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EeCentrocin 1 is a potent antimicrobial peptide isolated from the marine sea urchin

Echinus esculentus. The peptide has a hetero‐dimeric structure with the antimicrobial

activity confined in its largest monomer, the heavy chain (HC), encompassing 30

amino acid residues. The aim of the present study was to develop a shorter drug lead

peptide using the heavy chain of EeCentrocin 1 as a starting scaffold and to perform a

structure‐activity relationship study with sequence modifications to optimize antimi-

crobial activity. The experiments consisted of 1) truncation of the heavy chain, 2)

replacement of amino acids unfavourable for in vitro antimicrobial activity, and 3)

an alanine scan experiment on the truncated and modified heavy chain sequence to

identify essential residues for antimicrobial activity. The heavy chain of EeCentrocin

1 was truncated to less than half its initial size, retaining most of its original antimicro-

bial activity. The truncated and optimized lead peptide (P6) consisted of the 12 N‐ter-

minal amino acid residues from the original EeCentrocin 1 HC sequence and was

modified by two amino acid replacements and a C‐terminal amidation. Results from

the alanine scan indicated that the generated lead peptide (P6) contained the optimal

sequence for antibacterial activity, in which none of the alanine scan peptides could

surpass its antimicrobial activity. The lead peptide (P6) was also superior in antifungal

activity compared to the other peptides prepared and showed minimal inhibitory con-

centrations (MICs) in the low micromolar range. In addition, the lead peptide (P6)

displayed minor haemolytic and no cytotoxic activity, making it a promising lead for

further antimicrobial drug development.
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1 | INTRODUCTION

Bacterial resistance to commercial antibiotics has increased severely

over the last years. Infectious bacteria that were once easily treatable

by antibiotics have now become resistant.1 There is consequently a

pressing need to come up with alternatives to the current antimicro-

bial drugs. Antimicrobial peptides (AMPs) are proteinaceous natural

products found in all living phyla examined, and due to their high

structural diversity, they are considered attractive hit compounds for

development of drug leads for novel antibiotics. AMPs efficiently kill

bacterial pathogens with low toxicity to mammalian cells, and often

have broad‐spectrum antimicrobial activity against pathogenic Gram‐

positive and Gram‐negative bacteria.2-4 Most AMPs appear to interact

with bacterial membranes, forming pores or aggregates at the mem-

brane surface, causing cooperative permeabilization and loss of mem-

brane integrity.3 In membrane‐like environments, AMPs tend to form

amphipathic structures, i.e. structures with separate hydrophobic and

hydrophilic domains. Their net positive charge facilitates interactions

with the negatively charged bacterial membranes and/or cell walls,

whereas their amphipathic character enables membrane perme-

abilization.4 Because AMPs in general act on the lipid bilayer structure

of bacterial membranes, there seems to be lower propensity of gener-

ating resistance against AMPs compared to other antibiotic classes.5-7

There is even recent evidence that antibiotic‐resistant Escherichia coli

display increased sensitivity towards AMPs.8 Some AMPs have addi-

tional mode of actions, attacking both extracellular and intracellular

targets rapidly.8,9 Several AMPs are currently in the medical pipeline

due to these favourable properties.10-13

The centrocins are potent marine natural AMPs originally isolated

and characterised from the sea urchins Strongylocentrotus

droebachiensis14 and Echinus esculentus.15 Centrocin‐coding genes

have also been identified in the genome of S. purpuratus.16 The

centrocins display antimicrobial activities in the sub‐micromolar range

against both Gram‐positive and Gram‐negative bacteria, as well as

fungi. Centrocins range from 4.4‐4.8 kDa in size and have a heterodi-

meric structure, i.e., they have a heavy chain (HC) of ~30 amino acid

residues which is linked by a disulphide bridge to a light chain (LC)

of ~12 amino acid residues. All isolated centrocins contain brominated

tryptophan residues in their HC. Previous in vitro experiments have

shown that the antimicrobial activity is confined to the HC's and that

non‐brominated HC peptides are equally potent as the brominated

ones. These data imply other purposes than direct involvement in bac-

terial killing for the LC and the brominated tryptophan residues.14,15

In the present study, we aimed to design a shorter AMP with

improved or similar antimicrobial activity as the non‐brominated HC

of EeCentrocin 1 derived from E. esculentus.15 This was done by suc-

cessive structure‐activity relationship (SAR) studies ‐ concentrated

on truncation, sequence modification, C‐terminal amidation, and ala-

nine scanning. The EeCentrocin 1 HC was chosen as a framework

because of its potent antibacterial activity and low haemolytic activ-

ity.15 The hypothesis was that the bioactive part of EeCentrocin 1

HC could be attributed to the N‐terminal region, which contain both

hydrophobic tryptophan residues and cationic residues ‐ two
structural properties known to contribute to antimicrobial activity in

other AMPs.17-19
2 | MATERIALS AND METHODS

2.1 | Solid phase peptide synthesis (SPPS)

