattering and varying distance to sample,
the spectra were normalized by standard normal variate
(Barnes et al., 1989): for each spectrum, themean value
was subtracted, and the spectrum was then divided by
the standard deviation of the spectrum.

Estimation of protein. From prior reported work we
had available a protein calibration for chicken fillets
based on data from NIR instrument 1 (Wold et al,
2017). This calibration was based on partial least-
squares regression (Martens and Næs, 1993). The cal-
ibration could be applied on average spectra from the
hyperspectral images or on single pixels to obtain
chemical images showing the protein distribution.
Another protein calibration for chicken fillets had been
obtained from NIRS instrument 2 (Wold et al., 2019).
This model was used to estimate protein in the 270
fillets based on the NIR measurements at the rostral
location (Figure 1A).

Linear discriminant analysis (LDA; Duda and
Hart, 1973) was used to test how well NIR spectra
could discriminate the different classes (normal, SM,
and WB) from each other. Since the variables in NIR
spectra are generally highly correlated, we used the
score values from a principal component analysis
(Marten and Næs, 1993) of these data. These score val-
ues are orthogonal to each other andwell suited as input
variables in LDA. The functions were validated by full
cross-validation (leave one sample out).

The software The Unscrambler version 9.8
(CAMO Software AS, Oslo, Norway) was used for
principal component analysis and protein predictions.
Calculation of LDA, image processing, and spectral
preprocessing was carried out in MATLAB version
7.10 (MathWorks Inc., Natic, MA).

Results and Discussion

Analysis of spectral properties
Figure 2 shows typical normalized NIR spectra

from chicken fillets in the relevant spectral region
(from NIR instrument 2; spectra from instrument 1
were similar). The main peak at around 980 nm stems
from the absorption of water. There are also contribu-
tions from fat (around 930 nm) and protein (around
1,020 nm), but these are difficult to discern. The spectra

shown are from one normal fillet, one SM, and one
severe WB. Note that the water peak in spectra from
WB fillets was shifted towards shorter wavelengths
compared with normal fillets, as previously reported
(Wold et al. 2017; Wold et al., 2019). Furthermore,
SM expressed this shift, although it was not as pro-
nounced. The water absorption peak is affected by
the water-binding properties. Hydrogen bonding
between water and protein molecules causes a spectral
shift towards longer wavelengths as well as a peak
broadening (Chung et al., 2008). This indicates that
WB as well as SMmuscle contains more loosely bound
water than normal muscle. The first principal compo-
nent of the NIR spectra expressed this shift (92% of
the total variation in the spectra), and the variations
for all 270 samples are shown in Figure 3A (estimated
for NIR instrument 2). Low score values indicate large
shifts towards shorter wavelengths and consequently
more loosely bound water in the muscle. Most of the
WB samples had values below 0, whereas most of
the normal samples were above 0. This difference alone
was almost enough to fully separate the 2 classes. The
SM samples, on the other side, were in between and
overlapped the 2 other groups. Spectra from NIR
instrument 1 gave a similar result, but with slightly
more overlap between normal and WB.

Soglia et al. (2016) measured water mobility by the
use of NMR and reported that there is a significantly
higher share of loosely bound water inWBmuscle than
in the normal ones, probably due tomuscle fiber degen-
eration. The same was found by Wold et al. (2019).
Figure 4A shows the mean T2 relaxation distribution
curves for the 30 randomly picked samples from each
of the groups normal, SM, and WB. The curves consist
of 2 major components, which are characteristic for

Figure 2. Typical NIR spectra from normal (blue), SM (red), andWB
(green) chicken fillets. NIR= near infrared; SM= spaghetti meat; WB=
wooden breast.
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meat. The peak between 0.02 and 0.1 s indicates the
share of water bound in myofibrils, and the smaller peak
in the region 0.18 to 0.50 s indicates share of more
loosely bound water (Bertram et al, 2002). The curves
clearly illustrate that there was a much larger share of
loosely boundwaterwith highermobility inWBmuscle.
Furthermore, SMmuscle tended to containmore loosely
bound water, but not as much as WB. To show the dis-
tribution among the 30 samples from each group, the
loosely bound water indexes are plotted in Figure 4B.
AllWB samples had high indexes, whereas normal sam-
ples had low values. The SM samples varied from nor-
mal values to quite high, which supports findings by

Baldi et al. (2018) that SM has a higher proportion of
loosely bound water in the superficial section. The pat-
tern in Figure 4B can, to a large extent, explain the shift
variation in the NIR spectra (Figure 3A).

Based on an existing NIR calibration for protein in
chicken breast meat, we estimated the protein in all 270
samples based onNIR instrument 2. Figure 3B shows the
distribution of protein values in the 3 groups. Normal
muscle had estimated protein concentrations above
22%, and most of the WB fillets were below 22%,
whereas the SM samples were again distributed between
the normal andWBpopulation. It is well known thatWB
has lower total protein content compared with normal

Figure 3. Left plot: PC1 score values for samples of normal (blue), SM (red), and WB (green) fillets. Right plot: Estimated protein content in the same
samples as in panel A. PC1= first principal component; SM= spaghetti meat; WB=wooden breast.

