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A B S T R A C T

Most Atlantic salmon production takes place in large sea cages where there are limited opportunities to record
growth on individual fish. This limits management capabilities for monitoring mean weight and thus total
biomass, pellet sizes, feed volumes and the estimation of time until harvest. Furthermore, cause and effect of
perturbations and arrested growth cannot be established or interceded on and genetic selection is limited to
stocking and harvest measurements. The fusion of passive integrated transponder (PIT) identification and diode
frames offers the possibility to noninvasively monitor the growth on thousands of individual fish. However, the
accuracy of diode frame measurements for population- and individual level growth and biomass estimation has
not been assessed. We stocked over 5000 individually PIT tagged Atlantic salmon post smolts in a net-cage in the
sea and monitored growth using a diode frame and PIT tag reader. At the end of the growth period all fish were
measured for body length and weight using the intensive gold standard methods of manual recording. At the
population level diode frames were highly accurate with a mean difference of 0.002% for length and 4% for
weight. Individual level length and weight records were repeatable 0.34 and 0.35, respectively. A single mea-
surement at individual level from diode frames were moderately concordant with the gold standard measures
(concordance correlation coefficient (CCC) of 0.52 for length and 0.57 for weight). By exploiting the repeat-
ability and high throughput of diode frame measurements it was possible to increase the number of records per
fish to a maximum of 5 resulting in CCC of up to 0.88 for length and 0.81 for weight. Diode frame measurements
may hold promise for continuous growth measurements at sea needed in genetic evaluations.

1. Introduction

The Atlantic salmon (Salmo salar) aquaculture industry has under-
gone significant intensification and expansion since its inception in the
1970s, reaching a current global production of 2248 thousand tonnes in
2016 (FAO, 2018). Most Atlantic salmon production in countries like
Norway, Scotland, Chile and Canada takes place in sea net-cages. In
recent years, the production trends have seen increasing net-cage sizes
and capacities reaching (60,000–130,000 m3) and up to 200,000 fish
per cage (Føre et al., 2018a, 2018b). In Norway, expanding operations
is strictly regulated to a limited number of licenses, a maximum allowed
standing biomass per licence (780 tonnes) as well as a maximum bio-
mass density (25 kg/m3) per cage. Therefore, increasing profitability
and sustainability requires improving the production efficiency of the

existing farms. Research into individualised fish response to manage-
ment interventions, feed intake, growth and causes for arrested growth
as well as genetic improvement have gained interest (Føre et al., 2018a,
2018b). However, direct human observation of fish under these con-
ditions is insufficient for decision support and on-line monitoring of
physiological, behavioural and welfare of individual fish (Føre et al.,
2018a, 2018b). A continuous on-line and non-invasive method of re-
cording response variables of individual fish in situ could overcome the
limitations of direct human observation and measurement.

One of the most economically important sources of information for
daily management of Atlantic salmon in sea cages is accurate and
precise biomass and body size distribution of fish (Lines et al., 2001).
This information allows adjusting feeding amounts and sizes of pelleted
feed to ensure optimal feed conversion efficiency and save cost through
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prevention of feed losses into the surrounding environment (Saberioon
et al., 2017). Furthermore, accurate body size and biomass density in-
formation allows maintaining total biomass and stocking densities
within legal limits, and provides the potential to detect underlying
causes of arrested growth and monitoring needed to ensure fish welfare.
Lastly, accurate body size information allows planning and prepara-
tions for slaughter and sale (Beddow et al. 1996; Folkedal et al., 2012;
Aunsmo et al., 2013). Traditional methods for biomass estimation re-
quire knowledge of the number and average weight of smolt put into
the sea cage, growth, mortalities, amounts fed and water temperature
(e.g. Nordgarden et al., 2003). The predicted growth curves cannot
account for numerous and variable environmental factors experienced
in sea cages and therefore accuracy decreases, and uncertainty in-
creases during the course of production (Zion, 2012). Periodically
sampling fish and manually measuring length and weight can be used to
update growth curves, however this approach is time consuming, may
stress or damage stock and typically results in biased estimations. For
example, Ross et al., (1998) estimated that hand nett samples have a
difference in accuracy ranging from 1 to 12% between samples and
15–25% between samples and the entire measured population. In other
words, a non-invasive, continuous and high throughput method of ac-
curately recording fish size in sea cages is essential for improving the
economic and welfare management needed for more sustainable
Atlantic salmon production at the grow-out farms.

