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Estimating dry matter and fat content in blocks
of Swiss cheese during production using
on-line near infrared spectroscopy
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Abstract
Modern dairy factories produce thousands of cheese blocks per day. Cheese quality is partly defined by the concentration of

dry matter and fat. In this study, we evaluated three different near infrared spectroscopy instruments for on-line deter-

mination of fat and dry matter in cheese blocks of approx. size 35� 28� 12 cm: scanning reflection (908–1676 nm), scanning

interaction (760–1040 nm), and imaging interaction measurements (760–1040 nm). The near infrared measurements were

performed on fresh cheese blocks in a pilot plant at three different critical control points (CCP): (CCP1) before pressing,

(CCP2) after pressing, and (CCP3) after salting. A total of 160 cheeses from 10 production batches were measured. Whereas

near infrared measurements were obtained from the surface of the cheese blocks, the reference analysis was done on a

cross-section of the cheese blocks. In general, good results were obtained regressing the reference values onto the

near infrared measurements using partial least squares regression. For example, using near infrared scanning reflection

at CCP2 yielded root mean squared errors of cross-validation on 0.44% and 0.64% for fat and dry matter, respectively.

Hence, surface chemistry of cheese blocks were representative for the average chemistry of the blocks. Furthermore, this

study finds that it is possible to predict fat and dry matter at CCP3 based on near infrared measurements obtained at CCP1

earlier in the process. This enables improved control of the cheese making process, as it is possible to detect deviations from

target quality early in the production process.
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Introduction

An ever-increasing scale in dairy manufacturing makes
process optimization an economic necessity. Raw mater-
ial analysis, process control, and end-product testing are
crucial steps in any industrial food production, and near
infrared (NIR) spectroscopy may be used as an analyt-
ical tool throughout all steps.1 In cheese production, a
milk-clotting enzyme (rennet) is added to milk to pro-
mote coagulation. The coagulum is cut and cheese grains
are pressed to drain moisture and whey. After pressing,
the cheese is salted and left for ripening. Fat and dry
matter (DM) content are important quality parameters
for cheese ripening as well as final cheese quality.2 The
amount of DM is also decisive for the profitability of the
process, and it is therefore important to control the pro-
cess towards the desired quality.

NIR spectroscopy is a well-established method for
rapid determination of fat, protein, and moisture in

cheese,3 and NIR spectroscopy is widely used in the
dairy industry.4 Wittrup and Nørgaard5 and Čurda
and Kukačková6 estimated fat and DM content in
intact cheese using an NIR reflectance module
equipped with an optical fiber. Karoui et al.7 and
Lucas et al.8 estimated fat and DM content in grated
processed cheese using NIR measurements in reflect-
ance mode. These studies5–8 obtained comparable
results (a root mean squared error of prediction of
approx. 0.52% and 0.58% for fat and DM content,
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respectively). In these studies,5–8 measurements were
done using off-line lab-based instrumentation.
Furthermore, measurements were done on grated or
relatively small pieces of cheese with very good corres-
pondence between NIR and chemical sampling.

Industrial produced cheese has a typical unit size of
40� 30� 20 cm weighing approx. 20 kg. Swiss cheese
appears as a rather homogeneous material but during
production, the crude chemical composition (i.e. mois-
ture, fat, and salt content) can vary within the cheese.2

For instance, after salting, there will be an outer layer
with more salt and water compared to the interior part
of the cheese. Potential heterogeneity of the cheeses
pose a sampling challenge related to acquiring repre-
sentative NIR measurements of intact cheese blocks.
To address this, we used three NIR spectroscopic sys-
tems with different sampling modes: (1) scanning inter-
action measurements, (2) imaging interaction
measurements, and (3) scanning reflection measure-
ments. Interaction measures deeper into the cheese,
whereas reflection measures mainly at the surface.
The scanning measurements will only measure a limited
region of the cheese, whereas imaging will measure the
entire surface area.

A large-scale dairy production can produce thou-
sands of kg of cheese every day. Adamopoulos et al.9

show how NIR reflection can estimate fat, protein, and
moisture in an on-line setting and thereby facilitate
real-time process control, at six different critical control
points (CCP), throughout a feta cheese production. In
this study, we also obtain NIR measurements, in an on-
line setting, to estimate fat and DM content in intact
blocks of fresh Swiss cheese (i.e. before ripening). We
acquired NIR spectra on blocks of cheese at three CCP:
(CCP1) before pressing, (CCP2) after pressing, and
(CCP3) after salting. Furthermore, we investigate
whether NIR measurements acquired early in the pro-
cess can be used to estimate fat and DM content in the
cheese later in the process. This will enable the detec-
tion of batches that may be out of specification at an
early stage and allow necessary control actions in pro-
duction to afford the required quality specifications.