The non‐brominated HC of EeCentrocin 1 (P1), the truncated peptide

HC(1‐16) (P2), and the modified peptide HC(1‐16)A8 (P3) were

acquired commercially (GenicBio Ltd., Shanghai, China). The other

peptides (P4‐P18) were synthesized in‐house by microwave assisted

Fmoc solid‐phase peptide synthesis (Fmoc‐SPPS). All Fmoc‐amino

acids and solvents were purchased from Sigma‐Aldrich (MO, USA),

whereas Rink amide ChemMatrix resin was obtained from Biotage

(Uppsala, Sweden). The most efficient procedure involved using Rink

amide ChemMatrix resin (loading 0.47‐0.49 mmol/gram), which was

swelled in N,N‐dimethylformamide (DMF) in a 10 mL fritted reaction

vial for 20 min with microwave heating at 70°C. Fmoc‐amino acids

(4.2 eq.) were dissolved in N‐methyl‐2‐pyrrolidone (NMP) prior to in

situ coupling with O‐(6‐chlorobenzotriazol‐1‐yl)‐N,N,N′,N′‐

tetramethyluronium hexafluorophosphate (HCTU, 4.2 eq.) and N,N‐

diisopropylethylamine (DIEA, 8.4 eq.) as base, and coupling for five

min with microwave heating at 75°C. Fmoc‐Arg (Pbf)‐OH was coupled

at room temperature for 60 min to avoid δ‐lactamisation of its side‐

chain, and we found it necessary to double couple the N‐terminal

Gly‐residue to avoid Gly‐1 deletion peptides. Fmoc‐cleavage was per-

formed with a solution of 20% piperidine in DMF (4.5 mL for three

min and repeated for 10 min) at room temperature, and the resin

washed with DMF (4 × 4.5 mL for 0.45 min). After the final coupling

and Fmoc‐cleavage of the N‐terminal residue, the resin was washed

thoroughly with dichloromethane (DCM) and dried overnight in a des-

iccator. A 10 mL solution of 95% trifluoroacetic acid (TFA), 2.5%

triisopropylsilane (TIS), and 2.5% H2O was used as cleavage cocktail

and added to the 10 mL fritted reaction vial with gentle stirring every

hour for 3‐3.5 h. The solution was filtered on a Supelco Visiprep vac-

uum manifold and the cleavage process was repeated with 5 mL of the

cleavage cocktail for 0.5‐1 h. The solution was concentrated in vacuo

and ice‐cold diethyl ether was added for precipitation of the crude

peptide. The precipitated crude peptide was washed three times with

ice‐cold diethyl ether to remove traces of the cleavage cocktail.
2.2 | Purification and characterization

The peptides (P4‐P18) were purified by preparative RP‐HPLC using a

Waters 2690 separation module equipped with a Waters 996 photo-

diode array detector and an XBridge C18, 5 μm, 10 × 250 mm column

(Waters, MA USA). The mobile phases consisted of eluent A: deionized

H2O and eluent B: 95% acetonitrile (ACN)/5% H2O, both containing

0.1% TFA. Depending on the individual peptide (hydrophobicity and

co‐eluting reagents), linear gradients for purification went from 5‐

17% of eluent B to 35% eluent B in 24 min at a flow of 5 mL/min.

The purity of all peptides was calculated to be above 95%, as
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determined by UV‐absorbance at 214 nm. Molecular mass and purity

of the peptides were confirmed using a high‐resolution 6540B Q‐

TOF mass spectrometer with a dual ESI source, coupled to a 1290

Infinity UHPLC system, controlled by the MassHunter software

(Agilent, CA, USA). The peptides were separated using a Zorbax C18,

2.1×50 mm, 1.8 μm column (Agilent). System details and typical

parameters are found in the supporting information (S1 table). The

mobile phase consisted of H2O and ACN, both containing 0.1% formic

acid, and a linear gradient of 5‐60% ACN at a flow rate of 0.4 mL/min

was used during the LC‐MS analysis. The measured masses of all pep-

tides were within 10 ppm of their theoretical values. A specific gradi-

ent running from 3‐20% ACN was applied for the determination of

peptide hydrophobicity, i.e. retention times on a reversed‐phase C18

column.
2.3 | Antimicrobial susceptibility testing

2.3.1 | Antibacterial assay

The peptides were screened for antibacterial activity against two

strains of Gram‐positive and two strains of Gram‐negative bacteria;

Corynebacterium glutamicum (Cg, ATCC 13032), Staphylococcus aureus

(Sa, ATCC 9144), Pseudomonas aeruginosa (Pa, ATCC 27853), and E.

coli (Ec, ATCC 25922). Cultures stored at ‐80°C in glycerol were trans-

ferred to Mueller‐Hinton plates (MH, Difco, Lawrence, KS, USA) and

incubated for 24 h at 35°C. A few colonies of each bacterial strain

were transferred to 5 mL liquid MH medium and left shaking (600

rpm) at room temperature overnight. Cultures of actively growing bac-

teria (20 μL) were inoculated in 5 mL MH medium and left shaking for

2 h at room temperature. The antibacterial assays were performed as

previously described by Sperstad and co‐workers20 with the following

exception: bacterial cultures were diluted with medium to 2.5‐3 × 104

cells/mL concentrations. An aliquot of 50 μL (1250‐1500 bacterial

cells) was added to each well in 96‐well NunclonTM microtiter plates

(Nagle Nunc Int., Denmark) preloaded with peptide solution (50 μL).

