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Amoebic gill disease (AGD) is one of the most important parasitic diseases of farmed

Atlantic salmon. It is a source of major economic loss to the industry and poses significant

threats to animal welfare. Previous studies have shown that resistance against this

disease has a moderate, heritable genetic component, although the genes and the

genetic pathways that contribute to this process have yet to be elucidated. In this

study, to identify the genetic mechanisms of AGD resistance, we first investigated the

molecular signatures of AGD infection in Atlantic salmon through a challenge model,

where we compared the transcriptome profiles of the naïve and infected animals. We

then conducted a genome-wide association analysis with 1,333 challenged tested

fish to map the AGD resistance genomic regions, supported by the results from

the transcriptomic data. Further, we investigated the potential of incorporating gene

expression analysis results in genomic prediction to improve prediction accuracy. Our

data suggest thousands of genes have modified their expression following infection,

with a significant increase in the transcription of genes with functional properties in

cell adhesion and a sharp decline in the abundance of various components of the

immune system genes. From the genome-wide association analysis, QTL regions

on chromosomes ssa04, ssa09, and ssa13 were detected to be linked with AGD

resistance. In particular, we found that QTL region on ssa04 harbors members of the

cadherin gene family. These genes play a critical role in target recognition and cell

adhesion. The QTL region on ssa09 also is associated with another member of the

cadherin gene family, protocadherin Fat 4. The associated genetic markers on ssa13

span a large genomic region that includes interleukin-18-binding protein, a gene with

function essential in inhibiting the proinflammatory effect of cytokine IL18. Incorporating

gene expression information through a weighted genomic relationship matrix approach

decreased genomic prediction accuracy and increased bias of prediction. Together, these

findings help to improve our breeding programs and animal welfare against AGD and

advance our knowledge of the genetic basis of host-pathogen interactions.
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INTRODUCTION

Amoebic gill disease (AGD), caused by the infection of the
protozoan Neoparamoeba perurans is a primary gill disease of
farmed Atlantic salmon (Salmo salar) around the globe (Dyková
et al., 2005). The disease is also known to affect other marine
aquaculture species such as rainbow trout, lumpfish, seabream,
and seabass (Dyková et al., 2005; Karlsbakk et al., 2013; Haugland
et al., 2017). In farmed Atlantic salmon, over the past several
decades, AGDhas been a significant problem in Tasmania (Taylor
et al., 2007), more recently in Ireland, and it is becoming a
growing concern in other salmon farming countries including
Norway, Chile, Scotland, and the Faroe Islands (Oldham et al.,
2016). The amoeba thrives best in seawater with warmer
temperatures (12–20

◦
C) and at salinity levels of >32 ppt (part

per thousands) (Taylor et al., 2007, 2009b; Oldham et al., 2016).
It is expected that an increase in the seawater temperature can
result in more outbreaks of this disease.

In infected Atlantic salmon, gill surfaces are covered with
white mucoid spots and gill tissues are damaged and usually
look visibly pale. If the disease is left untreated, high levels of
morbidity and mortality can be expected. Affected fish can be
treated with freshwater or hydrogen peroxide bathing (Wynne
et al., 2008b; Taylor et al., 2009b). However, the direct costs
associated with the logistics of freshwater and hydrogen peroxide
bathing can be significant, and also, relatively high mortalities
and stress can be expected as a result of these treatments.
Nonetheless, these treatment options are the most widely used
approaches to manage the disease, especially since the fish gets
re-infected repeatedly during the seawater phase of production.

An alternative approach to use the current treatment methods
is through selection for increased resistance to AGD infection,
which potentially can improve the time between the treatments
and serve as a permanent or long-term solution to the problem.
Several studies have reported genetic variation for AGD, where
heritability estimates range from 0.12 to 0.48 (Taylor et al.,
2007, 2009a; Gjerde et al., 2017; Robledo et al., 2018). A
few studies have also reported that the underlying genetic
architecture to AGD resistance is polygenic, with a few suggestive
quantitively trait loci explaining very little of the genetic and
phenotypic variations (Robledo et al., 2018). However, the
accuracy of selection of breeding candidates for resistance to
AGD using genomic information was higher (12–18%) than
using pedigree information (Robledo et al., 2018). Selection of
breeding candidates using genomic information in aquaculture
populations captures the within-family variation and more
accurately can predict the Mendelian sampling term compared
to using pedigree-based information (Daetwyler et al., 2013).