Another method for improving production efficiency is genetic se-
lection as genetic gain is both cumulative and permanent (Falconer and
Mackay, 1996). Genetic selection for growth has been largely successful
in Atlantic salmon with a 200% cumulative gain in harvest weight re-
ported over 10 generations (Janssen et al., 2017). However, selection
information is typically limited to body size measured at entry into sea
cages and at harvest (Janssen et al., 2017). Increased frequency of re-
cording of body size of fish throughout their time in sea cages offers the
possibility to increase the rate of genetic gain by increasing the accu-
racy of selection through repeated measurements (Rutten et al., 2005).
In addition, it also gives the possibility to infer and select for health
status based on observed growth rates through the use of multi-trait
mixture models (Lillehammer et al., 2013). However, a perquisite of
genetic improvement is the ability to distinguish or identify the in-
dividuals which are being measured.

Technological advances have led to two categories of systems which
can continuously and non-invasively record morphological features of
fish underwater (such as length and width) from which their body
weight can be predicted. The first is computer vision based approaches
such as stereoscopic cameras, acoustic cameras and LiDar, which have
generated considerable research interest in recent years (Saberioon
et al., 2017). Of these, stereoscopic cameras which consist of two ad-
jacent cameras and trigonometric functions to estimate linear mea-
surements, have been tested in Atlantic salmon (Beddow et al., 1996)
and Atlantic bluefin tuna (Shieh and Petrell, 1998; Puig-Pons et al.,
2019) in sea cages. The biggest challenges faced by computer vision
technologies are the highly spatial and temporal variations in the
rearing environment (lighting, salinity, visibility etc.) and the fish
under measurement (distances, motion, orientation and density) which
has limited development in commercial applications. The second ca-
tegory is diode frames, in which a frame consisting of a double rec-
tangular planer matrix of infrared light beams, is suspended within the
water column (Folkedal et al., 2012; Gudjonsson and Gudmundson,
1994). As fish swim through the frame and obstruct the infrared light
curtain, infrared sensors map the shadow and velocity of the fish
through the frame and can reconstruct a 3D representation (Ruff et al.,
1995). A disadvantage of diode frame is that the weight is predicted
from empirical body measurements such as length, but the prediction
model is not publicly available and out of the user’s control. In addition,
representativeness of the samples can be called into question as some
fish are reluctant to swim through the frame and Atlantic salmon dis-
play size dependent swimming depths which are not captured if the

frame is maintained at a fixed depth (Folkedal et al., 2012; Zion, 2012).
Problems associated with sample representativeness and frame location
can in principle be overcome with individual identification of fish
which pass through the frame. Passive integrated transponders (PIT)
tags are routinely used to identify individual fish in experimental trials
or breeding programmes. Sensor fusion of PIT tags and diode frames
thus offers the possibility to continuously record the size of individual
Atlantic salmon in sea cages.

As the repeatability and individual level accuracy are relevant for
breeding purposes and the population level accuracy is relevant for
rearing purposes, the objectives of this study are as follows: To evaluate
the repeatability of continuous measurements of length and weight in
Atlantic salmon in sea net-cages. Secondly, assess the population level
accuracy (mean difference between diode and manual recording in
percent of the mean of the manual measurement in percentage) and
variability of diode frame measurements of body length and weight
against manual recordings. Lastly, assess the individual level accuracy
(difference between diode and manual recording in percent of the
manual measurement) and concordance of diode frames and PIT tag
reader fusion for body length and weight against manual recordings.