Materials and methods

Cheese samples

A total number of 160 cheeses were included in this
study. Cheeses were made in a dairy pilot plant
(under industrial conditions) through nine different
batches. Each batch consisted of 18 cheeses. However,
batch seven consisted of 12 cheeses, as milk was lacking
to produce 18 cheese in this batch. In addition, four
cheeses from the commercial dairy production line
were included (batch 10). Variation in DM and fat con-
tent was induced by varying initial fat content of the
milk between batches. Furthermore, variation in DM
content was additionally ensured by varying the cutting
time of the coagulum. Hence, increasing the time for

cheese grains to release whey and moisture and thereby
increasing the DM content.

Each cheese weighed from 12 kg to 14 kg and was
approx. 35� 28� 12 cm in size. However, size varied
between cheeses and between CCP. At CCP1, cheeses
were thicker and varied up to about 4 cm in thickness
from one cheese to another. Furthermore, the same
cheese could vary 3 cm in thickness from one end to
the other. At CCP2 and CCP3, cheese sizes were
more uniform and weighed from 10 kg to 11 kg.

The sampling design is shown in Figure 1. NIR spec-
troscopic measurements were obtained on all 160
cheeses at CCP1 and CCP2. Within each batch, 50%
of the cheeses (a total of 80 samples) were withdrawn
for reference analysis at CCP2, while the remaining
50% of the cheeses were salted. At CCP3, the remain-
ing 80 cheeses were measured with NIR spectroscopy
again and referenced for fat and DM content.

Near infrared measurements

Near infrared scanning reflection. A low cost, miniature,
and handheld NIR system was used for reflection meas-
urements (MicroNIR, VIAVI Solutions Inc., Eningen,
Germany). The instrument has two integrated tungsten
lamps and collects spectra in the 908–1676 nm region
with readings at every 6.2 nm intervals. The dispersing
element is a linear filter with a 128 pixel InGaAs array
as detector. The instrument samples an approx. circular
area of 1 cm in diameter. The system was used in a hand
held fashion for flexibility with regard to varying cheese
thickness. Each cheese was scanned along a central line
of the cheese, and the instrument was held at about
0.5 cm distance from the cheese surface. Hence, each
cheese was sampled in a longitudinal line with a
width of approx. 1 cm. The average spectrum from
each cheese was used for analysis.

Near infrared scanning interaction. This prototype NIR
instrument consists of two halogen light sources of
50W, illuminating the sample in two rectangular
areas with a size of 5� 20mm. The distance between
the two illuminated regions is 10mm. The system col-
lects the signal in a small area of 4� 4mm, in inter-
action mode, between the two illuminated rectangles.
Hence, the collected light has traveled from the illumi-
nated region to the point of signal collection in depths
down to 1–2 cm, depending on the material.10 The
system measures at 15 wavelengths in the region 760–
1040 nm with a spectral bandwidth of 20 nm.
Calibration of hardware was done by a white reference,
a barium sulfate with curved base. It was held under the
instrument allowing the light to pass from the field of
illumination to the field of view. The system does about
70 measurements per second and is thoroughly
described elsewhere.11 During measurement, the
cheeses were moved so a longitudinal line of approx.
3 cm width and 1–2 cm depth was sampled from each
cheese. To obtain good interaction measurements,
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it was important that the distance between cheese and
instrument did not exceed about 1 cm. This was some-
times difficult to achieve, as the thickness within the
single cheese varied. The average spectrum from each
cheese was used for analysis.

Near infrared imaging interaction. QVision500 (TOMRA
Sorting Solutions, Leuven, Belgium) was used for on-
line hyperspectral NIR interaction imaging. The NIR
instrument was equipped with a conveyor belt for the
cheeses. The NIR instrument was based on interaction
measurements where the light was transmitted into the
cheese and then back scattered to the surface. Optical
sampling depth in the cheese was approx. 10–15mm
but this was not documented. Each NIR scan took
less than 3 s. The scanner was placed 30 cm above the
conveyor belt without physical contact between sam-
ples and the instrument. The scanner collected hyper-
spectral images of 15 wavelengths between 760 and
1040 nm with a spectral resolution of 20 nm. The
output per sample scan was an image of the conveyor
belt with the cheese. Size of the image was 60 pixels in
the direction perpendicular to belt movement and
approx. 600 pixels in the direction of belt movement.
Each pixel represented a spatial area of about 7� 5mm
across and along the conveyor direction, respectively.
The instrument is thoroughly described elsewhere.12 In
this study, the imaging capability was used for effective
sampling, to obtain a representative average spectrum
from each cheese. The average spectrum from each
cheese was used for analysis.

