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A B S T R A C T

In the presented study, Fourier-transform infrared (FTIR) spectroscopy is used to predict the average molecular
weight of protein hydrolysates produced from protein-rich by-products from food industry using commercial
enzymes. Enzymatic protein hydrolysis is a well-established method for production of protein-rich formulations,
recognized for its potential to valorize food-processing by-products. The monitoring of such processes is still a
significant challenge as the existing classical analytical methods are not easily applicable to industrial setups. In
this study, we are reporting a generic FTIR-based approach for monitoring the average molecular weights of
proteins during enzymatic hydrolysis of by-products from the food industry. A total of 885 hydrolysate samples
from enzymatic protein hydrolysis reactions of poultry and fish by-products using different enzymes were stu-
died. FTIR spectra acquired from dry-films of the hydrolysates were used to build partial least squares regression
(PLSR) models. The most accurate predictions were obtained using a hierarchical PLSR approach involving
supervised classification of the FTIR spectra according to raw material quality and enzyme used in the hydrolysis
process, and subsequent local regression models tuned to specific enzyme-raw material combinations. The re-
sults clearly underline the potential of using FTIR for monitoring protein sizes during enzymatic protein hy-
drolysis in industrial settings, while also paving the way for measurements of protein sizes in other applications.

1. Introduction

FTIR spectroscopy has become an established method for protein
and peptide structural characterization over the last few decades. This
is due to the detailed structural information found in FTIR spectra,
where the repeated amino acid building blocks of proteins and peptides
give rise to nine distinctive infrared (IR) absorption bands (i.e., the
amide bands) [1,2]. The inherent ability of FTIR spectroscopy to
monitor the protein backbone can also provide a range of possibilities
to study parameters related to protein secondary structures. These
parameters include hydration and solvent effects, pH and peptide size
[3–8]. Protein size estimations can potentially have practical applica-
tions in a range of different fields, one of them being enzymatic protein
hydrolysis. This process represents an efficient and suitable method to
extract protein from food processing residuals, involving the break-
down of proteins into peptides and free amino acids. The success of a
hydrolysis process can be measured by its ability to produce maximum
possible yield of a high-quality product within the required

specifications and with limited or no batch-to-batch variation. Cur-
rently, there is a lack of fast and reliable analytical monitoring tools
that can be used to achieve such process control.

In enzymatic protein hydrolysis reactions, a proteolytic enzyme
catalyzes the hydrolysis of peptide bonds. The reaction results in the
formation of C-terminals (COO-) and N-terminals (NH3+), consequently
changing both the primary and secondary structure of the protein or
peptide. Several studies on pure model proteins like hemoglobin, β-
lactoglobulin, β-casein, and bovine serum albumin have demonstrated
that FTIR spectroscopy can be used to monitor proteolytic reactions.
[9–13] This was extended to more complex protein-rich matrices when
FTIR was employed as a tool to predict degree of hydrolysis (DH%)
values for trypsin-catalyzed hydrolysis of whey proteins [14]. Recently,
the applicability of monitoring proteolysis using FTIR was further ex-
panded to salmon and poultry-based substrates [15]. Wubshet et al.
reported an FTIR-based multivariate approach for monitoring the
change in weight average molecular weight (Mw) during enzymatic
hydrolysis of chicken by-products [16]. In that study, Mw was
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calculated from size exclusion chromatography (SEC), establishing it as
a reference method for FTIR spectra calibration models and as a mea-
sure of the extent of protein hydrolysis.