2. Materials and methods

2.1. Design and fish

In April 2018 approximately 5500 Atlantic salmon individually
tagged with passive integrated transponders (PIT-tags) (HPT12 12 mm,
Biomark Ltd, Boise, USA, www.biomark.com) were smoltified at
MOWI’s Øyerhamn facilities (60.1°N, 0059°E) (MOWI ASA, Øyerhamn,
Norway). Upon reaching a weight of 157.9 ± 40.2 (mean ± SD)
grams the fish were transported and transferred to a sea cage
(12 × 12 × 12 m Dimensions) at Austevoll Research Station (60°N,
0053°E) of the Institute of Marine Research on 03 May 2018. On 25
May 2018, 400 (7%) Ballan wrasse Labrus bergylta were added to the
cage to keep salmon lice at low levels.

The fish were fed a commercial feed from Skretting AS; during the
first weeks Spirit Supreme Plus was used (approximately 45% protein
25% fat, 23 MJ/kg) and with a gradual increasing fat and decreasing
protein content over time, while during the last weeks Premium was
used (approximately 34% protein, 37% fat and 26 MJ/kg). Monitoring
of salmon lice and amoebic gill disease (AGD) was done based on a
weekly random sample of 20 fish.

2.2. Continuous growth measurement and individual identification

After an initial acclimation period of two weeks, a diode frame
(Biomass Daily, Vaki AS, Iceland, www.vaki.is)
(0.6 m × 0.6 m × 0.2 m) with a Biomark 24 V Antenna (Biomark Inc.,
Boise, USA, https://www.biomark.com/) was installed in the sea cage.
The frame was positioned in the mid-radial horizontal plane, approxi-
mately 0.5 m from the net wall and periodically repositioned within the
cage to best capture recording on the fish. At each repositioning, depth
and water temperature was recorded and ranged between 2.5–7 m and
8–17 °C during the trial. As individual fish swim through the frame a
time stamped registration is made on it’s body length and weight in the
Biomass Daily software (Pentair Aquatic Ecosystems, Pentair ASA,
Iceland, https://pentairaes.com/) and the time stamped PIT tag iden-
tification numbers is registered by the Biomark PIT tag reader (Biomark
Inc., Boise, USA, https://www.biomark.com/). Data streams were
monitored weekly and interruptions due to hardware and software
failures, as well as hardware cleaning and maintenance and manage-
ment interventions for monitor lice count, amoebic gill-score and ‘true’
manual recording of reference data (PIT tag, body length and weight)
for small samples of the fish were recorded. The measurement period
was conducted from (14th May 2018 until 15th October 2018) at which
point the fish had reached a mean weight of approximately 2 kgs.

G.F. Difford, et al. Computers and Electronics in Agriculture 173 (2020) 105411

2

https://www.biomark.com/
https://pentairaes.com/
https://www.biomark.com/


2.3. Manual recording of growth individual identification and meta data

Weekly samples of approximately 20 fish were captured and iden-
tified using the PIT tag reader and used to count lice, gill score for
amoebic gill disease and estimate tag loss for unreadable fish. Dead fish
were captured in a sample box over the entire 130-day period and re-
corded for length, weight, sex and where possible cause of death such as
mechanical damage, bacterial infection, emaciation etc. Dead fish in-
formation was used to adjust total numbers and biomass estimation for
daily management purposes.

A sample of 21 and 100 fish were drawn on day 20 (4 June) and 107
(30 August), respectively, and manually recorded for their PIT tag,
length and weight before being returned to the cage. All remaining
5133 Atlantic salmon were anesthetised and identified by PIT tag, then
manually recorded for weight and length as the ‘gold standard’ true
value reference data for comparisons with diode frame data over three
days 154–156 (16th −18th October).