Reference analysis

Fat and DM content were determined on-site at the
dairy laboratory, following the standard procedures,
using FoodScanTM (FOSS Analytical A/S, Hillerød,
Denmark) and the commercial calibration model
based on artificial neural network. The accuracy of
the method on homogenized cheese (root mean squared
error of prediction) was 0.30% and 0.35% for DM and
fat, respectively. A cross-section (longitudinal side) of
approx. 2 cm in thickness was cut from the center of
each cheese. It was thoroughly homogenised into a
finely grained powder with particle sizes in the range
1–2mm and then used for reference analysis. We
regarded this accurate at-line NIR laboratory method
to be well suited as a reference for on-line NIR systems
applied on big heterogeneous blocks of cheese.

Data analysis

Data were analyzed using MATLAB version R2016b
(9.1.0.441655, MathWorks Inc., Natrick, MA, USA).
The NIR spectra were transformed from reflection/
interaction (R) units into pseudo-absorbance units
(log10(1/R)) and preprocessed by standard normal vari-
ate (SNV). Before calibration modeling, NIR spectra
were additionally mean centered. The non-linear itera-
tive partial least squares (PLS) algorithm was used for
PLS regression.13 All PLS regression models were built
with univariate and mean centered reference values (i.e.
y-block) and validated using leave-one-out cross-

Figure 1. Sampling design showing critical control points (CCP). CCP1: non-pressed cheeses, CCP2: pressed cheeses, CCP3: pressed and

salted cheeses.
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validation. The PLS regression models were evaluated
by root-mean-square error of cross-validation
(RMSECV).

Results and discussion

Table 1 shows descriptive statistics for DM and fat
content. Both DM and fat content increase slightly
from pressed cheeses (CCP2) to salted cheeses (CCP3)
(Table 1). Fat content after pressing is highly correlated
with fat content after salting (average values over
batches). The same holds for DM content (data not
shown). Fat and DM content correlate fairly well.
Figure 2(a) shows the relationship between DM and
fat content for pressed cheeses (CCP2) and
Figure 2(b) shows the relationship for pressed and
salted cheeses (CCP3). This is not surprising. First of
all, cheeses (batches 1–9) are made in a pilot with inten-
tionally varied settings. Moreover, fat contributes to
the DM content.14 Furthermore, changes in cutting
time and varying the amount of whey and moisture
released from the gel affect both fat content and DM
content. Figure 2 illustrates that there is a large vari-
ation in fat and DM content, also within batches.

Cross-validating PLS models over batches would be a
natural choice here, but due to large within batch vari-
ation, it is decided to validate PLS models using leave-
one-out cross-validation.

Figure 3 shows the SNV transformed NIR spectra
obtained with the three instruments at CCP3. Spectra
are colored according to DM content. Interaction
measurements were obtained at shorter wavelengths
than reflection measurements. Hence, prediction of fat
content from the interaction measurements relates to
the third overtone of C–H stretches and prediction of
DM content additionally relates to the second overtone
of N–H and O–H stretches. Prediction of fat content
from the reflection measurements relates mainly to the
second overtone of C–H stretches and the prediction of
DM content additionally relates to the first overtone of
N–H and O–H stretches.

Prior to regression modeling, two NIR interaction
measurements on non-pressed cheese blocks from
batch 4 were removed as outliers. These cheese blocks
varied much in thickness. The longer the distance
between the cheese and the interaction instrument, the
higher share of the signal is surface reflectance, result-
ing in remarkably higher intensity throughout the
entire spectrum, as compared with the other samples.

Figure 4 shows predictions of fat and DM content
based on reflection measurements on pressed and salted
cheeses (CCP3). Results from all regression models are
summarized in Figure 5. The x-axis in Figure 5 specifies
the production step used for calibration modeling.
Hence, X-block: CCP2 specifies that the NIR measure-
ments were obtained at CCP2 (i.e. after pressing the
cheeses). Similarly, y-block: CCP2 specifies that the ref-
erence values were obtained at CCP2. Detailed results
from all regression models are presented as a table in
Appendix 1. The accuracy of the calibration models

Figure 2. Reference values. (a) Critical control point 2, after pressing the cheeses. (b) Critical control point 3, after pressing and salting

the cheeses. DM: dry matter. The legend indicates batches 1–10.