Figure 4. Left plot: Mean normlised NMR T2 relaxation curves for the groups normal (blue), SM (red), and WB (green). Right plot: Loosely bound
water index for samples of normal (blue), SM (red), and WB (green) chicken breasts. NMR= nuclear magnetic resonance; SM= spaghetti meat; T2= trans-
verse relaxation time; WB=wooden breast.
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muscle, and it is also reported that SM fillets have signifi-
cantly lower protein content in the superficial regions
(Baldi et al., 2018). Protein estimates from NIR instru-
ment 1 followed the same trend.

The industrial NIR instrument 1 is imaging, which
means that it is possible to apply an NIR calibration for
protein at the pixel level. Figure 1B–1D illustrates the
distribution of protein content in 1 normal and 2 WB
fillets (1 moderate and 1 severe). The normal fillet
had an overall high protein level, while the 2 others
had lower levels. For the 2 WB fillets, there was also
a tendency to have slightly less protein in the rostral
region, which is the location where the WB myopathy
usually develops first and is most pronounced. The
images illustrate the heterogeneity in chicken breasts
and underlines the importance of thoughtful sampling.

Discriminant analysis

In this section, we compare the ability of the 2 NIR
systems to discriminate between the 3 classes of
chicken fillets. Based on the results given earlier, it
is clear that NIRS contains information about
differences in both protein and water binding and

should therefore be a promising method for rapid qual-
ity classification. Tables 1–2 summarize the results that
show how well different quality classes can be sepa-
rated from each other and how well WB and SM
together can be distinguished from normal fillets.
NIR instrument 2 performed slightly better than the
on-line NIR instrument 1, with overall higher rates
of correct classifications. None of the cases were
100% correctly classified, which is reasonable because
the myopathies vary in severity and because there will
always be a gradual gradient from normal to affected
muscle. WB was well separated from normal as
reported by others (Wold et al., 2017; Wold et al.,
2019). The SM samples were to a higher degree clas-
sified either as WB or normal. Severe SM could typ-
ically be classified as WB, and moderate SM
classified as normal. This harmonizes with the afore-
mentioned results, which suggest that the SM sample
group overlapped both the normal and WB groups in
terms of protein content and degree of loosely bound
water. In addition, we observed symptoms of both
WB and SM on several fillets. These fillets were in
a grey zone between the 2 classes and illustrate that
the classes were indeed not distinct but were also

Table 1. Classification results based on on-line NIR instrument 1

Predict Normal Predict WB Predict Normal Predict SM

True Normal 83 9 True Normal 73 23

True WB 7 81 True SM 17 67

91.1% correct 77.8% correct

Predict SM Predict WB Predict Normal Predict SMþWB

True SM 73 24 True Normal 78 36

True WB 17 66 True SMþWB 12 144

77.2% correct 82.2% correct

“Predict” indicates predicted class. “True” indicates the true class. % correct classified samples is given for each case.

NIR= near infrared; SM= spaghetti meat; WB=wooden breast.

Table 2. Classification results based on NIR instrument 2

Predict Normal Predict WB Predict Normal Predict SM

TrueNormal 87 3 TrueNormal 76 12

TrueWB 3 87 TrueSM 14 78

96.6% correct 85.5% correct

Predict SM Predict WB Predict Normal Predict SMþWB

TrueSM 70 20 TrueNormal 80 23

TrueWB 20 70 TrueSMþWB 10 157

77.8% correct 87.8% correct

“Predict” indicates predicted class. “True” indicates the true class. % correct classified samples is given for each case.

NIR= near infrared; SM= spaghetti meat; WB=wooden breast.
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overlapping when judged by a trained veterinarian.
The occurrence of WS did not much affect the NIR
spectra in this study and most likely did not affect
the classification results. WS is limited mainly to
the surface of the fillets, while the NIR systems in this
study measured in depth.

Better performance by NIR instrument 2 can be
explained by the following factors.

1. Samples measured by NIR instrument 2 held a sta-
ble temperature of 4°C, whereas samples in the
process measured by NIR instrument 1 varied in
temperature from 2°C to 6°C. Temperature varia-
tions induce a shift in the water absorption peak,
which might disturb classifications.

2. NIR instrument 2 measured on a limited part of
the fillet but measured deeper into the samples
and obtained signals with higher signal-to-noise
ratio, which might be of importance to separate
subtle differences in the sample groups.

NIR spectra with instrument 2 were recorded about
18 h after those of NIR instrument 1. With time post
mortem, the hardness of the WB condition is known
to decrease, and fillets might lose moisture via drip loss
(to a higher degree inWB and SM fillets). These poten-
tial changes would most likely reduce the differences
between the normal and the myopathy groups, making
it more difficult to separate themwith NIR. Satisfactory
results were still obtained.

Conclusions

It is possible to use on-line NIRS to detect the
myopathy WB in chicken fillets with good accuracy.
SM was slightly more difficult to separate from both
normal and WB because properties measured by
NIRS were overlapping between the 3 quality groups.
Two quite similar NIRS instruments performed differ-
ently, which emphasizes the importance of optimizing
instrumentation, sampling, and process (e.g., tempera-
ture stability) for optimal performance of applications.
Depending on the purpose of a potential industrial use
of this method (sorting or registration), decision limits
can be adjusted for optimal use.
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