2.4. Statistical analysis

2.4.1. Time series fusion and data editing
The optocoupler linking the PIT tag reader time series with the

diode frame failed at the start of the trial. In order to account for the
fixed and variable time shifts inherent in digital clock time stamping
between two or more sensors (Ridoux and Veitch, 2007) we made use of
the sensor time series alignment algorithm of Difford et al. (2016)
(Supplementary material). The PIT tag reader read 723,986 fish iden-
tification numbers and the diode frame read 312,440 fish over the
153 day period. The numerical discrepancy is likely due to an internal
filtering algorithm in the diode frame which deletes all observations
where the entering velocity differs from the exit velocity of fish
(Haugholt et al., 2016) or possibly multiple PIT tag readings as the fish
transitions through the frame.

A near fixed time shift of 2 hr and 4.7 s was detected and validated
against the time when the frame was recorded as having been removed
from the sea cage for cleaning (see Supplementary Fig. 1). Time aligned
continuous length and weight measurements were merged with PIT tag
identification numbers, as the tolerance for the sensor time alignment
was 2 s, observations within 2 s of each other were removed leading to
35,350 matched merged observations on 4980 fish with high certainty
(see Table 1 for sources of data attrition).

2.4.2. Repeatability of continuous length and weight measurements
Continuous growth measures weight and length were analysed

using linear mixed models (Eq. (1)) by means of the HPMIXED proce-
dure in SAS (ver. 9.4; SAS Institute Inc., Cary, NC). A Kenward–Roger
correction was utilised for computing the correct denominator degrees
of freedom of fixed effects in the presence of repeated measures
(Kenward and Roger, 1997).

= + + +y µ Day a eijk i j ijk1 (1)

where yijk is the trait of interest (length), μ is the intercept, β1 is the a
fixed regression coefficient on the ith Day of recording (i = 42 levels), aj

is the random effect of the jth animal ~ ND (0,I σ2
a) where I is the

identity matric and σ2
a the random variation due to animal and eijk is the

random residual term ~ ND (0,Iσ2
e). For weight the same models as (1)

was run with the inclusion of also a fixed regression (β2) on the
quadratic term for Day. Marginal and conditional coefficient of de-
termination (R2) terms were computed for both models following
(Nakagawa and Schielzeth, 2013). Repeatability of measurement was
calculated as Eq. (2) below:

=
+

Repeatability (t) a

a e

2

2 2 (2)

2.4.3. Population level and individual level comparisons
Weight and length records corresponding to the 24 hr period prior

to manual recording on days 20, 107 and 153 were extracted and po-
pulation level means, variances and descriptive statistics computed for
both diode frame and manual recording data (see Table 2). Significance
tests were conducted by means of Welch two sample t-test for unequal
variances.

One full week of records immediately prior to the final manual re-
cording at day 153 of the trial (16 October) event was selected for in-
dividual level analysis. Data on individual fish measurements was di-
vided into classes based on increasing number of diode frame records
per fish and means calculated per individual. Concordance analysis was
conducted across datasets to evaluate the accuracy, variability, corre-
lation between diode frame measurements and manual recording for
the entire population.

3. Results and discussion

3.1. Sources of error and attrition

The sources of error and attrition can be found in Table 1 and can
largely be summarised into three areas: instrument malfunction, mor-
talities or tagging error and data filtering. The PIT tag reader and diode
frame cumulatively malfunctioned approximately 26% of the time
during the trial period. A case study by the diode frame manufacturer
reported malfunction between 8% and 36% of the time (Riveros, 2016).
Based on the 23 weekly samples of fish drawn during the trial, it is
estimated approximately 7% of the fish were either miss tagged, the tag
was lost or unreadable. A total of 316 dead fish were recovered during
the trial resulting in a mortality rate of 6%. Cumulative mortalities of
6.5–9.0% have been reported by previous studies testing diode frames
in Atlantic salmon sea cages (Føre et al., 2016). The PIT tag reader
regularly resulted in spurious duplicate readings per fish which were
removed, these could be due to a fish remaining in close proximity to
the antenna or multiple registrations as the fish passes through the
energised antenna field, as is often reported with RFID readers (Mahdin
and Abawajy, 2011). The diode frame has an internal data filtering
algorithm which removes readings where fish enter and exit the frame
at different velocities. We estimate this to account for 33.1% of readings
based on the difference between diode frame records and PIT tag re-
cords corrected for duplicates and tag loss. The failure of the opto-
coupler to merge the two different time series necessitated the need for
a time alignment algorithm. As the tolerance for this merger was set at
2 s we needed to filter out consecutive observations falling within
a ± 2 s sliding window, to ensure that only high confidence match
merged identification numbers and records were retained and this re-
sulted in a 61.2% loss of observations. The inability to mark and vi-
sually distinguish the passing of individual fish through the frame limits
our ability to validate our time alignment algorithm, however we have
previously validated this algorithm in livestock where visual validation
is feasible (Difford et al., 2016). Furthermore we stocked 3.2 fish per m3

