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ARTICLE INFO ABSTRACT

Future climate projections are usually only available at global or coarse scale and the focus is often on long-term
global or regional averages. Though useful to analyse general trends and identify potential risks and opportu-
nities internationally, these resolutions are unable to capture the complexity of coastal areas where aquaculture
is located, and poorly represent the environmental variabilities to which cultured organisms are subjected.
Consequently, most aquaculture planning and management decisions require information at a much finer scale.
If climate projections do not adequately represent conditions experienced at aquaculture sites, potential impacts
could be missed, adaptation strategies may be inappropriate, and time and resources could be spent im-
plementing ineffective measures. To demonstrate this, we focus on sea temperature and the production of
Atlantic salmon (Salmo salar) in Norway, the world's leading salmon producer and a country with a latitudinal
range that exemplifies the challenges related to generalization of farming practises. The results show that if
coarse resolution climate model temperatures were used directly, then impacts on salmon culture could be
severely over or underestimated. For overlapping reference periods, the average daily modelled temperatures at
selected sites frequently differed by several degrees, with the largest differences being over 6 °C, when compared
to daily average farm measurements. This has serious biological and economic implications as potential risks to
production could be underestimated unless corrected. Here two bias-correction techniques were used to calibrate
the climate projections to farm scale and shown to more accurately reflect the conditions experienced. The
calibrated future projections for RCP4.5 suggest increased temperatures at all sites may require adjustments to
existing farm management practices, but the nature and severity of the impact will vary with location. Our
research clearly shows that local scale conditions must be considered, using locally resolved climate projections,
to develop meaningful adaptation plans to meet the growing demand for seafood in a changing climate.
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1. Introduction

Anthropogenic climate change is altering coastal and marine en-
vironments throughout the world at an unprecedented rate (Burrows
et al., 2011; Deutsch et al., 2015; IPCC, 2014; Riahi et al., 2017). At the
same time, the human population is growing and there is increased
demand for food, ranging from basic nutritional meals to high value
commodities (Godfray et al., 2010). Aquaculture is one of the fastest
growing food production sectors in the world and is now responsible for
more than half of the global seafood production. It is expected that this
sector will be an even more important food resource in the future, due
to over-exploited wild fish stocks and reduced land available for
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agriculture (FAO, 2018). However, future aquaculture production will
also be impacted by climate change, affecting contributions to global
food supply (Barange et al., 2018; Handisyde et al., 2016; Merino et al.,
2012; Soto et al., 2019). Industry and policymakers can develop and
implement climate adaptation measures to maximise opportunities and
minimise risks (FAO, 2017), but they should be evidence-based, with
information on how the environmental changes will affect aquaculture
as well as relevant future climate projections.