The microtiter plates were incubated for 24 h at 35°C with optical

density recorded every hour using an Envision 2103 multilabel reader,

controlled by a Wallac Envision manager (PerkinElmer, CT, USA). Min-

imum inhibitory concentration (MIC) was defined as a sample showing

complete inhibition (as measured by optical density at 595 nm) com-

pared to the negative (growth) controls, consisting of bacteria and

water. Oxytetracycline hydrochloride (20 μM, Sigma‐Aldrich) served

as a positive (inhibition) control. The synthetic peptides were tested

for antibacterial activity in concentrations ranging from 200 to 0.1

μM in two‐fold dilutions. All tests were performed in triplicates.

A killing experiment was performed on HC(1‐12)A8K12 (P6).

Actively growing cultures of S. aureus (ATCC 9144) and E. coli (ATCC

25922) were diluted in MH broth to a concentration of 2.5‐3 × 104

cells/mL and incubated in 96‐well NunclonTM microtiter plates (Nagle

Nunc) at 37°C in the absence/presence (0−50 μM) of the antimicrobial

peptide, as described above. Optical density (595 nm) was recorded

every hour using an Envision 2103 multilabel reader (PerkinElmer).

After 24 h of treatment, aliquots (10 μL) of 10‐fold serial dilutions
(in MH broth) of wells containing MIC, ½ × MIC, and ¼ × MIC of the

peptide were plated on MH Agar (Difco) plates. The number of col-

ony‐forming units (CFU) was determined after 24 h of incubation at

37°C. Both tests were performed in triplicates.

2.3.2 | Antifungal assay

The synthetic peptides were also screened for antifungal activity

against Candida albicans (ATCC 10231), Aureobasidium pullulans, and

Rhodotorula sp. (the last two were obtained from Professor Arne

Tronsmo, The Norwegian University of Life Sciences, Ås, Norway).

The antifungal assay was performed as previously described.21 Briefly,

fungal spores were dissolved in potato dextrose broth (Difco) to a con-

centration of 4 × 105 spores/mL. The spores (50 μL) were inoculated

on 96‐well NunclonTM microtiter plates containing the synthetic pep-

tides (50 μL) dissolved in MQ‐H2O. MIC, defined as the lowest con-

centration of peptide giving no visible growth, was determined

visually after incubation for 24 h at room temperature. The negative

(growth) control consisted of medium and fungal solution, whereas

fluconazole (Sigma‐Aldrich) served as positive antifungal control. The

peptides and fluconazole were tested for activity in concentrations

ranging from 100 to 0.1 μM in two‐fold serial dilutions. All tests were

performed in triplicates.

2.3.3 | Haemolytic assay

The synthesised peptide analogues were screened for eukaryotic cell‐

toxicity with a haemolytic activity assay using human red blood cells

(RBC) as described previously.21 The assay was performed in 96‐well

U‐shaped microtiter plates (Nagle Nunc) with 50 μL peptide sample,

40 μL phosphate‐buffered saline (PBS) and 10 μL red blood cells. After

one hour of incubation at 37°C in a shaker, the plate was centrifuged

at 200 g for 5 min and the supernatants (60 μL) were carefully trans-

ferred to a new flat‐bottomed polycarbonate microtiter plate (Nagle

Nunc) and the release of haemoglobin (absorbance at 550 nm) was

measured on a Synergy H1 multimode reader (BioTek, VT, USA). Cell

suspension added 0.05% Triton X‐100 (Sigma‐Aldrich) in PBS served

as positive (100% haemolysis) control and cell suspension added PBS

served as negative (0% haemolysis, blank) control. The percent

haemolysis was calculated using the formula [(sample‐baseline)/(tri-

ton‐baseline)]×100. The cytotoxic peptide melittin (Sigma‐Aldrich)

was used as a positive control peptide and for comparison. The exper-

iment was performed in triplicates with peptide concentrations rang-

ing from 200 μM to 1.56 μM in twofold serial dilutions.