within the range reported in literature (3–7 fish / m3) (Folkedal et al.,
2012; Føre et al., 2016; Føre et al., 2018a, 2018b), however higher

Table 1
Sources of error and data attrition during recording.

Source Unit Total Units Unit lost Lost,%

Frame malfunction Days 153 38 24.8
Tag reader malfunction Days 153 2 1.3
Tag loss or unreadable Percentage 100 7.0 7.0
Mortalities Individuals 5287 316 6.0
Spurious tag duplicates Observations 760,500 323,462 57.5
Time series fusion Observations 437,038 270,406 61.2
Frame algorithm Observations 467,630 155,190 33.1
Final Dataset Observations 723,986 688,636 95.4
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Table 2
Repeatability animal model parameters estimates for identification matched length and weight from diode frames.

Trait Units Int β1 β2 σ2
a σ2

e t R2m (%) R2con (%)

Length mm 20.0 ± 0.05 0.215 ± 0.0004 NA 4.35 8.47 0.34 92.4 93.6
Weight grams 215 ± 7.0 −2.12 ± 0.19 0.093 ± 0.001 23,704 43,367 0.35 91.1 92.5

Int = intercept, β1 = fixed regression coefficient on days, β1 = fixed regression coefficient on days squared, σ2
a = variance explained by individual fish,

σ2
e = residual error variance, t = repeatability, R2m = R2 coefficient after accounting for the fixed effects, R2con = R2 coefficient after accounting for both the fixed

and random effects (see Nakagawa and Schielzeth, 2013).

Fig. 1. Diode frame measurements of total body length in cm against day of measurement after match merging.

Fig. 2. Diode frame measurements of body weight in grams (g) against day of measurement after match merging.
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densities of fish per m3 in the pen will likely increases traffic through
the diode frame and PIT tag reader and could further losses in ob-
servations. Despite these sources of error and attrition, a considerable
amount of identification matched records remained for further analysis,
with a total of 35,350 observations on 4980 uniquely identified fish
remained over the experimental period (see Figs. 1 & 2).

3.2. Repeatability of measurements

Length and weight measurements were both significantly repeatable
over 153 days at sea 0.34 and 0.35, respectively (Table 2). To the best
of our knowledge these are the first reported repeatability estimates for
Atlantic salmon at sea, which makes acquiring estimates from literature
challenging and highlights the difficulties in recording repeated mea-
surements under this environment. Repeatability estimates have been
estimated for body weights in farmed Nile tilapia (Oreochromis niloticus)
ranging from 0.1 to 0.8 in two separate random regression studies
(Rutten et al., 2005; Turra et al., 2012). Similarly for repeatability
animal models in farmed rainbow trout (Oncorhynchus mykiss) found
repeatability of body weights ranging from 0.49 to 0.96 and of body
lengths ranging from 0.28 to 0.49 (Hu et al., 2013; Kause et al., 2006).
A study estimating repeatability in a natural population of brook trout
(Salvelinus fontinalis) found length to have a repeatability of 0.29
(Letcher et al., 2011). Gjerde et al., (1994) recorded body weight re-
peatedly for Atlantic salmon at sea cages over 4 to 27 months at sea.
Although they did not estimate repeatability, they did find phenotypic
correlations deviating from unity in the range of 0.47–0.95. This would
suggest that the repeatability estimates herein are within range of lit-
erature, albeit on the lower end of the spectrum of results reported for
other species.