Several studies have revealed that amide absorptions (i.e., amide I
at ∼1650 cm−1), NH3+ deformation (1516 cm−1), and COO- stretching
(1400 cm−1) are important for prediction ofMw or DH% [14–16]. From
these studies, it is also apparent that protein hydrolysates originating
from different raw materials and even different enzymes will display
different FTIR fingerprints. However, when the aim is to establish a
generic prediction model for Mw, such spectral differences may be a
challenge. This was illustrated in a recent study by Wubshet et al. [16].
Here, the coefficients of determination between FTIR spectra and Mw

were reduced when samples of different raw material origins were
combined in a single model, compared to separate modeling according
to raw material origin. Different spectral signatures of the raw materials
were designated as the main reason for this. Removing these types of
spectral variations through mathematical pre-processing is hard and, in
most cases, not possible. An alternative approach will therefore be to
exploit these spectral differences. This can be achieved through a two-
level model, where the spectra are assigned to predefined groups con-
sisting of known enzyme-raw material combinations in the first level
using a supervised classification model. On the second level the spectra
can be subjected to a local regression model tuned to specific enzyme-
raw material combinations. Hierarchical modeling through two-level
strategies has previously been exploited in methods such as hierarchical
cluster-based partial least squares regression (HC-PLSR) and hier-
archically ordered taxonomic classification by partial least squares (Hot
PLS) in applications including nonlinear dynamic models and taxo-
nomic classification, respectively [17,18]. Successful applications of
FTIR-based two-level partial least squares (PLS) modeling have been
demonstrated in the determination of clinical parameters such as urea
and glucose as well as complex protein structures [19,20].

In the present study, the objective was to establish and study the
relationship betweenMw and FTIR spectra in an extensive set of protein
hydrolysates. Hence, a total of 885 hydrolysates from enzymatic protein
hydrolysis of poultry and fish by-products using five different enzymes
were studied. The two-level regression model, tuned to various com-
binations of raw material and enzymes, was compared to the standard
PLSR model in order to demonstrate the power of a two-level regression
approach. To the best of our knowledge, this is the first time a link
between Mw of proteins and FTIR spectra has been studied and estab-
lished for an extensive set of samples.

2. Materials and methods

2.1. Materials

Protease from Bacillus licheniformis (Alcalase, 2.4 U/g) was pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Protamex and
Flavourzyme was obtained from Novozymes (Bagsværd, Denmark),
Papain LSG 100 from Enzybel (Waterloo, Belgium) and Corolase 2TS
from AB Enzymes (Darmstadt, Germany). Analytical grade acetonitrile,
trifluoroacetic acid, monosodium phosphate and molecular weight
standards, i.e., bovine serum albumin, albumin from chicken egg white,
carbonic anhydrase from bovine erythrocytes, lysozyme, cytochrome c
from bovine heart, aprotinin from bovine lung, insulin chain B oxidized
from bovine pancreas, angiotensin II human, bradykinin fragment 1-7,
Val-Tyr-Val, and tryptophan were purchased from Sigma-Aldrich (St.
Louis, MO, USA). Water used for HPLC was purified by deionization and
0.22 μm membrane filtration (MilliporeSigma, Burlington, MA, USA).

2.2. Raw materials

Protein-rich raw materials derived from chicken, turkey, salmon
and mackerel were hydrolyzed by a selection of commercially available
enzymes (see Table 1). The poultry raw materials (i.e., chicken

mechanical deboning residue (CMDR), heat treated chicken mechanical
deboning residue (hCMDR), chicken skin (CS), chicken bone (CB),
turkey carcasses (TC) and turkey mechanical deboning residue
(TMDR)) were supplied by a Norwegian slaughterhouse (Nortura,
Hærland, Norway). Chicken fillets/muscle (CM) were purchased from a
local grocery store in Ås, Norway. Salmon raw materials (i.e., heads
(SH), bone (SB) and skin (SS)) were supplied by Nutrimar (Kverva,
Norway). Mackerel raw materials (Ma) were supplied by Pelagia
Tromsø (Tromsdalen, Norway). All samples were minced, packed in
plastic bags and stored at −20 °C until further use.