Climate change impact studies often focus on large scale assessment,
based on averages across large spatial and/or temporal resolutions. This
is useful to assess the distribution of events such as Harmful Algal
Blooms (Townhill, et al., 2018), and a way of identifying potential
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vulnerabilities, risks and opportunities for the global food system and
aquaculture related-livelihoods (Handisyde et al., 2017). However, for
aquaculture producers, it is the environmental changes at the farm and
surrounding area that influence key aspects of production such as
growth, feed utilization, product quality, welfare, disease treatment,
mortality and environmental impact (Austreng et al., 1987; Handeland
et al., 2000; Hvas et al., 2017; Kullgren et al., 2013; Magee et al., 2003;
Vargas-Chacoff et al., 2018). Therefore, in addition to broad-scale
trends, there is also a need to evaluate conditions experienced by bio-
logical organisms (Bates et al., 2018; Helmuth et al., 2014), especially
for farmed animals that are unable to move location.
Many climate adaptation measures will be area or farm-specific. At
a local level, some production challenges may be alleviated by rela-
tively simple farm-measures including the use of deeper nets, change in
stocking strategy and use of different feeds. In other locations, more
advanced and technical solutions will be required, such as closed-con-
tainment systems or selective breeding programmes to produce more
temperature tolerant strains. Although some of these may be developed
at a regional or national level, their relevance and effectiveness will
depend on the local environment and industry need information on the
conditions they will have to adapt to before deciding what action they
should take. Some adaptation strategies will take time and resources to
develop and implement so the aquaculture industry, and associated
stakeholders, need future projections of climate for near- and longer-
term periods to allow the industry to identify research needs and in-
corporate meaningful strategies into their plans. These actions are ne-
cessary if the sector is to meet the growing demand for food, contribute
to Blue Growth strategies (e.g. European Commission, 2012, 2014) and
help countries work towards achieving targets set by the United Nations
Sustainable Development Goals (e.g. UN SDG 14) (UN, 2015).
Climate modelling is computationally intensive and requires a
considerable amount of time and resources. For marine systems, mod-
elled analyses generally focus on the open ocean, where the variability
of physicochemical properties is less than in coastal areas and any
changes tend to occur over longer temporal and larger spatial scales
(Gunderson et al., 2016). Compared to global models, regional models
have better resolved forcing (for example bottom topography and
coastline) and process parameterisations, leading to improved model-
ling of biogeochemical processes (Feser et al., 2011) and improved
model results (Skogen et al., 2018). However, due to their nature, en-
vironmental conditions can vary considerably along a coastline, and
though regional models are an improvement, in most cases they still
have a mesoscale spatial resolution of at least several kilometres
(Gettleman and Rood, 2016) and are considered coarse scale. Conse-
quently, there is insufficient detail to simulate local-scale changes for
coastal bays and fjords where aquaculture production takes place.
Few alternatives to coarse scale models exist for aquaculture pro-
duction in coastal areas. This presents a challenge for impact assess-
ment and adaptation planning as use of generalised averages across
large spatial scales can be misleading. Studies considering the impact of
climate change on terrestrial agriculture rarely use global model out-
puts directly because errors in the simulations relative to historical
observations are large and the spatial resolution is generally too coarse
to satisfy the requirements for finer-scale impact studies (Ramirez-
Villegas et al., 2013). Agricultural studies often use bias correction
techniques to downscale model outputs to local-scale and correct dif-
ferences between observations and simulations (Hawkins et al., 2013).
Similar correction techniques should also be applied to models used for
aquaculture and other coastal studies, particularly as marine species are
more vulnerable to warming than terrestrial ones (Pinsky et al., 2019).
The aim of this study is to evaluate the use of a coarse scale climate
model to simulate sea surface temperature conditions at coastal farm
sites and investigate two bias correction methods to calibrate model
projections to local scale. Norway is the world's leading producer of
Atlantic salmon (Salmo salar) and farms are spread across the fjords,
bays and islands along the entire coastline (Fig. 1), which has been
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Fig. 1. Map of Norway showing the aquaculture production regions (numbered
1 to 13) extending over the entire coastline. The red dots indicate locations of
salmon sites used in this study. Regions 1, 5, 9 and 13 are highlighted in blue as
these are the locations where Sites 2, 15, 26 and 42 are located respectively.
The box highlights the resolution (each cell represents approximately 11 km) of
the NorESM-ROMS climate model downscaling for RCP4.5 for Region 9. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

divided into 13 production regions (Kristoffersen et al., 2018). The la-
titudinal range extends across 13° latitude from 58°N to 71°N, so the
environmental conditions vary greatly, pushing the thermal tolerance
of the fish and influencing aquaculture production (Handeland et al.,
2000; Thyholdt, 2014). Due to the large number of farms, wide lati-
tudinal range and large amount of data collected by the industry,
salmon farming in Norway is an appropriate case study to assess coarse
scale climate model projections for coastal aquaculture. To do this, we
compiled an extensive dataset of daily measured temperatures from
salmon farms in all 13 production regions in Norway. These farm data
were compared to temperatures from one of the highest resolution re-
gional downscaled climate models available for the area (Skogen et al.,
2018) and then bias corrected to adjust the climate projections for local
conditions. Though this study focuses on temperature as an example, it
is also relevant to other climate variables. Furthermore, the findings are
applicable for all types of aquaculture, including freshwater, as well as
coastal fisheries and other aquatic activities. We demonstrate that cli-
mate model outputs must be evaluated against and calibrated to local
conditions to be relevant for many aquaculture planning and manage-
ment decisions, climate change impact assessment and climate adap-
tation strategies. Otherwise, adaptation plans and measures may not be
appropriate or effective and may even be unintentionally misleading.