The lower repeatability estimate reported herein may be caused by
high variability of the measured body length and predicted body weight
between measurements close in time due to variation in the orientation
and angle at which fish swim through the frame. In which case the
residual error or imprecision of measurement is relatively larger for
diode frame measurements, and thus results in reduced repeatability
estimates (i.e. increased σ2

e). Conversely increasing the number of re-
plicate measurements (n) per individual and computing means reduces
imprecision as a function of 1 + t(n − 1)/n (Falconer and Mackay,
1996; Kause et al., 2006). For example, solving this equation to achieve
repeatability of 0.50 would require 6 repeated weight records and 9
length records per individual.

3.3. Evaluation of population level accuracy

The population level comparison between diode frame and the gold
standard manual recording is presented in Table 3. In general, few
studies have evaluated the accuracy of diode frames against the gold
standard manual recording. Folkedal et al. (2012) evaluated size stra-
tification over different depths in Atlantic salmon in sea cages using
diode frames and compared measurements of weight (n = 19 fish) to
the diode frame estimates for the whole cage and found a non-sig-
nificant −1.9 ± 9.4% difference in their mean weight. We found
significant differences between the diode frame and manual recordings
at 20 days into the trial, at 18% for length and 33.2% for weight. Al-
though this was a marginally small sample size n = 20 and likely re-
flects stochastic sampling bias instead of inaccuracy of the diode frame
(Ross et al., 1998). Føre et al. (2016) recommended increasing sample
sizes to 134–170 per sample, but the accuracy of the diode frame was
not the focus of their research and was not reported. When we increased
the sample size to 100 fish at 107 days into the trial, the percentage
differences in mean length 1.4% and weight 1.7% were greatly reduced
and not statistically significant. However, percentage differences in
means between methods cannot be regarded as true differences in ac-
curacy, this is because the numerically smaller sample sizes used for the
gold standard manual recording may result in sampling bias.

At 153 days into the trial, we sampled all 5133 fish for manual
recording and 1904 (37.1%) of these had passed through the diode
frame 24 h before, which allowed us to determine the difference in
accuracy between the two methods. For length, the differences in ab-
solute accuracy was less 0.002% and for weight, it was 4%, in both
cases not statistically significant. These findings agree with a case study
on the manufacturers website which found the differences in accuracy
for weight on Atlantic salmon measured in a processing plant after
being cultured in sea cages with diode frames, which reported
−2.38–1.32% difference in mean in weight (Riveros, 2016). The ac-
curacy of length from this study using diode frames (0.002%) is sub-
stantially better than those reported for fish length (2%) in Pacific
bluefin tuna using a submersible dual camera system (Costa et al.,
2006) and comparable to a stereo vision system (0.02–0.03%)
(Torisawa et al., 2011). The absolute accuracy for weight (4%) was
comparable to weight estimated from image analysis (3%) (Odone
et al., 2001) and a stereo vision on Gilthead seabream in nursery tanks
(4%) and sea cages (5%) (Martinez-De Dios et al., 2003). These results
demonstrate that the diode frame is highly accurate for length mea-
surements and moderately accurate for weight estimation at the po-
pulation level. The lower accuracy for body weight is as expected as
body weights are predicted from different body size measurement (e.g.
length, width, height) of the fish.