2.3. Enzymatic hydrolysis and sampling

All hydrolysis reactions were performed according to a previously
published protocol using a Reactor-Ready™ jacketed reaction vessel
(Radleys, Essex, United Kingdom) [16]. Water circulating through the
vessel jacket was kept at 50 °C and was supplied using a JULABO cir-
culator pump (JULABO GmbH, Seelbach, Germany). Raw materials and
water were mixed in the ratios presented in Table 1. All reaction mix-
tures were thoroughly mixed and heated until the suspensions reached
50± 1 °C. This was followed by addition of 1-1.5% enzyme w/w to wet
substrate weight. The reaction time, from addition of the enzyme, were
60 or 80min. During the hydrolysis, aliquots of approximately 7mL
were collected at 11 or 12 time points (0.5, 2.5, 5, 7.5, 10, 15, 20, 30,
40, 50, 60 and 80min, respectively). Many of the reactions were re-
peated multiple times, as seen in Table 1. After collecting the samples

Table 1
An overview of samples and hydrolysis reaction conditions.

Sample namea Enzymeb Enzyme
loading
(w/w)%c

Water
(mL)d

Raw
material
(g)e

No. of
samplesf

CMDRA Alcalase 1.5 1000 500 89
CMDRPa Papain 1.5 1000 500 24
CMDRPr Protamex 1.5 1000 500 36
hCMDRA Alcalase 1.5 1000 500 23
hCMDRPa Papain 1.5 1000 500 24
hCMDRPr Protamex 1.5 1000 500 12
CMA Alcalase 1.5 1000 500 87
CMPa Papain 1.5 1000 500 23
CMPr Protamex 1.5 1000 500 12
CSA Alcalase 1.5 1000 500 22
CSPa Papain 1.5 1000 500 24
CSPr Protamex 1.5 1000 500 12
CBA Alcalase 1.5 1000 500 12
CBPa Papain 1.5 1000 500 12
CBPr Protamex 1.5 1000 500 12
TCA Alcalase 1 1000 500 22
TCC Corolase 2TS 1 1000 500 24
TCF Flavourzyme 1 1000 500 23
TMDRA Alcalase 1 1000 500 24
TMDRC Corolase 2TS 1 1000 500 24
TMDRF Flavourzyme 1 1000 500 24
SHA Alcalase 1 400 400 130
SSA Alcalase 1 400 400 132
SBA Alcalase 1 400 400 11
Ma None 0 400 400 12
MaA Alcalase 1 400 400 12
MaPa Papain 1 400 400 11
MaF Flavourzyme 1 400 400 12

All 885

a Raw materials are defined in chapter 2.2. The abbreviation for the enzymes
used are added to the sample name.
b Alcalase, 2.4 U/g (A), Protamex (Pr), Flavourzyme (F), Papain LSG 100

(Pa) and Corolase 2TS (C).
c Enzyme loading relative to wet weight raw material.
d Water added to reaction mixture.
e Raw material loading.
f Number of samples in each enzyme-raw material group.
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from the reaction vessel, the enzyme was thermally inactivated before
being allowed to cool to room temperature. The samples were then
centrifuged to separate the mixtures into three phases: Solid, water and
fat. The water phase was collected, and analytical samples of protein
hydrolysate were prepared by filtration through Millex-HV PVDF
0.45 μm 33mm filter (MilliporeSigma, Burlington, MA, USA).

