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1  | INTRODUC TION

As the freshwater species with the northernmost distribution in 
the world, the Arctic charr (Salvelinus alpinus) experiences large 
variations in day length throughout the year. Photoperiod regime is 
known to affect production characteristics in the species, but the 
relationship and interaction between photoperiod, temperature and 

endogenous rhythms and their effects on growth, feeding and the 
timing of maturation are complex (Frantzen, Arnesen, Damsgård, 
Tveiten, & Johnsen, 2004; Imsland & Gunnarsson, 2011; Liu & 
Duston, 2018, 2019). There is a general agreement that an increase 
in day length has a positive effect on appetite and growth in the spe-
cies (Johnston, 2002; Tveiten, Johnsen, & Jobling, 1996). Mortensen 
and Damsgård (1993) demonstrated that the main reason for in-
creased growth in charr during spring was the change from short to 
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Abstract
The short- and long-term effects of altered photoperiods during winter on growth 
and final gonadosomatic index (GSI) were investigated in 178 individually tagged 
2-year-old smolt Arctic charr from an anadromous strain. The fish were reared at am-
bient temperature (2.3–12.5°C) for 18 months and reared at five different photoperi-
ods. One group was reared on constant LD16:8 (light–dark, N = 40) photoperiod and 
a second group on continuous light (LD24:0, N = 32) throughout the experimental 
period. Three groups of fish were moved from LD16:8 to LD24:0 for 44 days and sub-
sequently back to LD16:8, that is early winter light group (Early WL: 17 November–5 
January; N = 35), Mid WL group (5 January–23 February; N = 38) and Late WL group 
(23 February–6 April; N = 33). No differences in growth were found for females, 
whereas males reared at constant LD24:0 were larger (mean ± SEM, 1,780 g ± 180) 
compared with the Late (1,264 g ± 101) and Mid WL (1,413 g ± 120) groups towards 
the end the study. Exposure to continuous light during early winter significantly influ-
enced the GSI in female Arctic charr, whereas no differences were found in the males. 
Female GSI (%) was lowest in the Mid WL group (1.7) and highest in the LD24:0 group 
(7.0). In conclusion, the present study demonstrated that application of brief continu-
ous light treatments during January and February can possibly be used as a tool to 
lower subsequent female maturation in Arctic charr farming.
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long day, rather than just the long day length. Siikavuopio, Sæther, 
Skybakmoen, Uhlig, and Haugland (2009) confirmed those findings 
when Arctic charr, reared under continuous light conditions, were 
exposed to a period of short day length during winter and responded 
with a growth increase resulting in a 25% higher weight gain com-
pared with that of fish reared at continuous light for the whole 
period. The potential effect these photoperiod regimes had on sub-
sequent maturation of the fish was, however, not investigated.

Photoperiod manipulation has been validated as a tool that can be 
used to arrest or delay maturation in rearing of salmonids (Bromage, 
Porter, & Randall, 2001; Peterson & Harmon, 2005; Taranger et al., 
1999). For Atlantic salmon (Salmo salar), continuous light is commonly 
used from December to March as part of the current production re-
gime of Atlantic salmon in Norway to promote growth without trigger-
ing maturation (Imsland et al., 2017; Oppedal, Berg, Olsen, Taranger, & 
Hansen, 2006). Frantzen et al. (2004) investigated the effect of photo-
period manipulation on the timing of sexual maturation and spawning 
of Arctic charr and found that Arctic charr responded in a similar man-
ner to other salmonids. Duston, Astakie, and MacIsaac (2003) found a 
significant increase in the proportion of higher value immature Arctic 
charr by applying a long photoperiod (18L:6D) for 42 days in winter 
followed by a short or natural photoperiod compared with fish reared 
on constant long day or natural photoperiod. In contrast, long-term ex-
posure to continuous or extended light regimes has, in some cases, re-
sulted in reduced growth and food conversion efficiency (Stefánsson, 
FitzGerald, & Cross, 2002), implying that the period of extended or 
continuous light must be harmonized with the internal rhythms of the 
fish in order to achieve optimal results.