2. Materials and methods
2.1. Measured and modelled temperature data
Daily temperature measurements at marine cage sites were obtained

from salmon producers for over 100 farms in Norway. Salmon farms are
stocked at different times of the year and their production cycles last
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between 14 and 24 months, followed by a period of fallowing when the
cages are empty. The datasets therefore covered different periods of
time for each farm and as most companies only record temperatures
when fish are in cages, there were gaps in the time-series when not
stocked. Each dataset was screened to determine suitability for use and
processed to remove noticeable errors. Farms with less than four years
of data were discarded as the time period was considered too short and
not suitable for use in bias correction.

Data availability varied considerably between and within the re-
gions, largely due to the number of farms actively producing fish, and
willingness of companies to share data. Four farms per region were
considered an appropriate number to use for this study, however in
some regions it was not possible to obtain data over at least four years
for four individual farms. In total, temperature data for 43 farms were
used for varying periods between 2007 and 2017 (Supporting
Information, Table S1). Temperature decreases with depth, but salmon
do not remain in one constant position within the cage as their depth
preferences vary depending on multiple factors (Fgre et al., 2013; Bui
et al., 2016). Consequently, following discussions with salmon produ-
cers, to enable a more robust comparison between modelled tempera-
tures and farm observations, and avoiding thermal fluctuations in the
upper few metres of the water column, measured temperatures at ap-
proximately 7 m depth were used for this study.

Temperature projections for 7 m depth were extracted from a re-
gional downscaling of the IPCC Representative Concentration Pathway
(RCP) 4.5 scenario simulated by the Norwegian Earth System Model
(NorESM) (Bentsen et al., 2012; Iversen et al., 2013). Climate model
scenarios are used to simulate possible future climate based on poten-
tial future greenhouse gas concentrations, emissions and land use
changes (van Vuuren et al., 2011; O'Neill et al., 2016). They represent
possible developments rather than absolute forecasts (van Vuuren et al.,
2011). RCP4.5 is a mitigation scenario that assumes radiative forcing
will stabilise at 4.5Wm ™2 (approximately 650 ppm CO, equivalent),
without overshoot, in the year 2100 due to the reductions in green-
house gas emissions, possibly through energy policies which move
away from fossil fuels, and changes in land use such as reduced crop-
land and implementation of reforestation programmes (Thomson et al.,
2011; van Vuuren et al., 2011). The NorESM-ROMS model RCP4.5
downscaling covers the North Atlantic for 2006-2070 (Skogen et al.,
2018) and is among the highest resolution regional climate model si-
mulations available for the study area. However, the horizontal re-
solution of the NorESM-ROMS downscaling is approximately 11 km, so
it does not fully represent the complexity of the topography, coastline
(Fig. 1) and physical processes. Projected temperatures were extracted
as 5-day averages from grid locations that the aquaculture sites were
either located in or near to. The 5-day averages were interpolated to
daily in R (R Core Team, 2016) using the ‘imputeTS’ package (Moritz,
2018; Moritz and Bartz-Beielstein, 2017).