2.4. Size exclusion chromatography

SEC analysis was preformed according to Wubshet et al. [16]. The
2mg/mL solutions of standards and the filtrates of the water phases
collected from the hydrolysis were directly used as injection solutions
without further modifications. The injection volumes were of 7 μL for
the fish samples and 10 μL for the standards and poultry samples.
Chromatographic separations of standards and samples were performed
with an Agilent 1200 series instrument (Agilent Technologies, Santa
Clara, CA, USA). Separation was performed at 25 °C using BioSep-SEC-
s2000 (300× 7.8mm) columns from Phenomenex (Torrence, CA,
USA). The mobile phase consisted of a mixture of acetonitrile and ul-
trapure water in a proportion 30:70 (v/v), containing 0.05% tri-
fluoroacetic acid. Isocratic elution was carried out using a flow rate of
0.9 mL/min for 17.0min. Between 17.0 and 17.1min the mobile phase
was changed to NaH2PO4 (0.10M) and maintained until 20.0 min for
column cleaning. Elution conditions were restored between minute
20.0 and 20.1 and the column was equilibrated for an additional
25min. Chromatographic runs were controlled from OpenLAB CDS
Rev. C. 01.07 (Agilent Technologies, Santa Clara, CA, USA). From
chromatographic runs of both the standards and hydrolysate samples
presented in Table 1, a UV trace of 214 nm was used. For the analytical
standards, retention times were obtained from the automatic peak-
picking algorithm of OpenLAB CDS. The average retention times from
triplicate measurements of the standards were used to construct the
calibration curves. Calibration data for one of the columns used in-
cluding average retention times and standard deviation for all the
analytical standers, are presented in the supporting information (SI) in
Table S–1. Finally, Mw was calculated from the UV trace of a single
chromatographic run for each of the hydrolysate samples. Calculations
of the Mw were performed using PSS winGPC UniChrom V 8.00
(Polymer Standards Service, Mainz, Germany). The calculation from the
software was based on a slicing method, similar to those previously
used for analysis of protein hydrolysates [21].

2.5. FTIR spectroscopy

From each of the filtered protein hydrolysates, aliquots (5-7.5 μL)
were deposited on 96-well IR-transparent Si-plates (Bruker, Billerica,
MA, USA) and dried at room temperature for at least 30min to form
dry-films as described by Böcker et al. [15]. From each hydrolysate
sample, five aliquots were deposited to allow for replicate measure-
ments. FTIR measurements were performed using a High Throughput
Screening eXTension (HTS-XT) unit coupled to a Tensor 27 spectro-
meter (Bruker, Billerica, MA, USA). The spectra were recorded in the

region between 4000 and 400 cm−1 with a spectral resolution of
4 cm−1 and an aperture of 5.0mm. For each spectrum, 40 inter-
ferograms were collected and averaged. Data acquisition was controlled
using Opus v6.5 (Bruker, Billerica, MA, USA).

2.6. Data analysis

Pre-processing of FTIR spectra was performed using Savitzky-Golay
2nd derivative smoothing (window width 11 pt, 3rd order polynomial
smoothing) followed by extended multiplicative signal correction
(EMSC) with 2nd order polynomial correction with the mean spectrum
as reference. This pre-processing approach was used to reduce the
scattering effects in the spectra and suppress the effect of the varying
thickness of the dry-films [22]. For all subsequent data analysis, the
region from 1800 cm−1 to 700 cm−1 was used. The pre-processed FTIR
spectra were further used for prediction of Mw. Two PLSR approaches
were applied and compared: (1) Standard PLSR (henceforth denoted as
the one-level PLSR model) and (2) a two-level modeling approach. In
the first approach, PLSR was applied to the pre-processed FTIR spectra
from all subgroups of enzymes and raw materials and the corresponding
Mw values obtained from size exclusion chromatography. All the 885
FTIR spectra and subgroup datasets according to raw material origin
and enzymes used (see Table 1) were modeled together. In the two-level
modeling approach, spectra were first classified into 28 subgroups (as
defined in Table 1) and then subjected to regression models tuned to
each raw material and enzyme combination. Both the classification and
regression models used PLSR for dimension reduction. In the classifi-
cation a variant called canonical partial least squares (CPLS) was
chosen for its ability to give simpler models and the response was a
dummy coded representation of the subgroup [23]. PLS finds small
subspaces in the high-dimensional FTIR data that span most of the co-
variation between spectra and response. For classification, the scores
from the CPLS model were subjected to linear discriminant analysis
(LDA) to obtain class memberships, while ordinary least squares re-
gression was used on the scores when predicting Mw. All the modeling,
classification and prediction were wrapped in a leave-one-out cross-
validation to make sure that none of the spectra interfered with any of
the models that it was to be predicted from, thus eliminating sources of
information bleeding. All statistical analyses were performed using the
MATLAB software (R2018a, The MathWorks, Inc., Natick, MA, USA).