The present study was set up to investigate the effect of periodic 
exposure to continuous light at different phases during the winter on 
growth and subsequent maturation in Arctic charr. Fish were reared 
at either constant long day (16 hr of light: 8 hr of darkness, LD16:8, 
continuous light; LD24:0) and transferred for a short time interval 
from LD16:8 to LD24:0 and back to LD16:8 again. The rationale for 
choosing these regimes was based on previous findings on Arctic 
charr (Duston et al., 2003; Imsland & Gunnarsson, 2011) and the 
photoperiod regime in use at the production site. The main aim was 
to determine whether there is a specific time during winter where a 
shift from LD16:8 to continuous light and back may reduce matura-
tion without compromising growth.

2  | MATERIAL S AND METHODS

2.1 | Experimental fish and conditions

The fish used in the experiment were from a multiple generation 
farmed Arctic charr strain, commonly denoted the Hammerfest 
Strain, originating from Lake Storvatn (70°N, 24°E), Northern 
Norway. Juvenile Arctic charr with mean weight (±SEM) 3.5 ± 0.5 g 
were achieved from commercial farmer (Sjøblink Blokken AS) in 
September 2007 and reared at the facilities of Kirkenes Charr, 
Finnmark county, Norway, until the start of the trial in April 2009. The 

juveniles were hatched during early spring 2007 and were 2 years old 
at the start of the trial period in 2009. In February 2009, all fish were 
tagged intraperitoneally with Trovan® Passive Transponder tags. 
The fish (n = 178) were acclimatized for approximately 2 months 
and subsequently reared throughout the experiment in 4 fibreglass 
tanks with a volume of 1,000 L, at ambient temperature (2.3–12.5°C; 
Figure 1) for 18 months. Water was supplied from a freshwater lake 
close to the rearing site at a depth of 30 m. Water flow was set to ap-
prox. 20 L/min and was gradually increased with increasing biomass 
in the tanks, and oxygen levels were always kept above 80% satura-
tion. The fish were fed a commercial dry feed (Skretting) in excess, 
using automatic feeders and additional handfeeding to control appe-
tite. A 36 W fluorescent daylight tube integrated in each tank-cover 
provided light, and the respective photoperiods were maintained 
using electronic timers. The experiment lasted from 21 April 2009 
to 20 October 2010 (18 months).

2.2 | Ethics statement

The experiment described has been approved by the local responsi-
ble laboratory animal science specialist under the surveillance of the 
Norwegian Animal Research Authority (NARA) and registered by the 
Authority and thereby conforming to Directive 2010/63/EU.

2.3 | Experimental design

At the beginning (21 April 2009) of the experiment and on nine 
subsequent occasions (2 June, 10 August, 17 November 2009, 5 
January, 23 February, 6 April, 10 June, 26 August and 20 October 
2010) during the experimental period, all fish were anaesthetized 
(benzocaine, 50 µl/L) and individual weight recorded to the near-
est 0.5 g.

The fish with the initial mean weight of (SEM) 261 (7) were stocked 
in four tanks with two tanks reared at continuous light and two tanks 
reared at a photoperiod of LD16:8. Both groups were, therefore, repli-
cated. Initial density in the rearing tanks was between 8.3 and 10.4 kg/