2.2. Comparison of farm measurements and uncorrected modelled
temperatures

The uncorrected modelled temperatures were compared to farm
measurements to evaluate if direct model outputs could be used in
climate change impact assessment and adaptation planning. Statistical
comparison was not appropriate as the farm measurements were not
continuous, and the NorESM-ROMS data were 5-day averages which
were interpolated to daily values. The averaging reduces extremes in
the data set. Thus, descriptive and visual comparisons are used instead.
It is important to note that climate models do not simulate specific
years but generate environmental conditions representative of the
modelled (2006-2070) time-period where an individual year (e.g.
2015) does not simulate the actual temperatures of that year, but rather
a ‘typical’ year for that time. Thus, when comparing present day con-
ditions, the uncorrected modelled temperatures represent more general
conditions, whereas the measured temperatures show actual conditions
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Table 1
Relevant temperature thresholds for salmon production.

Temperature Implications for salmon®

>20°C Growth stops, mortality increases

16 to 20°C Reduced welfare, reduced food intake, growth slows, increased
stress and increased mortality.

14 to 16°C Sub-optimal growth, higher risk of reduced health and welfare

11 to 14°C Optimal growth, feed intake

7 to 11°C Sub-optimal growth, higher risk of reduced health and welfare

<7°C Reduced welfare. Food intake is reduced, growth slows, increased
stress and increased mortality.

2 Austreng et al., 1987; Handeland et al., 2000; Hvas et al., 2017; Kullgren
et al., 2013; Magee et al., 2003; Vargas-Chacoff et al., 2018.

and exhibit more day-to-day variation.

For each site, the average daily simulated temperatures at 7 m depth
from the NorESM-ROMS downscaling of RCP4.5 (Skogen et al., 2018)
were compared to average daily temperatures measured over the same
time periods (Supporting Information Table 1) to illustrate the differ-
ences throughout a year. There must be some caution on interpretation
as there were inconsistent gaps in the farm measurements when data
were not collected so, unlike the modelled temperatures, the average
farm measurements are not based on a continual time-series. Conse-
quently, the comparison of multi-year average daily temperatures
provides an overview of the differences between the modelled tem-
peratures and farm measurements and can be considered a general
indicator of how the climate model performs at local-scale and be used
to assess variability between sites.

2.3. Bias correction

Differences between observations and climate model outputs are
often referred to as biases and can be due to the grid cell resolution,
model setup and parameterisation, as well as limitations in under-
standing of physical processes (Ho et al., 2012; Teutschbein and Seibert,
2012; Gohar et al., 2017). Bias correction uses observed data to cali-
brate the projections. The bias correction methods described by
Hawkins et al. (2013) were used in this study. The first bias correction
method (BC1, eq. 1) is a technique where the difference between the
observed and simulated temperatures for a recent reference period are
calculated and then added to the future climate projection.

Tse1 (t) = Myyr (t) + (Oger — Migr) (@)

where T is the corrected temperature, M is the modelled projection and
O is the observed data. REF and FUT refer to the reference and future
time periods respectively and the bar above a symbol indicates the time
mean.

The second bias correction method (BC2, eq. 2) is an extension of
the previous, which also considers changes in variance by including
standard deviations (Hawkins et al., 2013). The sample standard de-
viation (s) was used as the datasets for farm observations had some

gaps.

SORD) (0 (1) - W)

Tgco (t) = Oggp + ———
BCZ( ) 'REF S(MREF) (2)

3. Results

3.1. Comparison of uncorrected modelled temperatures and farm
measurements

As an indicator of the variability between sites, the difference be-
tween the average farm measurements and average uncorrected mod-
elled temperatures for all 43 sites, by Region, is shown in Fig. 2. The
largest underestimations of the model occurred at two sites (Site 13 in
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Fig. 2. Difference between the average farm measurements and average uncorrected modelled temperature over the reference period for each site (difference refers
to average farm measurement — average modelled temperature).
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Fig. 3. Model output (red line) and farm measurements (black line) for Site 2, 15, 26 and 42 in Region 1, 5, 9 and 13 respectively. The coloured background denotes
relevant temperature ranges and thresholds for salmon aquaculture as outlined in Table 1. The time periods are shown above each panel, the years vary due to the
availability of the farm measurements. The thin red and black lines show individual years and the thick red and black line show the averages. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Region 4 and Site 31 in Region 10), where average farm temperatures
were > 6 °C higher than the average uncorrected modelled tempera-
tures on at least one occasion. The largest overestimations of the model
were at two sites in Region 1 and one in Region 2, where farm tem-
peratures were > 3 °C lower than uncorrected modelled temperatures.
It is important to note that Fig. 2 is based on daily averages over several
years, and individual years may show more variation and extremes, and
differences between farm measurements and uncorrected model out-
puts may be higher than shown.