3. Results and discussion

3.1. Average molecular weight and FTIR profiling

A total of 885 hydrolysate samples were prepared in the current
study, collected at different time points during enzymatic protein hy-
drolysis of a variety of raw materials and enzymes (see Table 1). All
samples were analyzed by SEC and corresponding Mw were calculated.
For a given protein hydrolysate, Mw is a highly descriptive molecular
weight distribution parameter that can serve as a measure of the extent
of hydrolysis. The relationship between hydrolysis time and Mw for two

Fig. 1. Mw plotted against the hydrolysis time for protein hydrolysates obtained using four enzymes and two different raw materials from A) Turkey and B) Mackerel.
Raw materials and enzyme abbreviations are defined in chapter 2.2. and Table 1.
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raw materials (turkey and mackerel) is seen in Fig. 1. The maximum,
minimum and average Mw for all raw material and enzyme combina-
tions are displayed in SI, Table S–2.

A large variation in Mw between samples prepared from different
raw materials and enzymes was observed. The general trend was a fast
reduction in Mw at the start of the process followed by a slower change
with increasing hydrolysis time, as shown in Fig. 1. Similar observa-
tions have been reported previously for hydrolysis reactions using dif-
ferent complex substrates and enzymes [16,21]. For many of the re-
actions, significant fluctuations were also observed in the first 20-
30min as shown in Fig. 1. It is reasonable to explain this observation by
the substantial heterogeneity of the reaction mixtures, as raw materials
were only ground to a semi-homogenous mass to simulate industry-
relevant pretreatment before hydrolysis [24].

The turkey hydrolysates generally contained larger amounts of
longer peptides at the beginning of the process, as compared to almost
all of the other raw materials. The difference could be explained by
differences in amount of structural proteins between the two poultry
species. Turkey contains more collagenous compounds than chicken,
and all proteases used have relatively higher specificity for peptide
bonds prevalent within myofibrillar proteins. Another possible ex-
planation is the formation of relatively higher amounts of “virtual in-
termediate peptides” after liberation of peptides within the collagen-
rich turkey hydrolysates. Virtual intermediate peptides are aggregates
of cleaved peptides, limiting the accessibility of the specific peptide
bonds for peptide hydrolysis [25].

Depending on both the raw material quality and the enzyme used,
enzymatic liberation of peptides and free amino acids during an enzy-
matic hydrolysis process of complex protein-rich substrates will result
in large variations in the water phase composition. This is clearly ob-
served in the dry-film FTIR spectra of all protein hydrolysates, espe-
cially in the spectral region 1800-1300 cm−1. Fig. 2 displays the second
derivative FTIR spectra representing hydrolysis time-series using two
enzymes on two raw materials. The most important bands for de-
scribing these variations are marked, and include the NH3+ deforma-
tion (1516 cm−1), the COO- stretching (1400 cm−1), the amide I
(∼1650 cm−1), and the amide II (∼1550 cm−1) bands [15,16]. Addi-
tional examples of second derivative FTIR time-series of chicken and
salmon hydrolysis reactions are provided in SI Fig. S-1.

A few general trends can be deduced from the second derivative
FTIR spectra in Fig. 2. The dominating variation seen in the amide I and
amide II bands are related to changes in the corresponding secondary

structures of the proteins. As the larger proteins are broken down into
smaller peptide fragments, the amide I and II changes and simplifies
accordingly (i.e., there are fewer peaks in the second derivative spectra
after 80min than in the beginning of the hydrolysis). These changes are
most pronounced in hydrolysis of the turkey samples due to the com-
plex protein composition of this raw material. Another observation is
the differences seen between the enzymes used. For Alcalase, large
changes are observed in all the four bands marked in Fig. 2, while for
Flavourzyme, more dominant changes are seen in the signals from the
C- and N-terminals. These developments can be explained by the fact
that Alcalase contains mostly endo-peptidases, while Flavourzyme,
which mainly contains exo-peptidases, releases more free amino acids
into the water phase [26].