3.4. Individual level accuracy

The individual level comparison between diode frame measure-
ments and gold standard manual recording at day 153 into the trial is
presented in Table 4. Visual examples of individual level length and
weight for three fish using diode frames is presented in Figs. 3 and 4,
respectively. For length and weight, there were 1904 fish with at least
one diode frame recording within the week prior to manual recording.
This comparison differs from that of Table 3, as the samples sizes are
standardised across measurement methods in Table 4, i.e. the gold
standard measurements are limited to fish with matched measurements
using the diode frame (n = 1904). The difference in accuracies was
0.54% for length and 4.5% for weight, both not statistically sig-
nificantly different from zero (P > 0.05). Furthermore, both length
and weight from the manual and diode recording were moderately
correlated with r = 0.53 and r = 0.58, respectively. As Pearson’s
correlation coefficient cannot show differences in means (accuracy) or
variances (precision), we made use of Lin’s concordance correlation
coefficient (CCC) to assess overall agreement (Barnhart et al., 2007).
Lin’s CCC combines all three sources of information and penalises the
correlation between two methods if there are differences in means
(accuracy) and variances (precision) (Lin, 1989). Concordance of length
was moderate (CCC = 0.52) and weight was marginally less concordant

Table 3
Population level comparison between diode frame and manual body length and
weight measurements for multiple samplings.

Diode Frame Manual recording

Days N fish Mean CV (%) N fish Mean CV (%) Difference in
Means* (%)

Length (cm)
20 2954 21.3a 8.4 21 26b 15.9 18.1
107 632 42.8a 10 100 42.2a 7.4 1.4
153 1530 50.6a 7.7 5133 50.5a 7.8 0.002*

Weight (g)
20 2954 131a 23.3 21 196.2b 37.6 33.2
107 632 1028a 27.5 100 1010.5a 26.2 1.7
153 1904 1885a 22.0 5133 1811.0a 22.6 4.0*

N = number of fish, CV = coefficient of variance, Estimates with different
superscripts a,b differ at p < 0.05, * Indicates percentage difference in means
between methods.
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(CCC = 0.47) than length. This indicates the diode frame measure-
ments are in closer agreement with the ‘true’ value for weight and
length of the population than the ‘true’ weight and length of individual
fish.

However, both length and weight measurements from diode frames
are repeatable (Table 2) and this indicates that the precision can be
increased through increasing the number of records per fish (i.e. re-
ducing σ2

e). For length, taking the average incrementally from in-
dividual fish with increasing numbers of diode frame records from 1 to
5 during the week prior to the manual recording, the correlation im-
proved substantially (r = 0.53–0.90) and whilst the differences in ac-
curacy remained stable (0.05–1.21%) and not significantly different
(P > 0.05) between methods. As a result, the overall agreement be-
tween the diode frame and manual recordings increased considerably
from CCC = 0.52 to 0.88 for body length and from CCC = 0.57 to 0.81
for body weight.

Considering that the length and weight records were obtained over

a 7 day measurement period with the diode frame and that the ‘true
value’ of the fish is changing with time (growth, tail biting, eating etc.)
and that manual recording is not free of error (Gutreuter and Krzoska,
1994), CCC is unlikely to reach 1. In a study evaluating camera mea-
surements paired with lasers, reported CCC were in the range of
0.945–0.950 (Rizzo et al., 2017).

For weight, taking the average from individual fish with increasing
numbers of records from 1 to 5, the correlation similarly improved
(r = 0.58–0.84), however the in-accuracy showed a statistically non-
significant tendency to decrease (i.e. the percentage difference in means
increased) from 4.5% to 7.5%. As a result, the concordance was lower
(0.57–0.81) than the correlation. The diode frame predicts weight
based on a linear combination of empirical body measurements gen-
erated by the frame such as length, but the prediction model and model
fit statistics are not publicly available. However, it is safe to assume that
the model predicts weight with some level of error (Gutreuter and
Krzoska, 1994) and this is most likely larger than the error on the

Table 4
Effect of increasing the number of diode frame records per fish on the comparison with manual body length and weight measurements.