Fig. 2 shows there are clear differences between the farm mea-
surements and the uncorrected modelled temperatures. The implica-
tions of this for salmon aquaculture are apparent when considered
against temperature thresholds, which are indicative of how tempera-
ture can influence and affect salmon production (Table 1). Fig. 3 shows
sites randomly selected from Regions 1, 5, 9 and 13 to demonstrate the
different temperature conditions experienced by farmed salmon across
the Norwegian coast (all 43 sites are included in Supporting Informa-
tion, Fig. S1), within the context of their production thresholds. Site 2
shows that farms in the south of Norway are already experiencing

summer temperatures near the upper tolerance range of salmon, but
that the model underestimated this potential risk to production by on
average 2 to 3°C, and by up to 6 °C if considering individual years.
Conversely, at Site 26 in Region 9, the model also underestimated
summer temperatures which were actually within the optimal range for
salmon of 11 to 14°C, and in some years higher, meaning that the
climate model misrepresented temperatures that may present potential
opportunities for faster growth and possible improved production. At
the four randomly selected sites, the model performed better when
temperatures were colder, except for Site 2 where winter temperatures
were considerably overestimated. Potentially, in this case, missing the
health and welfare risks or leading to use of inappropriate feeding
strategies. The climate model followed a seasonal pattern similar to
those at the sites, although at Site 26 actual temperatures increased
earlier in the spring than the model simulated, and at Sites 15 and 42
the farm measured temperatures decreased slightly later than the un-
corrected modelled temperatures following the peak summer tem-
peratures.

Generally, for peak temperatures in summer months, the model
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Fig. 4. Comparison of farm measurements (black line) and modelled uncorrected temperatures (red), BC1 (green) and BC2 (blue) for the whole year, February and
August at Site 26 in Region 9. The individual lines show different years. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

appeared to underestimate the farm conditions, though the duration 3.2. Comparison of corrected modelled temperatures and farm

and magnitude of difference varied. At other times of the year, it was measurements

not possible to establish even simple trends as the model under-

estimated and overestimated at different sites at different times of the Both correction methods improve the projections, so they more
year, even within regions. These results expose the variability between accurately reflect the conditions experienced at the farms. This made it
locations and show that a simple common universal or regional ad- possible to calibrate the temperatures throughout the year for all farms,
justment would not be appropriate. both in winter and summer months, as exemplified for Site 26 (Fig. 4).
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The first bias-correction method (BC1) was unable to capture some of
the extremes but generally can be considered a good approximation of
the average conditions experienced over the reference period. When the
uncorrected model overestimated (e.g. February at Site 26) or under-
estimated (e.g. August at Site 26), BC1 corrected the bias so tempera-
tures were similar to those experienced by the farm. The second method
(BC2), accounted for differences in variance, and was also a better
match than the original modelled temperatures. The BC2 approach
introduced more variation compared to BC1, and on occasion the values
were exaggerated. For example, in February at Site 26, some of the bias
corrected temperatures were between 0.5 and 1°C warmer than the
actual temperatures experienced in hotter years during the time period
for the first half of the month. BC2 is dependent on variance remaining
constant over time, so in addition to exaggerating temperatures, it also
failed to account for some of the more extreme temperatures. During
August there was a single colder year where temperatures fell below
10 °C for several days which was not captured by the model or BCs.
Furthermore, the highest farm measurement was 16.8 °C, however the
highest BC1 temperature was 15.0 °C and the highest BC2 temperature
for the period was 15.0 °C. Although these were improvements on the
original model, which had a highest temperature of 11.8 °C, unexpected
conditions are not simulated well by climate forecasting models and
bias correction can only adjust based on known and consistent variance.