F I G U R E  1   Mean monthly temperature at the rearing facility 
(Kirkenes Charr) during the trial period (April 2009–October 2010)
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m3. As the experiment progressed, the groups being exposed to con-
tinuous light for a limited period during winter were transferred from 
the LD16:8 tanks to the LD24:0 tanks for the given period and back 
again to their original tank when the exposure period had ended. The 
experimental groups included one group that was held at a constant 
long day (LD16:8, N = 40) photoperiod for the whole period; three 
tagged subgroups from this group were transferred to continuous light 
for a period of approx. 44 days for three consecutive periods during 
winter (Early, Mid and Late WL (winter light)) (N = 35, 38 and 33 for 
Early WL, Mid WL and Late WL, respectively) followed by a long day 
photoperiod until slaughtering (Table 1). In each case, the three trans-
fer groups were moved from the two LD16:8 tanks to the two LD24:0 
tanks so that these three groups were also replicated. The last group 
was held at a continuous light regime, as commonly used in the pro-
duction of Arctic charr, for the whole period (LD24:0, N = 30) in two 
replicate tanks. The fish were slaughtered in a nearby commercial fish 
processing plant in October 2010, the gonad weighed and the sex of 
all individuals determined. The fish were killed with a blow to the head 
followed by a gill cut and exsanguination. The proportion of males and 
females (%) was similar in all groups (58:42–53:47). Final density in the 
rearing tanks varied between 32.3 and 36.5 kg/m3.

Specific growth rate (SGR) was calculated according to the for-
mula of Houde and Schekter (1981):

where g = (lnW2 − lnW1) (t2 − t1)−1 and W2 and W1 are weights (g) at days 
t2 and t1, respectively.

Gonadosomatic index (GSI) was calculated as.

2.4 | Statistical analysis

All statistical analyses were performed using STATISTICA™ 13.0. To 
assess normality of distributions, a Kolmogorov–Smirnov test (Zar, 
1984) was used and homogeneity of variances was tested using 
Levene's F test (Brown & Forsythe, 1974).

Mean individual growth trajectories were analysed using a 
growth curve analysis (GCM) multivariate analysis of variance 
(MANOVA) model (Chambers & Miller, 1995; Timm, 1980). The 
model equation of the GCM had the form:

where Y (n × p) are the growth-at-age vectors.

for each p (age) measurements on n individual fish; X (n × q) is 
the design matrix or the set of extraneous variables measured for 
each individual; that is, q = agep+photoperiod regimei (i = LD8:16, 
LD24:0, Early WL, Mid WL, Late WL + replicatej); B (q × p) is the 
matrix of parameters estimated by the model; E (n × p) is the matrix 
of deviations for each individual from the expected value of Y = XB. 
Separate analyses were done for each sex. As the GCM analyses in-
cluded both fixed (photoperiod group) and random (replicate) fac-
tors, statistical testing was performed using the VEPAC (Variance 
Estimation and Precision) program in STATISTICA™. In this module of 
the programme, the variance components for both the random and 
fixed effects are estimated with a restricted maximum-likelihood es-
timate (REML) procedure (Demidenko, 2004).

Individual size ranking (initial size rank (21.04.09) versus. final size 
rank (20.10.10)) and individual growth rate ranking (initial growth rate 
(21.04.09–03.06.09) versus. final growth rate (26.08.10–20.10.10)) were 
tested using Spearman's rank correlation (rSp) (Zar, 1984). Possible differ-
ences in mean weight and GSI were analysed using a two-way model 
III nested ANOVA, where the replicates were nested within treatments. 
Significant ANOVA’s were followed by a Student–Newman–Keuls (SNK) 
multiple comparison test to identify differences among treatments. A 
significance level (α) of 0.05 was used if not stated otherwise.

3  | RESULTS

3.1 | Growth

For the whole experimental period, the fish reared under the dif-
ferent photoperiod regimes did not differ in their growth patterns 
(MANOVA (TREATMENT), Wilk's Λ7, 28 = 0.50, p > .1). But periodic dif-
ferences were seen in the growth of the males as the individual 
growth trajectories for the males differed from February 2010 on-
wards (MANOVA (TREATMENT), Wilk's Λ4, 16 = 0.75, p < .05), whereas 
no differences were seen in female growth at any time. Significant 
differences were also found in growth-at-age trajectories of male 

SGR= (eg−1)×100.