Diode frame Manual recording

Observations per fish N fish Mean CV (%) Mean CV (%) Accuracy (%) r CCC

Length (cm)
1 1904 50.6a 7.8 50.3a 7.8 0.54 0.53 0.52
2 471 50.3a 7.4 50.3a 7.7 0.06 0.69 0.68
3 142 49.6a 7.5 49.6a 8.8 0.05 0.83 0.82
4 54 49.4a 8.1 49.1a 9.1 0.70 0.84 0.83
5 25 48.5a 9.8 47.9a 11.4 1.21 0.90 0.88

Weight (g)
1 1904 1885a 22.0 1803.7a 22.7 4.50 0.58 0.57
2 471 1860a 20.8 1801.5a 22.3 3.25 0.70 0.69
3 142 1786a 20.6 1748.8a 23.9 2.12 0.78 0.77
4 54 1751a 22.4 1666.1a 23.8 5.10 0.78 0.76
5 25 1663a 25.9 1550.2a 27.0 7.30 0.84 0.81

N = number of fish, CV = coefficient of variation, Accuracy = percentage differences in means, r = Pearson’s correlation coefficient, CCC = Lin’s concordance
correlation coefficient.

Fig. 3. Diode frame measurements of length in cm against day of measurement (circle) for three example fish and gold standard manual recording at end of trial
(star).
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measured length. This is also likely the cause of a lower CCC for weight
than for length as the number of records per fish increases.

These findings would suggest that higher concordance at the in-
dividual level could be achievable with diode frames for both weight
and length, given a better prediction model for weight. However, it is
important to note that no fish had more than 5 repeated measurements
in the week prior to the manual recordings, so the maximum increase in
concordance between the two measurement methods was not reached.
Furthermore, a substantial amount of data was, by necessity, removed
to ensure only high certainty matched merged fish identification with
measurements were retained. Future studies maybe able to achieve
greater individual level concordance if these sources of error are cir-
cumvented.

3.5. Towards precision fish farming

The core idea of precision fish farming is that measurements of in-
dividual fish are suitably accurate to inform quick management deci-
sions to correct arrested growth and improve overall fish welfare (Føre
et al., 2018a, 2018b). On the population level the accuracies reported
herein for diode frame measurements of weight are suitably accurate
for informing biomass based decisions such as harvesting to reduce
total allowed biomass on a location or distribution of the biomass on
more cages to reduce allowed stocking densities. Furthermore, it is
feasible to use diode frame measurements to detect arrested growth on
the population as well as full sib family level, growth deviations from
runts (Lillehammer et al., 2013) and possibly diseases like pancreas
disease (Føre et al., 2016). With the current experimental study em-
ploying repeated measurements per fish over a week of recording, it is
feasible that arrested growth is detected on individual level but the lag
in time required for recording individual growth with suitable accuracy
would reduce management response time to sources of arrested growth.

The level of individual accuracy, strong positive correlation and
high concordance of diode frame readings paired with PIT tag readers
maybe uniquely suited to some precision fish farming applications. For
instance, genetic evaluations require methods with suitably high
throughput to record thousands of related individuals under the

commercial conditions they are expected to perform. Furthermore,
genetic evaluations are interested in the accuracy of the estimated
breeding values which represent random solutions due to additive ge-
netic variation of the actual measured traits. As a result, the accuracy of
estimated breeding values increases when more relatives are recorded
and when more individuals are repeatedly measured. However, diode
frames measurements need to be significantly heritable, whilst repeat-
ability is the upper threshold for heritability estimates (Falconer and
Mackay, 1996). Heritability of diode frame measurements of e.g. body
length and weight of any fish species has yet to be established.

4. Conclusion

In conclusion, diode frames can measure population level body
length and weight of Atlantic salmon in sea cages with high accuracy.
Furthermore, diode frame measurements on an individual fish level
were repeatable and moderately concordant. By increasing the number
of records per individual fish, the precision of measurement is increased
resulting in strong positive correlations and high concordance. Diode
frames measurements may hold promise for continuous growth mea-
surements needed in genetic evaluations.
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