As demonstrated above, the uncorrected model did not sufficiently
represent farm-level conditions and there was a bias towards colder
temperatures. All sites showed that bias corrected temperatures were
more comparable to the farm measurements than the uncorrected
model (Supporting Information, Fig. S2).

3.3. Potential effects of warming on aquaculture production

The future temperature projections suggest that for the model, BC1
and BC2 there will be increased temperatures, but the change is neither
linear nor consistent. There is also interdecadal variation which may
have implications for aquaculture production (Fig. 5). As with previous
sections, to illustrate the differences between regions for decades be-
tween 2010 and 2069, the four randomly selected sites from Regions 1,
5, 9 and 13 are used as examples. The differences between the two bias
correction methods are clear: BC2 shows a greater range of tempera-
tures and for most decades, the cold and hot extremes are greater in
BC2 than BC1 or the original uncorrected model, as this approach also
considers variance.

At the most southern location, Site 2 in Region 1, BC1 and BC2 show
a large number of days when temperatures are above 16 °C, and some
days reaching above 20°C. In the 2020's, some of the highest BC2
temperatures are projected to reach nearly 28°C on occasion.
Temperatures higher than the thermal window for salmon, which will
negatively affect production. At Site 15 in Region 5, BC1 and BC2 show
increasing temperatures that are likely to affect production, although in
the near-future the extremes suggested by BC2 are not projected to be
as high as those in Site 2. These results highlight the spatial variability
of potential climate change impacts along the Norwegian coastline.

At northern sites, which have temperatures at the lower end of the
thermal range for salmon, increased temperatures could be an ad-
vantage for growth. At Site 26, both of the BCs show fewer days below
4 °C than at present, particularly in the 2030's and onwards. However,
though there may be improved growth, the increased temperatures may
also increase the prevalence of disease and parasites which were pre-
viously not an issue due to the colder temperature. Therefore, it is
important to consider the direct and indirect impacts of temperature
change throughout the year and what the implications are for farm
management. The BC1 results suggest that Site 42 will still experience
colder temperatures in the future, but the upper temperatures will in-
crease so there could be a greater temperature range than currently
experienced. BC2 suggests there may be some risks to production with
days potentially increasing above 20 °C from 2020 to 2029. Although
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Site 26 and Site 42 are both in the north of the country, the conditions
experienced and potential changes are different. This is due to the lo-
cations and latitudinal variation but also local hydrography and topo-
graphy. Other sites in these regions may also be different.

4. Discussion

There is a clear need for caution when using coarse scale climate
model projections for climate change impact assessment on farmed
animals and food production. Particularly for farming in coastal and
marine environments, since health and welfare of cultured animals are
driven by temperature and other local environmental conditions. The
downscaled NorESM-ROMS for RCP4.5 (Skogen et al., 2018) is among
the highest resolution climate model simulations available for the
Norwegian coastline. However, it is still too coarse to fully capture the
conditions experienced at salmon farms. The implications of using un-
corrected coarse scale modelled temperatures are highlighted in this
study. The results show the climate model underestimated summer
temperatures at each of the 43 sites compared, often by several degrees.
This could have biological and economic consequences for cultured fish
and producers as potential risks to health and welfare could be un-
derestimated, adaptation plans may be inappropriate, and time and
money could be spent implementing ineffective measures.

The uncorrected modelled temperatures generally followed the
same seasonal pattern as those experienced by the farms, but at some
locations the spring increase and autumn decrease of temperatures
were out of synchronisation by several weeks. As with other food
production sectors which rely on overall global ecosystem health and
function (Stevenson et al., 2015), the timing of seasonal changes is
important for the aquaculture industry, and reliable information is
needed as it influences many important aspects of production from
stocking strategies to product quality (Mgrkgre and Rervik, 2001). If
climate change impacts on seasonal changes in the environment and
biology are ignored or not appropriately represented by climate models,
then contributions to food security may be compromised, with wider
implications for biodiversity and human health (Stevenson et al., 2015).