3.2. Multivariate calibrations (PLSR)

The hydrolysates analyzed in the current study were produced using
a variety of raw materials and enzymes. This resulted in hydrolysates
with large variations in composition and size distribution, as illustrated
in the previous section. Due to the extensive spectral variations seen in
the FTIR spectra of the hydrolysates, two multivariate regression ap-
proaches were used and compared to establish the relationship between
the FTIR spectra and the correspondingMw values: (1) A one-level PLSR
model and (2) a two-level PLSR model. In the one-level PLSR approach,
the different main subgroups of Table 1 were combined in one single
PLSR model. The results are provided in Table 2, and as shown in the
table, PLSR models with moderate to high cross-validated coefficients
of determination (R2) were obtained. The exception was the turkey
protein hydrolysates where the R2 value was 0.455. The PLSR results of
Table 2 can also be presented in measured vs. predicted plots, as shown
in Fig. 3. Here the raw material groups are color-coded. Fig. 3 reveals
that for the one-level PLSR approach, the prediction of lower and higher
Mw values were less accurate than the region between approx. 1500-
4000 gmol−1. The most challenging samples, as also indicated in the
previous section, are the hydrolysates originating from turkey.

The results from merging all the data and constructing a one-level
PLSR model are shown in Fig. 3 and Table 2. As judged by R2 and the
root mean square error of cross-validation (RMSECV), the model is only
moderately good. Thus, a two-level PLSR model was utilized to see if
any improvements could be achieved. In the two-level modeling ap-
proach, the spectra were first classified into 28 subgroups of raw ma-
terials + enzymes as defined in Table 1 and then subjected to

Fig. 2. Second derivative FTIR spectra (1800-1300 cm−1) of hydrolysate time-series from hydrolysis reactions using two different enzymes and two different raw
materials. A and B) Turkey mechanical debone residue. C and D) Mackerel. A and C) Alcalase. B and D) Flavourzyme.
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regression models tuned to each raw material + enzyme subgroup.
Both the classification and regression models used PLS for dimension
reduction. A score plot showing the two first PLS components of the
classification step is provided in Fig. 4. It can be seen from the figure,
using the two first components of the classification model, that 81.25%
of the samples are correctly classified into subgroups. The score plot
provides a very good illustration of the raw material effect on the FTIR
spectra. In the plot, there is a main separation between fish raw ma-
terials (lower (i.e., mackerel) and left (i.e., salmon) part of the plot) and
poultry materials (right and upper part of the plot). The chicken raw
materials are found along the whole length of the second component,
whereas most of the turkey raw materials are found in the middle part
of the plot. There are also significant overlaps between some of the raw
material subgroups, and a total of 24 components were needed for
correctly classifying 884 of the 885 samples in the current sample set
(data not shown). Since this is a supervised classification, it is also in-
teresting to note that the effect of the hydrolysis time, which is one of
the major parameters contributing to protein size differences, is vir-
tually absent in the score plot.

The results of the two-level PLSR model are provided in Table 3 and
Fig. 5. The table reveals that for all groups, there is a considerable
improvement in regression results compared to Table 2. The exception
is the mackerel data, which is very well modeled also using the one-
level approach. A similar trend is shown in Fig. 5 where large im-
provements are observed for all raw material groups, especially in the
Mw regions that were more challenging using the one-level approach.
This shows that using the two-level approach is a feasible tool for
quantifying generic features from highly detailed spectroscopic mea-
surements of samples of different origin. However, even when using the
two-level approach, the estimation errors for prediction of Mw higher
than 4000 gmol−1 are still high, especially for the turkey hydrolysates.