Table 1. Descriptive statistics for dry matter (DM) and fat content.

Chemical component Production step Mean SD

DM (%) CCP2 55.5 1.6

CCP3 56.8 1.5

Fat (%) CCP2 24.8 3.0

CCP3 25.2 3.0

CCP: critical control point; CCP2: pressed cheeses: CCP3: pressed and salted

cheeses; SD: standard deviation.
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obtained in this study vary, however, for the best
models; the RMSECV values for both fat and DM
content are comparable with previously reported results
obtained with lab instruments.5–8 This suggests that it is
possible to obtain NIR measurements on intact cheese
block, which are representative for the average
composition.

Figure 5 shows that the imaging system performs sur-
prisingly worse than the scanning systems. We believe
that these worse results relate to lower signal-to-noise

ratio for this system. The imaging interaction measure-
ments are based on a flying beam, which measures in
interaction mode while very rapidly scanning across the
conveyor belt. The cheeses are compact with strong
absorption, which results in rather noisy signals for
this system. The scanning interaction system is
equipped with high power light sources and optimized
optics with the purpose of returning good signal-to-
noise ratios of highly absorbing samples. The scanning
reflection instrument measures mainly at the surface

Figure 3. Standard normal variate (SNV) transformed near infrared spectra of pressed and salted cheeses. Spectra are colored according

to dry matter (DM) content. (a) Scanning reflection. (b) Scanning interaction. (c) Imaging interaction.

Figure 4. Measured versus cross-validated predicted values. Values were predicted by partial least squares regression applied to near

infrared measurements from scanning reflection measurements. Near infrared measurements and reference values were obtained at

critical control point 3, i.e. after pressing and salting the cheeses. (a) Prediction of dry matter (DM) content. (b) Prediction of fat content.

The legend indicates batches 1–10.
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and the light travels shorter distances in the cheese (as
compared with the interaction measurements). Hence,
more light is reflected to the instrument and a better
signal-to-noise ratio is obtained.

Figure 5(a) shows that scanning interaction and
reflection generally perform equally well when predict-
ing DM content. However, PLS regression models
based on scanning reflection measurements uses fewer
latent variables (LVs). Furthermore, reflection meas-
urements perform slightly better than interaction,
when predicting fat content (Figure 5(b)). The reason
for these differences is believed to relate to the wave-
length ranges of the two instruments. The information
in the interaction measurements are limited to higher
overtones than that of the reflection measurements
(Figure 3). Vibrational bands are more overlapping at
higher overtones. This can clearly be seen in Figure 3(a)
and (b), where three major bands important for predic-
tion of DM and fat (i.e. third overtone of C–H and
second overtone of O–H and N–H) are overlapping in
a shorter wavelength range. Hence, the information on
DM and fat content might be more easily available in
the reflection measurements than in the interaction
measurements. Moreover, as already mentioned
above, the scanning interaction system is sensitive to
variation in the distance between instrument and sam-
ples. Differences in this distance will introduce
unwanted spectral variation between samples and
result in more complex data. This could also be the
reason for the higher number of LVs required to
model the spectral data obtained with interaction
measurements.

Figure 6 shows the regression coefficients obtained
by PLS regression between NIR measurements and fat
and DM content. Both NIR measurements and refer-
ence values were obtained at CCP3. Figure 6(a) shows

the regression coefficients acquired from the scanning
reflection measurements. Due to lower complexity of
the model predicting DM content (3 LV) compared to
the model predicting fat content (6 LV), the regression
vector for DM content is shorter. Nevertheless, the
second overtone of C–H stretching vibration (round
1200 nm) seems dominating in both models. The regres-
sion vector for fat has surprisingly high coefficients
around 1400 nm, which could relate to some C–H
deformation. However, this is only a speculation.
Figure 6(b) and (c) shows the regression coefficients
acquired from the scanning interaction and the imaging
interaction measurements, respectively. Both instru-
ments work on the same spectral range and the regres-
sion coefficients for the two instruments look similar.
Again, NIR measurements and reference values were
obtained at CCP3. It is difficult to do proper interpret-
ation of the regression vectors but the region just above
900 nm (third overtone of C–H stretching vibration)
seems important in all models. Furthermore, the
region round 800 nm seems important when predicting
DM content. This region could relate to the third of N–
H stretching vibration. Lastly, the regression vectors
for DM have remarkably high coefficients just below
1000 nm. It could be that the regression vector from
950 nm to 1000 nm is orthogonal to the water signal
and thereby cancels the information from water in the
model. However, this is only a speculation.