While some differences between models and reality are expected,
the results of this study demonstrate that the differences are large en-
ough to have considerable implications if the uncorrected temperatures
were used for impact assessment or adaptation plans. Coarse scale cli-
mate models are not designed to be applied at local level, but in the
absence of alternatives, and a need to understand how the environment
may change, methods such as bias correction can provide improved
projections at local sites. Consequently, it is recommended that based
on the results from this study, aquaculture should follow agriculture
(Hawkins et al., 2013) and use bias correction techniques to calibrate
coarse model outputs to local scale. Nevertheless, it must be acknowl-
edged that bias correction can introduce additional uncertainties. One
of the issues with bias correction is the assumption that the magnitude
of difference between modelled projections and observed data will be
consistent into the future (Ehret et al., 2012; Maraun, 2016). Another
potential limitation is the availability and quality of farm measure-
ments. Recent observations should be used but even for the relatively
advanced salmon aquaculture industry, there is a lack of continuous
time series data on environmental conditions as companies usually only
keep records when a site is stocked. Here, the importance of such data
for climate change assessment has been demonstrated, and the ap-
proaches would be strengthened with more and continuous farm-level
data. Long-term monitoring and data collection programmes that are
supported and/or implemented by industry are vital to understanding
how the environment is changing and the implications this has for
aquaculture production (FAO, 2017; Soto et al., 2019).

All sites assessed showed that bias correction was an improvement
on the original model projections. Other correction and downscaling
techniques exist (Tabor and Williams, 2010; Teutschbein and Seibert,
2012; Raisdnen and Raty, 2013), and may show different results, but
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Fig. 5. Boxplots showing the distribution of modelled temperatures for the uncorrected model (white), BC1 (grey) and BC2 (black) for each decade. The coloured
background denotes relevant temperature ranges and thresholds for salmon aquaculture outlined in Table 1.

the two methods evaluated here are considered appropriate as the
corrected temperatures are comparable to the farm measurements. BC1
represents the average conditions well, but may underestimate the
more extreme years, while BC2 simulates variation which may or may
not be experienced at the sites. The results will be influenced by the
number of years used for bias correction. BC2 is particularly sensitive to
the amount of data used and is only appropriate if there is farm data
over at least four or five years. Clearly, there are advantages and dis-
advantages to both approaches for assessing potential impacts of

climate change on aquaculture and other coastal activities. However,
the choice of method will depend on the scope of the work and the
availability of observed data and modelled projections. Since the dif-
ferences between model and reality varied considerably depending on
the site, it would not be appropriate to use one correction factor for the
entire country and in most cases even a regional-based correction factor
would not be suitable and individual farm-scale corrections are re-
quired.

The bias corrected temperatures show that future aquaculture
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production in Norway will be affected by increasing temperatures due
to climate change, and that there are different implications, depending
on the location. Southern sites in Norway already experience tem-
peratures that are higher than optimal during summer months, and the
bias corrected models suggest days above 20°C would increase in
coming years. BC2 suggests that some sites could be experiencing
temperatures so high that they would pose considerable risk to pro-
duction. In all regions, farm management strategies and feed compo-
sition may have to adjust to changes in temperature affecting feed
utilization, metabolism and growth (Handeland et al., 2000).

The analysis focused on daily temperature which is an important
time-step for many decisions in aquaculture and the information can be
used to evaluate how production may change in the future, for example
temperature projections can be used in bioenergetic models to simulate
potential growth of farmed fish (Stavrakidis-Zachou et al., 2019) and
identify possible risks and opportunities between farm locations. Other
stakeholders may not have such information, but bias correction could
also be used for monthly, seasonal or even yearly analysis. Regardless of
time-step, if using modelled temperatures to inform climate adaptation
measures, it is important to evaluate if the modelled temperature can
sufficiently represent observed temperatures as a difference of several
degrees (whether daily, monthly or annual average) could have im-
portant implications for decision-making and adaptation planning.