2.3.4 | Cytotoxicity assay

The peptides were screened for cytotoxic activity in 96‐well plates

against two adherent cell lines; human melanoma cells (A2058, ATCC

CRL‐1114, Manassas, VA, USA) and non‐malignant human lung fibro-

blasts (MRC‐5, ATCC CCL‐171). Cell viability was determined using a

colorimetric 3‐(4,5‐dimethylthiazol‐2‐yl)‐5‐(3‐carboxymethoxyphe-

nyl)‐2‐(4‐sulfophenyl)‐2H‐tetrazolium (MTS) assay,22 with minor
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modifications. Cells assayed with their respective cell media served as

negative control, whereas cells assayed with 10% DMSO served as

positive control. Cell viability was calculated as follows: Cell survival

(%) = (absorbance treated wells − absorbance positive control)/(absor-

bance negative control − absorbance positive control) × 100. All tests

were performed in triplicates, using peptide concentrations from 200

μM to 6.25 μM in twofold serial dilutions.
2.4 | Bioinformatics

Peptide properties were calculated with PEPCALC (http://pepcalc.

com) from Innovagen AB, and helical wheel projections made with

Pepwheel at the EMBOSS suite (http://www.bioinformatics.nl/cgi‐

bin/emboss/pepwheel). Secondary structures were predicted using

the PROTEUS Structure Prediction Server 2.0 (http://www.proteus2.

ca/proteus2/index.jsp)23 and PEP‐FOLD3 (http://bioserv.rpbs.univ‐

paris‐diderot.fr/services/PEP‐FOLD3/),24 and resulting figures were

made with BIOVIA Discovery Studio Visualizer v4.5.0.15071 (Dassault

Systèmes, San Diego). Homology searches for non‐redundant protein

sequences were performed with the Basic Local Alignment Search

Tool (BLAST) provided by the National Centre for Biotechnological

Information (NCBI) server (http://blast.ncbi.nlm.nih.gov/Blast.cgi).25
FIGURE 1 In silico secondary structure prediction of the 30 residues
long EeCentrocin 1 HC (P1). Secondary structure predicted by the
Proteus Structure Prediction Server (A). Line 1 shows the amino acid
sequence of EeCentrocin 1 HC, with cationic residues in blue and the
anionic residue in red. Line 2 indicates type of secondary structure (H
= helix, C = coil). Line 3 indicates confidence score of the prediction (0‐
9, 0 = low, 9 = high). Secondary structure predicted by the PEP‐
FOLD3 software and visualized using the BIOVIA software (B)
3 | RESULTS AND DISCUSSION

In the present study, a series of shortened peptides, based on the

marine heterodimeric and brominated AMP EeCentrocin 1 (originally

isolated from the red sea urchin E. esculentus), were chemically synthe-

sized and screened for antimicrobial activity. Initial experiments

involved the stepwise truncation of the non‐brominated HC of the

peptide. The LC and bromination of the Trp‐residues within the HC

were excluded from this study because of their minor importance for

antimicrobial activity.15
3.1 | Truncation of non‐brominated HC

In silico modelling of the EeCentrocin 1 HC (P1, Figure 1) revealed that

the N‐terminal part of the sequence most likely forms an α‐helix, a

well‐known conformation of AMPs. The N‐terminal has an abundance

of hydrophobic and cationic residues, which is a characteristic known

to be of importance for the activity of AMPs.19 Furthermore, the N‐

terminal region of many α‐helical AMPs is shown to be important for

antimicrobial activity.17 Based on this qualified sequence evaluation

of the HC of EeCentrocin 1, the last 14 C‐terminal amino acid residues

were removed, resulting in the peptide HC(1‐16) (P2, Table 1). The

peptide contains two Trp and six cationic residues (Arg/Lys). Trunca-

tion of the heavy chain led to reduced antibacterial activity, especially

against S. aureus. However, the Gram‐positive C. glutamicum was still

sensitive to P2 albeit at a slightly higher concentration. An eight‐fold

decrease in potency was also observed against the Gram‐negative test

bacteria, maybe due to reduced charge of P2 compared to the full HC

peptide (Table 1).
Since an electrostatic interaction between cationic AMPs and the

negatively charged surface of bacteria is important for antibacterial

activity,26 the negatively charged Asp8 residue was replaced by an

Ala‐residue and the C‐terminal Lys‐residue amidated in HC(1‐16)A8

(P3). P3 was antibacterial at low concentrations and clearly pointed

to the importance of increasing the overall positive charge of the pep-

tide (Table 1). Thus, all subsequent synthesised AMPs were prepared

with the Asp8 residue substituted with Ala (or Arg) as well as having

a C‐terminal amide. Carboxyamidation, which increases the overall

positive charge of the peptides, is previously shown to increase the

antimicrobial activity of AMPs.27

Early in the process, it was discovered that eliminating the N‐termi-

nal Gly1 was not beneficial for antibacterial activity as shown for the

resulting peptide HC(2‐16)A7 (P4). P4 displayed a remarkable drop

in antibacterial activity against the Gram‐negative P. aeruginosa com-

pared to the HC(1‐16)A8 (P3) analogue (Table 1). However, the activ-

ity against the other test strains remained the same. The importance

of Gly1 has been discussed before – the presence of an N‐terminal

Gly‐residue was recorded in 70% of 150 α‐helical AMPs collected

from the AMSDb database, perhaps serving as a capping residue for

α‐helices or providing resistance to aminopeptidases.17

As the N‐terminal truncation proved unsuccessful against P.