As previously suggested, the error in prediction of higher Mw may
be largely related to inaccuracies of the reference analysis itself. This is
not only due to the SEC column exclusion range, but also partly due to
the detection method used. In this study a UV detector was used mea-
suring peptide bonds at 214 nm, which is the most common detection
method and wavelength used for this purpose. However, there are some

limitations to this method as free amino acids are barely detected at this
wavelength, while proteins and peptides are detected by absorption
contributions from both peptide bonds and side-groups [27,28]. This,
together with poor retention of larger peptides and protein fragments,
will result in scaling errors, which in turn will affect how well the

Table 2
One-level PLSR model results for different groups of protein hydrolysis samples.

One-level PLSR model No. of samples R2 RMSECV (g mol−1)

All 885 0.834 446
Poultry 565 0.817 449
Chicken 424 0.929 285
Turkey 141 0.455 667
Fish 320 0.934 298
Salmon 273 0.926 299
Mackerel 47 0.992 57

Fig. 3. One-level PLSR results, (blue) mackerel, (orange) salmon, (green) chicken and (red) turkey. A) 320 Salmon and mackerel samples. B) 565 Chicken and turkey
samples. C) All 885 samples. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Score plot with the two first components of the PLSR classification. The
shape of the points denote raw material origin, whereas enzymes are denoted
by color. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)

Table 3
Two-level PLSR model results for different groups of protein hydrolysis sam-
ples.

Two-level PLSR model No. of samples R2 RMSECV (g mol−1)

All 885 0.944 260
Poultry 565 0.926 286
Chicken 424 0.989 114
Turkey 141 0.651 534
Fish 320 0.970 201
Salmon 273 0.962 217
Mackerel 47 0.995 44
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calculated Mw reflects the actual molecular weight distribution in the
sample.

Another potential source of error affecting the relationship between
the FTIR spectra andMw values, is the inherent levels of chemical detail
reflected in the FTIR spectra. When the hydrolysates have high mole-
cular weights, larger protein and peptide fragments having a secondary
structure will dominate the FTIR spectra, particularly in the amide I and
the amide II regions. At lower molecular weights, where the enzymes
have broken down some of these larger fragments, the spectral features
related to secondary structures will be less pronounced. In addition, the
raw materials used in the current study have different complexity le-
vels. Fish raw materials generally have less complex protein composi-
tion than poultry raw materials. This will lead to less complexity in the
amide I and amide II regions, as illustrated in Fig. 2, which in turn
influences the possibility of making an adequate protein size calibration
covering many different raw materials. The complexity differences in
the FTIR amide bands related to secondary structures between sub-
groups also serve as a very good illustration of why the two-level PLSR
outperforms the one-level PLSR approach in the current study. The
regression coefficients of the PLSR models provide a good support for
the effects of raw material on prediction accuracy. The regression
coefficients of two PLSR models (i.e., chicken muscle hydrolyzed with
Alcalase and turkey mechanical debone residue hydrolyzed with Fla-
vourzyme) are shown in Fig. 6. Chicken muscle hydrolysate samples are
expected to contain the least complex protein composition of the two
raw materials and the COO- stretching band (around 1400 cm−1) is
therefore a major feature of the regression coefficients. For the turkey
mechanical debone residue, on the other hand, features in the amide
region are more dominant. The regression coefficients of the other
combinations of raw material and enzyme are presented in SI, Fig. S-2.

The use of two-level or hierarchical modeling is usually related to
three conditions: (1) The reference value of interest relates differently
to the recorded spectra in different subgroups of the sample material,
thus leading to a higher prediction accuracy if a spectrum is predicted
with the correct local model. (2) The spectral signals that are used for
classifying into subgroups are stable and possibly distinct from the
signals used for the reference predictions. (3) The precision of the
classification into subgroups is high and/or the consequence of a wrong
classification is low because similar subgroups have similar prediction
models. If the data being analyzed does not adhere to these conditions,
a hierarchical approach may have little value or be negative for the
overall prediction accuracy. The hydrolysates analyzed in this study fit
perfectly to all three conditions. The dominant variation in the spectra
is due to the differences between subgroups (condition 2), while this
source of variation is small inside each subgroup and across closely
related subgroups (conditions 1 and 3).