It is important to stress that the temperature projections used in this
assessment are one single realisation of an intermediate climate change
scenario (Skogen et al., 2018; van Vuuren et al., 2011). RCP 4.5 is used here
as an example to demonstrate the issue of scale between climate models and
local environments, but it is not a fixed pathway and it is only one of a
range of scenarios which explore different trajectories of greenhouse gas
concentrations, leading to alternative futures with different magnitudes of
climate change (van Vuuren et al., 2011). Climate change impact assess-
ment and adaptation plans should consider multiple scenarios to assist de-
cision-makers. Whether different actions are taken or not by the global
community, the consequences for the future climate will change accord-
ingly, as time progresses. Thus, scenarios may become outdated and targets,
such as those set in the Paris Climate Agreement (UNFCCC, 2015), may
need to be revised. Consequently, new scenarios and updated projections
(O'Neill et al., 2016) should be used for aquaculture when available and
impact assessments and adaptation plans should be regularly evaluated and
updated in response to the changing environment, new information and
models. The bias correction techniques demonstrated here can and should
be used for other climate models and scenarios to ensure they too are re-
levant for local scale assessment.

The 43 sites, across the 13 salmon production regions, covered a wide
variety of geographical locations, over a large latitudinal range. The farm
measurements demonstrate the variability of environmental conditions
between sites, confirming the need for local assessment as broad, regional
or national generalisations will miss the environmental sensitivities that are
important for farmed species in aquaculture production areas throughout
the world. Furthermore, if climate models are used for impact assessment
and adaptation plans then it is important to acknowledge the limitations
and knowledge gaps. This includes the scale issues that have been high-
lighted here, but also uncertainties surrounding the magnitude and fre-
quency of rare events (Ragone et al., 2018), such as prolonged periods of
extreme warming. These events present risks to aquaculture production
(Wade et al., 2019) as well as to the wider marine ecosystem and other
coastal activities (Caputi et al., 2016). However, the occurrence, timing and
distribution of rare events are difficult to predict, and climate model ana-
lysis and products tend to focus on long-term climate trends rather than
relatively short-term events that last days or weeks. Caveats which cover
such limitations and knowledge gaps should be included when using cli-
mate projections at any spatial resolution to avoid overinterpretation of
results or underestimation of risks.

Common climate adaptation strategies encompassing specific produc-
tion sectors over whole continents are being developed for several species
around the world (FAO, 2017). However, as we illustrate in this study,
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common adaptation strategies are only relevant when discussing over-
arching issues and general trends, and not particularly useful for many
decisions and adaptation measures which will be implemented at a local
scale. Our results clearly illustrate the need for appropriate local climate
change descriptions to enable the development of adaptation plans that can
support sustainable production of seafood into the future. Consequently, to
prepare for future climate change, there is an urgent need to implement
long-term monitoring and data collection campaigns at aquaculture sites to
understand how the environment is changing and, as long as climate model
projections at very fine scale (~100 m) are not realistic, then use this data to
calibrate models to spatial scales relevant for aquaculture producers. Fur-
thermore, huge knowledge gaps exist related to the temperature thresholds
for many aquaculture species, including salmon, especially when it comes to
long term effects of sub-optimal conditions and reoccurring high thermal
fluctuations. The focus for this study was temperature, since temperature is
considered the main abiotic factor for fish physiology (Brett, 1979), but
there are other climate change stressors that will directly or indirectly affect
production, and it is important to consider combined effects (Sara et al.,
2018) and to develop models that account for these synergies. This is an
additional challenge for impact assessment and adaptation planning as each
stressor will also exhibit spatial heterogeneity. Ultimately, adaptation
measures are only effective if they address the issues that are or will be
relevant to the industry and these must be based on climate projections that
are appropriate for the area.
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