The fact that models built on NIR reflection meas-
urements predict fat and DM content well indicates
that the cheeses were relatively homogeneous and that
the salt gradient was similar from one sample to
another. Slightly deeper NIR measurements with inter-
action did not provide better results.

We expected salt in the outer layer of the salted
cheese to scatter near infrared light, reduce interaction

Figure 5. Results from partial least squares regression models. Root mean squared error of cross-validation (RMSECV) between mea-

sured and predicted values of: (a) dry matter content (%) and (b) fat (%). X- and y-blocks indicate input in the calibration models, where

X-block is the spectral measurements and y-block is the reference values. CCP1: non-pressed cheeses, CCP2: pressed cheeses, CCP3:

pressed and salted cheeses. The number of latent variables (LV) included in each model is stated above the bars.
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with the chemistry of the cheese and thereby provide
worse PLS regression models. Hence, RMSECV values
for models on pressed cheeses (CCP2) were expected to
be lower than for models on pressed and salted cheeses
(CCP3). This was the case for DM content
(Figure 5(a)). However, this was not confirmed when
predicting fat content (Figure 5(b)).

With regard to scanning reflection and interaction
measurements, it is interesting to note that NIR meas-
urements collected at CCP1 could be used to predict fat
and DM content in cheeses at CCP2 and CCP3. The
accuracy of these predictions was comparable with
what we obtained with the NIR spectra collected at
CCP2 and CCP3. The ability to predict DM and fat
content at CCP2 and CCP3 based on spectra collected
at CCP1 earlier in the process enables improved quality
control, since action can be taken sooner. Such actions
could be adjusting the pressing pressure to meet the
desired DM content in the final products.

In the commercial process, DM will typically
vary in the range from 55.5% to 60.0% (target
is 58%) but can also be higher or lower if the batches
are far from target due to unwanted process deviations.
The span in DM and fat content used in this study
is wide, but still relevant for both process optimization

and detection of batches that are outside specified qual-
ity limits.

Conclusions

This work illustrates that it is possible to obtain good
estimates of fat and DM content in 12 kg cheese blocks
based on on-line NIR scanning measurements. This
means that the surface chemistry of the cheese blocks
was representative of the average chemistry. Before
using such an approach, one should be sure (e.g. by
carefully sampling and examining the within cheese
block variation) that this is actually the case for the
relevant process. We also observed that it is possible
to predict fat and DM content in pressed and salted
cheeses based on NIR measurements on non-pressed
cheese earlier in the process. This enables improved
control of the cheese making process, as it could be
possible to detect deviations from target quality early
in the process.
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Appendix 1

Table 2. Results from partial least squares regression models.

Chemical

component

Production step;

NIR measurement

Production step;

Reference measurement Instrument # LV R2CV RMSECV (%)

DM (%) CCP2 CCP2 Scanning reflection 2 0.83 0.64

Scanning interaction 6 0.85 0.62

Scanning imaging 2 0.78 0.76

CCP3 CCP3 Scanning reflection 3 0.65 0.90

Scanning interaction 8 0.68 0.85

Scanning imaging 6 0.60 0.98

CCP1 CCP2 Scanning reflection 1 0.82 0.66

Scanning interaction 6 0.81 0.69

Scanning imaging 2 0.61 0.99

CCP1 CCP3 Scanning reflection 2 0.80 0.68

Scanning interaction 6 0.83 0.63

Scanning imaging 5 0.67 0.88

(continued)
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Table 2. Continued

Chemical

component

Production step;

NIR measurement

Production step;

Reference measurement Instrument # LV R2CV RMSECV (%)

Fat (%) CCP2 CCP2 Scanning reflection 6 0.98 0.44

Scanning interaction 6 0.95 0.64

Scanning imaging 3 0.87 1.07

CCP3 CCP3 Scanning reflection 6 0.97 0.54

Scanning interaction 6 0.95 0.67

Scanning imaging 3 0.88 1.012

CCP1 CCP2 Scanning reflection 3 0.97 0.54

Scanning interaction 8 0.92 0.85

Scanning imaging 2 0.76 1.39

CCP1 CCP3 Scanning reflection 6 0.98 0.39

Scanning interaction 6 0.96 0.56

Scanning imaging 3 0.74 1.46

DM: dry matter; CCP: critical control point; CCP1: non-pressed cheeses; CCP2: pressed cheeses; CCP3: pressed and salted cheeses; # LV: number of latent

variables included in the model; R2CV: coefficient of determination from cross-validation; RMSECV: root-mean-square error from cross-validation.
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