aeruginosa, the focus was directed towards further truncation of the

http://www.bioinformatics.nl/cgi-bin/emboss/pepwheel
http://www.bioinformatics.nl/cgi-bin/emboss/pepwheel
http://www.proteus2.ca/proteus2/index.jsp
http://www.proteus2.ca/proteus2/index.jsp
http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
http://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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C‐terminal end, resulting in the peptide HC(1‐12)A8 (P5). The antibac-

terial activity of P5 was somewhat reduced compared to the larger

HC(1‐16)A8 (P3) against all strains (Table 1). To improve the antibac-

terial activity of this 12‐residue peptide, the C‐terminal Arg‐Lys‐motif,

which was recognised in the 16‐residue peptides, was reinstated. This

also made it possible to replace the original Asn12‐residue, which can

compromise peptide integrity by forming aspartimide side‐products in

SPPS involving chain‐elongation through its side‐chain and not the

peptide‐backbone.28 The resulting peptide HC(1‐12)A8K12 (P6) was

the most potent AMP produced so far with antibacterial activities

towards C. glutamicum and P. aeruginosa close to the original HC (P1)

peptide (Table 1).

The next analogue HC(1‐9)R8 (P7) was synthesised using the same

argument as with HC(1‐12)A8 (P3) and HC(1‐12)A8K12 (P6) to further

shorten the peptide sequence and reinstate the C‐terminal Arg‐Lys‐

motif. However, the potency of this 9‐residue peptide (P7) was much

lower than the previous peptides, maybe due to reduction in net pos-

itive charge (Table 1).

Accordingly, HC(1‐12)A8K12 (P6) became our lead peptide after

the truncation experiments and represented an AMP 2/5 the

sequence‐size of the original HC (P1). P6 contains 5 positively charged

residues and an amidated C‐terminus resulting in a net charge of +6

(Table 1, Figure 2A). The 12‐residue lead peptide was predicted to

form an α‐helical structure (Figure 2B), similar to what was predicted

for the N‐terminal part of EeCentrocin 1 HC (P1) (Figure 1). Compared

to the original HC (P1) of EeCentrocin 1 and homologues in S.

droebachiensis and S. purpuratus, the N‐terminal regions have similar

physiochemical properties (Table 2); all having a conserved Trp2, a

bulky aromatic residue in position 3, charged residues in positions 5

and 8, and a conserved Val10. These similarities might indicate that

these residues are important for antimicrobial activity. The lead pep-

tide HC(1‐12)A8K12 (P6) differs in position 8 with insertion of a small

hydrophobic residue (Ala8) instead of a charged residue.
3.2 | Alanine‐scan of the lead peptide HC(1‐12)
A8K12

In order to investigate the importance to antibacterial activity of indi-

vidual residues of the lead peptide HC(1‐12)A8K12 (P6), each amino

acid was substituted by Ala and antibacterial activity was recorded

for each peptide in an alanine scan. Ala, along with Leu and Lys are

known stabilisers of peptide α‐helicity.29 The peptides were named

(apart from the lead peptide, P6) according to the original amino acid,

position and substitution, i.e. the peptide where Gly was substituted

with Ala in position 1, was named G1A. All Ala‐scan peptides displayed

antibacterial activity, but with different potencies against different

strains (Table 3). Overall, C. glutamicum was the most sensitive strain

when treated with peptides. The other Gram‐positive strain, S. aureus,

was the least sensitive strain in the current experiment, resisting all

the AMPs at concentrations below 12.5 μM. Only four AMPs were

antibacterial against S. aureus at concentrations ≤25 μM; the lead

peptide HC(1‐12)A8K12 (P6), G1A (P8), W3A (P10) and T6A (P13),



FIGURE 2 Chemical structure (A) and helical wheel projection (B) of the lead peptide HC(1‐12)A8K12 (P6). Cationic residues are highlighted in
blue. Black boxes in the helical wheel signify hydrophobic residues, whereas the polar Thr6 residue (T6) in the hydrophobic face of the predicted
α‐helix is depicted with a red diamond

TABLE 3 Antibacterial activity (MIC in μM) of alanine scan peptides (P8‐P18) derived from the lead peptide HC(1‐12)A8K12 (P6). The inter-
changeable Ala‐residues are shown in bold. The nomenclature depicts which amino acid has been exchanged with alanine (G1A: Gly1 is exchanged
with Ala). The table also shows in‐text number reference for each peptide, molecular weight (MW, g/mol), amino acid sequence, peptide net
charge, and retention time (RT, min) on a RP‐HPLC column

Amino acid sequence and position Antibacterial activity, MIC (μM)