One usually imagines a hierarchical model as a structure where
samples enter at the top, getting classified through one or more levels

on their way down, while predictions (or classifications) fall out of the
bottom of the model. In the two-level PLS model, the upper level is thus
the global subgroup classifier (CPLS+LDA), while the lower level
consists of a set of PLSR models that return predicted Mw values. The
upper level in the approach uses known subgroups as classes. In cases
where such subgroups follow the above-mentioned conditions, they are
well suited for this type of modeling. If the subgroups were unknown,
they might still be possible to infer from the structure of the spectra, e.g.
using the clustering approach of HC-PLS. More complex relations be-
tween subgroups with different structures in the signals might benefit
from more levels in the modeling, e.g. like the Hot PLS approach. In all
the hierarchical approaches, a balance between the local adaptiveness
of the model, i.e., how finely split the subgroups are, and the size of the
subgroups, i.e., how robust and precise the prediction models are, must
be found. In this case, optimization for this was not performed, but a
good balance was achieved by the sheer number of samples and the

Fig. 5. Two-level PLSR results, (blue) mackerel, (orange) salmon, (green) chicken and (red) turkey. A) 320 Salmon and mackerel samples. B) 565 Chicken and turkey
samples. C) All 885 samples. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Regression coefficients of the PLSR models of all hydrolysate time-series
produced using: A) Chicken muscle and Alcalase. B) Turkey mechanical debone
residue and Flavourzyme.
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design of the enzyme-raw material combinations that were chosen. This
two-level approach may also be further developed to handle un-
specified hydrolysate samples (with regard to enzyme and raw material
used to hydrolysate). For this, an unsupervised classification system is
needed to group samples with similarities. An example of this has been
presented by Perez-Guaita D. et al. [19].

It is important to note that full cross-validation was used for all
regression models in the present study. As the sample size of the dif-
ferent local regression models in the hierarchical approach varied from
11 samples to 132 samples, the cross-validation approach was the only
validation allowing to appropriately compare modeling results.
Segmented cross-validation leaving out sets of replicates corresponding
to each material-enzyme-time combination was tested, but these results
were closely comparable to the ones presented here (< 1% difference in
R2, data not shown). In future work, when larger subgroups are present,
it will be essential to also employ proper test set validation of the local
regression models.

The results of this study clearly illustrate the potential of using FTIR
for quantifying protein sizes in a range of different protein hydrolysates.
The study also provides a feasible solution for building a generic cali-
bration for protein sizes in hydrolysates. The approach of hierarchical
modeling is also expected to be a potential solution in other FTIR ap-
proaches where the aim is to quantify a generic component in different
raw materials (e.g. fatty acid quantification across microbial strains). As
the use of dry-film FTIR for automated high-throughput analysis in-
cluding automated sample handling and robotics is gaining increasing
attention, a commercial system for protein size estimations in enzy-
matic protein hydrolysis industry could thus be expected when proper
technical developments are made. A tool for protein size estimation
would potentially also find applications in a range of different fields,
including reaction kinetics, in vitro protein digestion, protein produc-
tion by fermentation, and characterization of protein and peptide
compositions of dairy products.

4. Conclusion

In the present study, we have shown thatMw of protein hydrolysates
can be predicted with high accuracy using FTIR spectroscopy. The best
result was obtained using a hierarchical PLSR approach where FTIR
spectra of the protein hydrolysates were classified according to raw
material type and enzyme prior to local modeling. This shows that
prediction of protein sizes in protein hydrolysates can be achieved for a
range of different raw materials using a single mathematical model. The
results therefore demonstrate the potential of using FTIR for monitoring
protein sizes during enzymatic protein hydrolysis in industrial settings,
while also paving the way for measurements of protein sizes in other
applications.
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