GSI = (Gonadweight∕Bodyweight)×100.

(1)Y(n×p)=X(n×q)B(q×p)+B(n×p)

(2)y = (y1, y2, … yp)

TA B L E  1   Schematic overview over the experimental groups and treatments

Groups N (♂/♀) Spring–autumn Early winter Mid winter Late winter Spring–autumn

LD16:8 40 (22/18) LD16:8 LD16:8 LD16:8 LD16:8 LD16:8

Early WL 35 (19/16) LD16:8 LD24:0 LD16:8 LD16:8 LD16:8

Mid WL 38 (22/16) LD16:8 LD16:8 LD24:0 LD16:8 LD16:8

Late WL 33 (18/15) LD16:8 LD16:8 LD16:8 LD24:0 LD16:8

LD24:0 32 (17/15) LD24:0 LD24:0 LD24:0 LD24:0 LD24:0

Note: Early winter: 17 November–5 January; Mid winter: 5 January–23 February; Late winter: 23 February–6 April.
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experimental groups (MANOVATREATMENT × AGE, Wilk's Λ3, 12 = 0.77, 
p < .05) from February onwards.

The initial mean weight (SEM) was 261 (7) g and did not differ 
significantly between tanks or groups (two-way nested ANOVA, 
p > .45). The overall final mean weight did not differ significantly 
when data from both sexes were combined and were as follows: 
1.50 kg (LD24:0 group), 1.49 kg (Early WL group), 1.40 kg (Mid WL 
group), 1.32 kg (LD16:8 group) and 1.20 (Late WL group). When an-
alysed for each sex, no differences in mean weights between experi-
mental groups were found for the females (two-way nested ANOVA, 
p > .20; Figure 2b). For the males, the group reared on constant 
LD24:0 was larger (Student–Newman–Keuls (SNK) post hoc test, 
p < .05; Figure 2a) than the Late WL group in August and October 
in the second year of the study. Final weight of the LD24:0 was also 
significantly larger compared with the Mid WL group (SNK post hoc 
test, p < .05).

3.2 | Size and growth ranking

Apart from males in the Mid WL group (rSp = 0.61, p < .01), no signifi-
cant size rank correlation (initial weight vs. final weight) was found 
in any experimental group of either sex (rSp < 0.13, p > .10). Positive 
correlations between initial and final growth rates were not found 
in any experimental group of either sex (rSp < 0.28, p > .09).

3.3 | Final GSI

Exposure to continuous light during early winter significantly influ-
enced the final GSI in female Arctic charr (two-way nested ANOVA, 
p < .05), whereas no differences were found between males. Female 
GSI (%) was lowest (SNK post hoc test, p < .05; Figure 3b) in the Mid 
WL group (1.7) and highest in the LD24:0 group (7.0).

F I G U R E  2   Mean body weight of tagged juvenile Arctic charr 
reared at five different photoperiod treatments. The vertical lines 
show the standard error of mean (SEM). Different letters indicate 
a statistical difference (Student–Newman–Keuls test, p < .05) 
with a as the highest value, ns = not significant. Each data point 
represents combined values for replicate groups. No significant 
differences were found for females
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4  | DISCUSSION