No. Peptide MW 1 2 3 4 5 6 7 8 9 10 11 12 C‐term Charge RT Cg Sa Pa Ec

P8 G1A 1555.9 A W W R R T V A K V R K ‐NH2 +6 5.3 0.8 25 6.3 12.5

P9 W2A 1426.7 G A W R R T V A K V R K ‐NH2 +6 2.1 3.1 100 200 50

P10 W3A 1426.7 G W A R R T V A K V R K ‐NH2 +6 2.2 0.8 25 100 100

P11 R4A 1456.7 G W W A R T V A K V R K ‐NH2 +5 7.9 1.6 50 12.5 6.3

P12 R5A 1456.7 G W W R A T V A K V R K ‐NH2 +5 7.3 0.8 100 25 6.3

P13 T6A 1511.8 G W W R R A V A K V R K ‐NH2 +6 5.9 1.6 12.5 3.1 3.1

P14 V7A 1513.8 G W W R R T A A K V R K ‐NH2 +6 4.0 1.6 100 12.5 12.5

P6 HC(1‐12)A8K12 1541.9 G W W R R T V A K V R K ‐NH2 +6 5.2 0.4 12.5 1.6 3.1

P15 K9A 1484.8 G W W R R T V A A V R K ‐NH2 +5 7.1 1.6 100 6.3 6.3

P16 V10A 1513.8 G W W R R T V A K A R K ‐NH2 +6 4.1 1.6 100 6.3 12.5

P17 R11A 1456.7 G W W R R T V A K V A K ‐NH2 +5 6.8 1.6 100 12.5 12.5

P18 K12A 1484.8 G W W R R T V A K V R A ‐NH2 +5 6.9 0.8 50 6.3 6.3

TABLE 2 Alignment of the 12‐residue lead peptide HC(1‐12)A8K12 (P6) with the N‐terminal region (residues 1‐12) of EeCentrocin 1 HC (P1),
SdCentrocin 1a HC and 2 HC from S. droebachiensis, and putative centrocin HCs from S. purpuratus.

Peptide Origin

Amino acid sequence and amino acid position

1 2 3 4 5 6 7 8 9 10 11 12

HC(1‐12)A8K12 (P6) Synthetic G W W R R T V A K V R K

EeCentrocin 1 (P1)1 E. esculentus G W W R R T V D K V R N

SdCentrocin 1a HC2 S. droebachiensis G W F K K T F H K V S H

SdCentrocin 2 HC2 S. droebachiensis S W F S R T V H N V G N

XP_0037278233 S. purpuratus S W F S R A V H K V S H

XP_0037278243 S. purpuratus S W F S R A A H K V S H

XP_0037305853 S. purpuratus G W F K H A F H H V T H

XP_0037247723 S. purpuratus S W F T D A F K K V S K

1Data obtained from Solstad et al.15

2Data obtained from Li et al.14

3Data and reference number obtained from NCBI.
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and only two AMPs were antibacterial against S. aureus at 50 μg/ml

concentrations; R4A (P11) and K12A (P18) (Table 3). The antibacterial

profiles against the two Gram‐negative strains were quite similar: the

lead peptide HC(1‐12)A8K12 (P6), T6A (P13), K9A (P15) and K12A

(P18) were antibacterial at concentrations ≤6.3 μM, whereas W2A

(P9) and W3A (P10) were the least antibacterial with MICs ≥50 μM

against the Gram‐negative bacterial strains (Table 3).

In general, all Ala‐substitutions of the lead peptide HC(1‐12)A8K12

(P6), except T6A (P13), resulted in reduced antibacterial activity

(Table 3). This indicated that all residues except Thr6 (and perhaps

Ala8) were of importance in P6 to maintain optimal antibacterial activ-

ity. The peptideT6A (P13) was generally the second most potent AMP

after P6. However, while T6A (P13) was only marginally less potent

than the lead peptide against S. aureus, P. aeruginosa, and E. coli, a

four‐fold dilution separated T6A (P13) and P6 against C. glutamicum

(Table 3). This observation indicated a selective drop in the antibacte-

rial activity of T6A (P13) against C. glutamicum. HC(1‐12)A8K12 (P6)

and T6A (P13) were different in that Thr is a polar residue without

charge whereas Ala is a small hydrophobic residue. A helical wheel

projection of the lead peptide HC(1‐12)A8K12 (P6) (Figure 2B) shows

that the polar residue (Thr6) is located on the hydrophobic face of a

putative α‐helix, potentially having an impact on the amphipathic char-

acter of the peptide. The three most potent peptides in the alanine

scan, HC(1‐12)A8K12 (P6), G1A (P8), and T6A (P13), had all medium

hydrophobicity (as indicated by the retention times on RP‐HPLC,

Table 3), compared to the other peptides that were either more or less

hydrophobic. Others also report a hydrophobicity‐window for optimal

antibacterial activity of AMPs.30

Replacement of the positively charged residues with Ala in R4A

(P11), R5A (P12), K9A (P15), R11A (P17), and K12A (P18) resulted in

2‐8‐fold reduction of antibacterial activity against all strains tested

(Table 3). This reduced activity can be explained by reduction of net

positive charge of these peptides. A high net positive charge is shown

to be important for cationic AMPs for the initial electrostatic interac-

tion with bacterial cell membranes.19,29 In addition, all the positively

charged residues were in the hydrophilic and charged face of the pro-

posed α‐helix. Insertion of an additional hydrophobic residue in this

region may therefore alter the amphipathic character of the peptide.