4.1 | Growth and size dispersal

Altered photoperiods affected the growth pattern of male Arctic 
charr, whereas no changes in growth were found for females. 
Growth of Arctic charr is often stimulated following changes in day 
length, and the growth of fish reared under a changing photoperiod 
may be better than in fish kept on constant photoperiod. Mortensen 
and Damsgård (1993) reported that Arctic charr (4–50 g) reared at 
constant short or long days grew equally well but a group of fish 
reared for a period on a short photoperiod followed by long photo-
period showed a significant increase in growth. In a long-term study, 
Siikavuopio et al. (2009) reported a 25%–30% higher growth rate 
of wild Arctic charr held under culture condition and exposed to in-
tervals of short day length in between periods of continuous light 
compared with a group reared at continuous light. Gunnarsson et al. 
(2012) reported that Arctic charr reared using a 6-week short photo-
period between periods of continuous light showed improved long-
term growth compared with fish kept in continuous light. However, 
a change from short days to long days does not necessarily result 
in increased growth, as demonstrated by Bottengård and Jørgensen 
(2008) who found no immediate increase in growth in Arctic charr 
after transfer from short days to continuous light in late winter. This 
is similar to the current findings where a 44-day increase in pho-
toperiod from LD16:8 to continuous light did not lead to improved 
growth in any group. Hence, it might appear as if the growth of 
Arctic charr is less sensitive to acute photostimulation than other 
salmonids (Imsland et al., 2017).

Possible formation of size hierarchies was performed by compar-
ing individual size ranking at the start and termination of the trial. 
It should be noted that no behaviour observation was performed 
during the experimental period, but according to staff at rearing 
facility, aggressive behaviour was rarely seen during the trial. The 
present size ranking data show that, with the exception of one group 
(male Mid WL group), no size rank correlations were seen in any ex-
perimental group of either sex indicating low, or no, formation of size 
hierarchies within the experimental tanks. Such size hierarchies are 
common under culture conditions (Brännäs, 2009; Imsland, Nilsen, 
& Folkvord, 1998; Jobling & Baardvik, 1994; Petursdottir, 2002) and 
can lead to higher growth size heterogeneity with negative effect 
on growth as growth can be suppressed by competition under such 
conditions (Brännäs, 2009; Imsland et al., 1998). For Arctic charr, it is 
possible to reduce aggression leading to formation of size hierarchies 
by applying forced exercise (high current in tanks) (Brännäs, 2009) or 
by avoiding to rear too size similar fish together (Baardvik & Jobling, 
1990; Wallace & Kolbeinshavn, 1988). Under conditions promoting 
hierarchy formation, the largest fish at the beginning is expected 
to get the largest share of the feed, grow the fastest and have the 
highest weight at the end (Brännäs, 2009; Petursdottir, 2002) and 
the fact that almost no stable size ranking was found in the present 
study indicates that dominance hierarchies did not develop within 
the experimental groups. A possible explanation can be related to 

the experimental layout of this study. The experimental fish was 
divided into five experimental groups in four experimental tanks 
where fish were transferred from LD16:8 to LD24:0 for 44 days and 
then back to LD16:8. This frequent transfer of fish between tanks 
may have counteracted formation of stable size and growth rankings 
thereby suppressing the formation of size hierarchies within the ex-
perimental tanks.

The ambient rearing temperature in the trial varied between 
2.3 and 12.5°C. For most of the study period, the growth was uni-
form, whereas the growth of the fish increased in the second sum-
mer of the experimental period when temperature was between 
10 and 12.5°C. Arctic charr will grow at temperatures as low as 
0.3°C (size range 200–300 g, Brännäs & Linnér, 2000; size range 
2–25 g, Borgstrøm, Isdahl, & Svenning, 2015), and the upper limits 
for growth are near 20°C (size range 1–5 g, Lyytikäinen, Koskela, 
& Rissanen, 1997; size range 15–26 g, Thyrel, Berglund, Larsson, & 
Naslund, 1999). Accordingly, the rearing temperatures in this trial are 
well within the temperature tolerance range of the species. Rearing 
temperature was between 2.7 and 3.1°C in the period when fish 
were moved from LD16:8 to LD24:0 so it is unlikely that a possible 
interaction effect between temperature and photoperiod may have 
occurred as all transfer groups experienced very similar tempera-
tures in the photoperiod transfer period. For Atlantic salmon, the 
findings of Døskeland et al. (2016) suggest that the magnitude of the 
effect of continuous light on growth is inversely related with tem-
perature which results in significant interaction between tempera-
ture and photoperiod. Clarke, Shelbourn, and Brett (1978) suggested 
that the rate-controlling effect of temperature might be the reason 
for the short duration of the growth-enhancing effect of long pho-
toperiod at higher temperature in sockeye, Oncorhynchus nerka, and 
coho, O. kisutch, salmon.