Residue Lys12, which was positioned at the C‐terminal end of the

peptide, seemed to be the least important cationic residue according

to the alanine scan experiment.

A noteworthy pair when considering individual amino acid substi-

tutions were the Trp substitutions represented by the peptides W2A

(P9) and W3A (P10) (Table 3). Trp is a bulky hydrophobic residue,

commonly accepted as a contributor to antimicrobial activity in

AMPs.19,31 This was also apparent in the current alanine scan experi-

ment, where replacement of the Trp‐residues with Ala resulted in a

dramatic loss of antibacterial activity. However, a few points can be

made regarding the loss of antibacterial activity when these amino

acids were replaced. The peptides W3A (P10) and G1A (P8) showed

similar high potencies against the Gram‐positive bacterial strains, but

W3A (P10) was noticeably less potent than G1A (P8) against the

Gram‐negative bacterial strains (Table 3). The one AMP that was
consistently least potent against all strains was W2A (P9), which indi-

cate that Trp2 was a more important residue for antibacterial activity

than Trp3 (Table 3). The exception being against E. coli where W2A

(P9) was somewhat less potent than W3A (P10). As shown in

Table 3, the retention times (hydrophobicity) on a C18 RP‐HPLC col-

umn were reduced for W2A (P9) and W3A (P10) compared to the lead

peptide HC(1‐12)A8K12 (P6). This illustrates the importance of the

hydrophobic character contributed by the two Trp‐residues, which

are located at the hydrophobic face of the predicted α‐helix

(Figure 2B). Increased hydrophobicity of the hydrophobic face of an

amphipathic peptide generally increases antimicrobial activity.32

Replacement of the polar uncharged Gly1 with a small hydrophobic

Ala‐residue (G1A, P8) resulted in 2‐4‐fold reduced antibacterial activity

against all the strains compared to the lead peptide HC(1‐12)A8K12

(P6) (Table 3). In the helical wheel projection of P6 (Figure 2B), Gly1

is positioned in the polar and cationic face of the predicted α‐helix.

Insertion of a hydrophobic residue in this position will affect the

amphipathic character of the peptide (also demonstrated by a slight

increase in retention time; Table 3), resulting in decreased activity. In

addition, Gly does not have a side chain and may therefore provide

increased flexibility to this region of the peptide. The results support

the previous notion on the importance of N‐terminal Gly in AMPs.17

Ala‐substitution of the hydrophobic Val7 in V7A (P14) or Val10 in

V10A (P16), both positioned in the hydrophobic face of the predicted

α‐helix (Figure 2B), resulted in 4‐8‐fold decrease in activity against all

bacterial strains tested (Table 3). Val contains an isopropyl side chain,

in contrast to the methyl side chain in Ala. Replacement of Val with

Ala would therefore slightly alter the hydrophobicity in the hydropho-

bic sector and thereby the overall amphipathicity of the peptide, an

important characteristic of AMPs.4 As shown in Table 3, the retention

times were reduced for V7A (P14) and V10A (P16), indicating reduced

hydrophobicity for these two peptides compared to the lead peptide

HC(1‐12)A8K12 (P6).
3.3 | Bacterial killing experiments

On the basis of our SAR studies (Tables 1 and 3), the peptide HC(1‐12)

A8K12 (P6) was the most effective peptide at inhibiting bacterial

growth. We therefore performed bacterial killing experiments on E.

coli and S. aureus, to evaluate if the peptide displayed bacteriostatic

or bactericidal properties. The results suggest that HC(1‐12)A8K12

(P6) exhibited bactericidal properties against both bacterial strains at

MIC, as no CFU were detected after plating of cultures treated with

minimal inhibitory (or higher) concentrations of the peptide

(Figure 3). On the other hand, treatment with sub‐MIC concentrations

of the peptide produced >108 CFU/mL for both strains after 24 h of

incubation.
3.4 | Antifungal activity

The synthesised peptides were subjected to antifungal screening

against the moulds A. pullulans and Rhodotorula sp., and the yeast C.



FIGURE 3 Bactericidal activity of HC(1‐12)A8K12 (P6). Colony‐forming units (CFU/mL) were counted from S. aureus (MIC=12.5 μM) and E. coli
(MIC=3.1 μM) treated with MIC and sub‐MIC concentrations (½ x MIC and ¼ x MIC) of P6. The mean of three replicates ± SD is displayed.
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albicans. The lead peptide HC(1‐12)A8K12 (P6) was superior in activ-

ity compared to the other peptides, including the full HC (P1) peptide

(Table 4). The lead peptide (P6) was antifungal at concentrations rang-

ing from 3.1‐12.5 μM, whereas the other peptides had antifungal

MICs from 12.5 μM and higher. All the 12‐residue alanine scan pep-

tides (except the lead peptide HC(1‐12)A8K12, P6) displayed antifun-

gal activity at concentrations ranging from 12.5‐50 μM (Table 4). In

addition, whereas the full HC (P1) peptide was more potent against

bacteria than fungi, the lead peptide HC(1‐12)A8K12 (P6) was equally

potent against both types of microorganisms, i.e. showing broad‐
TABLE 4 Antifungal (MIC in μM), haemolytic (% haemolysis at 200 μM a
(P1), truncated and modified analogues (P2‐P4 and P6) and alanine scan p

Antifungal activity

(MIC, μM)

No. Peptide C. albicans A. pullulans Rhodo

P1 HC1 100 12.5 12.5

P2 HC(1‐16) 100 50 25

P3 HC(1‐16)A8 Nt2 Nt Nt

P4 HC(2‐16)A7 100 >100 100

P8 G1A 25 50 12.5

P9 W2A 50 50 25

P10 W3A 50 50 25

P11 R4A 25 50 50

P12 R5A 25 25 12.5

P13 T6A 25 25 12.5

P14 V7A 25 25 12.5

P6 HC(1‐12)A8K12 6.3 12.5 3.1

P15 K9A 25 25 12.5

P16 V10A 25 50 12.5

P17 R11A 25 50 12.5

P18 K12A 25 50 12.5

1Antifungal data of EeCentrocin 1 HC (P1) are derived from Solstad et al. 15

2Nt = Not tested.
3Highest concentration tested.
spectrum antimicrobial activity. By comparison, fluconazole displayed

a MIC value of 50 μM against C. albicans and a MIC of 25 μM against

A. pullulans. Fluconazole was inactive (MIC>100 μM) against

Rhodotorula sp.
3.5 | Haemolytic and cytotoxic activity

The lead peptide HC(1‐12)A8K12 (P6) and a selection of the other

synthetic peptides were screened for haemolytic activity against
nd 25 μM), and cytotoxic activities (IC50 in μM) of EeCentrocin 1 HC
eptides (P8‐P18)

Haemolytic activity Cytotoxic activity

(RBC haemolysis, %) (IC50, μM)

torula sp. 200 μM 25 μM A2058 MRC‐5

74.6 13.5 56 125

0 0 >200 >200

5.0 0 >200 >200

Nt Nt Nt Nt

1.6 0 >1003 >1003

0 0 >200 >200

0 0 >200 >200

3.6 0 >200 >200

0 0 >200 >200

4.1 0.9 Nt Nt

0 0 >200 >200

25.1 2.4 >200 >200

5.1 0 >200 >200

1 0 Nt Nt

0 0 >200 >200

0 0 Nt Nt



FIGURE 4 Haemolytic activity (%
haemolysis) against human red blood cells of
EeCentrocin 1 HC (P1), the lead peptide
HC(1‐12)A8K12 (P6), and the bee venom,
melittin.
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human red blood cells and for cytotoxic activity against human mela-

noma (A2058) and fibroblast (MRC‐5) cell lines. The results obtained

indicated a correlation between antibacterial and haemolytic activity

(Table 4). The peptides showing highest haemolytic activity were the

lead peptide HC(1‐12)A8K12 (P6) and the full HC (P1) peptide. Thus,

P6 showed 25% haemolysis at 200 μM, and P1 showed 75%

haemolysis at 200 μM (Table 4 and Figure 4). At concentrations closer

to the MIC‐values, the haemolytic activity of P6 was negligible. All the

other peptides displayed minor (<5%) or no haemolytic activity at 200

μM. By contrast, the bee venom peptide, melittin, displayed 100%

haemolysis at concentrations as low as 6.3 μM (Figure 4). Only

EeCentrocin 1 HC (P1) displayed cytotoxic activity at the concentra-

tions tested, having IC50 values of 56 μM against human melanoma

cells (A2058) and 125 μM against human fibroblast cells (MRC‐5)

(Table 4).
4 | CONCLUSIONS

Pathogenic bacteria are becoming resistant to most antibiotics to an

ever‐increasing extent. This has spurred the discovery of novel anti-

bacterial compounds such as AMPs isolated from natural sources.

Such natural bioactive peptides are promising templates for designing

shorter analogues with retained or even improved therapeutic poten-

tial. Truncation of the heavy chain (P1) of the marine antimicrobial

peptide EeCentrocin 1, and selected amino acid substitutions, com-

bined with C‐terminal amidation, led to a 12‐residue lead peptide with

potent antibacterial and antifungal activities. This lead peptide HC(1‐

12)A8K12 (P6) contains five cationic residues and five non‐polar resi-

dues, and is possibly forming an amphipathic α‐helical structure when

interacting with bacterial membranes, as suggested by helical wheel

projections and secondary structure predictions. An alanine‐scan

experiment revealed that most of the amino acids present in the iden-

tified lead peptide HC(1‐12)A8K12 (P6) were crucial for maintaining

maximum activity, indicating that the peptide has a highly ordered

amphipathic structure with well‐separated hydrophobic and cationic

regions. The peptide displayed potent antifungal activity and low

haemolytic and cytotoxic activity at MIC concentrations, making it a

promising lead peptide for further drug development.
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