4.2 | Final GSI

For salmonids, it is well established that photoperiod can be used to 
either advance or delay the time of maturation (Bromage et al., 2001) 
and photoperiod is also used in commercial fish farming to postpone 
or suppress maturation. Duston et al. (2003) reported lower matura-
tion rate and increased proportion of high-value fish (>1 kg) in Arctic 
charr exposed to long photoperiod (LD18:6) for 42 days during win-
ter followed by a short (LD8:16) or natural photoperiod compared 
with Arctic charr reared under constant long days. Recently, Liu and 
Duston (2019) fed yearling (30 g) Arctic charr at different feeding re-
gimes during fall and winter and exposed each group to three differ-
ent photoperiods (LD24:0, LD18:6 or simulated natural day length, 
LDN) during a 15-week period (October–February). Maturation in 
October the following year was significantly reduced in the LD24:0 
and LD18:6 (<6%, sexes pooled) compared with the LDN group 
(43%, sexes pooled), whereas food deprivation was only effective 
in reducing maturation during winter and it was concluded that a 
long photoperiod during winter from October to February could 
reliably suppress early sexual maturation among age 2 Arctic charr. 
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The findings of Liu and Duston (2019) are in line with findings in the 
present study where a 44-day period of continuous light in January 
and February (Mid WL group) resulted in lower female maturation 
in the following autumn. In the present study, fish were moved from 
LD16:8 to continuous light, resulting in lower maturation if applied 
in January–February whereas Liu and Duston (2019) transferred fish 
from LDN to LD24:0 or LD18:6 from October to February leading 
to reduced maturation in the following autumn. This may indicate 
that both timing and directional change are important in altering the 
sexual maturation cycle in Arctic charr in line with the suggestions of 
Liu and Duston (2018).

Restricted feeding reduces growth and adiposity (Shearer, 
Silverstein, & Plisetskaya, 1997), but if applied for a short time during 
the window of ‘critical decision point’ for maturation, it can lead to 
delayed maturation with little effects on the final weight due to com-
pensatory growth during the following full feeding period (Taranger 
et al., 2010). Imsland and Gunnarsson (2011) subjected groups of 
Arctic charr to two different ration levels, 100% (full ration) and 
50% (half ration) in two 6-week periods during autumn (September–
November) and winter (December–February). In between the re-
stricted ration periods and from February onwards, all fish were 
fed full ration. In the following summer and autumn, signs of lower 
maturation were seen for females in the feed-restricted group. The 
latter period of that study is in line with the Mid WL group of cur-
rent study where changes in photoperiod regime resulted in lower 
maturation. Thus, it may be hypothesized that this period is the crit-
ical period for maturation in the subsequent year. Periods of food 
restrictions can affect the maturation rate of Arctic charr although 
results are contrasting (e.g. Liu & Duston, 2019). Similar results have 
been presented for Atlantic salmon (Thorpe, Talbot, Miles, & Keay, 
1990), Chinook salmon, Oncorhynchus tshawytscha (Shearer, Parkins, 
Gadberry, Beckman, & Swanson, 2006) and Atlantic halibut (Foss et 
al., 2009).

5  | CONCLUSION

At present, Arctic charr is commonly reared under continuous light 
throughout both during the juvenile stage and during the on-growing 
phase, whereas present data indicate that a 44-day rearing period on 
continuous light in January and February (Mid WL group) resulted in 
lower female GSI but no changes in female growth. Male growth was 
highest in the group reared at continuous light throughout the study 
period. Accordingly, we recommend the application of brief continu-
ous light treatments during the juvenile phase (January to February) 
as a tool to lower female maturation in Arctic charr farming.
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