Understanding the genetic basis of resistance or tolerance
against any disease is a challenging process that requires
integrated knowledge of polymorphism at the DNA level along
with detailed information about the host’s response at various
upper molecular hierarchies such as transcriptome, proteome,
methylome, metabolome, and microbiome. In particular, new
advances in sequencing technologies have now made it possible
to obtain accurate information about the global profile of
expressed genes, to assess the transcriptional variations in host
response to pathogens. Up to now, however, only a few studies,

mainly by utilizing microarray technology, have investigated
the transcriptome profile of Atlantic salmon in response to
AGD infection (Morrison et al., 2006; Wynne et al., 2008a,b;
Young et al., 2008). These studies, using a 16 or 17K array,
have identified a few hundred differentially expressed transcripts
between the healthy and infected animals challenged with N.
perurans. Their findings highlight the modifications in the
expression profiles of genes such as interleukin-1 beta, with
potentially critical roles in AGD pathogenesis.

In addition, although a vast number of gene expression
analysis have been undertaken for various disease traits in human
(e.g., Prensner et al., 2011; Costa et al., 2013), livestock (e.g.,
Bhuju et al., 2012), and aquaculture populations (e.g., Krasnov
et al., 2016), to our knowledge very little has been done to
integrate this information in genomic predictions to potentially
achieve higher accuracies of selection. Such lack of integration is
mainly due to relatively few samples that are used for the gene
expression assessment, and those individuals are usually not part
of the training population in the genomic prediction analysis.
Furthermore, because results from gene expression experiments
are reported on the “gene-level” (i.e., how genes are up- or
down-regulated), and the animals used in genomic prediction
are genotyped on SNP arrays that have not necessarily been
obtained as part of the differentially expressed transcript analysis,
it is not straightforward on how to combine these two sources
of information.

We propose that because markers on SNP arrays can be
mapped directly to the genome, we can give different weights
(i.e., assign higher importance) to markers that are located
within or close to up- or down-regulated genes, identified from
gene expression analysis, in genomic prediction models. This
approach of using external information (e.g., results from gene
expression analysis) to weight markers differently in genomic
prediction is not new but have mainly been tested using results
from genome-wide association studies (GWAS) (de Los Campos
et al., 2013; Ni et al., 2017). For instance, de Los Campos
et al. (2013), in studying type-2 diabetes in humans, reported an
increase in predictive ability when using −log10p values from a
GWAS in genomic best linear unbiased predictions (GBLUP).
However, Ni et al. (2017) did not find higher predictive power
in layer chickens using −log10p values as weights compared
to ordinary GBLUP. Contrary to using external information as
weights (e.g., GWASes) to build genomic relationships matrices
for GBLUP, allele substitution effects obtained from the same
dataset can also be used as weights to build genomic relationship
matrices in GBLUP (Su et al., 2014; Zhang et al., 2015, 2016). Such
approaches have been shown to result in increased prediction
accuracy of genomic predictions.

In this study, to assist the identification and elucidation
of molecular mechanisms underlying genetic resistance to
AGD, we performed whole transcriptome profiling of naïve
and infected animals and further integrated this information
with polymorphism data from ∼1,330 fish across thousands
of genetic markers. We specifically focused on the phenotypes
collected during the second infection, as there exist low genetic
correlations between the first and subsequent encounters with N.
perurans (average rg= 0.24) (Kube et al., 2012). On the other
hand, the estimated genetic correlations between the second
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and all later re-infections are high (∼rg = 0.8) (Kube et al.,
2012). Therefore, in a field setting, where a fish can continuously
get infected with this amoeba, it is more important and cost-
effective to identify the genetic basis of resistance following the
initial infection. Here we aimed to (i) investigate and identify
genes and genetic networks that had modified their regulation
in response to infection (ii) quantify the genetic variation of
AGD resistance (iii) identify the genetic mechanisms of AGD
resistance by conducting genome-wide association and gene
expression analysis and (iv) to explore the potential of combining
results from the gene expression analysis with SNP information
to increase the accuracy of genomic selection for AGD resistance
in Atlantic salmon.

MATERIALS AND METHODS

SalmoBreed Population and Challenge
Tests
Year-Class 2015

In 2015, 1,672 PIT-tagged (passive integrated transponder)
smolts from 100 SalmoBreed year-class 2015 breeding nucleus
families, the offspring of 50 sires and 100 dams (∼17 fish
per family), were transported from Nofima Sunndalsøra to the
challenge facility VESO Vikan (Namsos). After arrival, the fish
were kept on 12◦C brackish water (15 ± 2%) and 24:00 light
regime. Further, after the initial acclimatization, the fish were
reared on full salinity water (31 ppt) and challenged with an
N. perurans isolate (VESO Vikan ref. no. 2014.10.15NO). On a
weekly basis, 30 fish were gill scored until an average gill score
of 2.4 was reached at day 17 post-challenge, where all fish were
scored and then treated with freshwater three consecutive times.
The scorings were based on the criteria previously described by
Taylor et al. (2009a,b). According to this scoring, the level of
infection can range from 0 to 5. A score of 0 indicates that the gills
are clear from the amoeba. A score of 1 or 2 is assigned if the gills
have one or up to 2–3 small whitish spots of amoeba, respectively.
A score of 3, 4, or 5 indicates that up to 20, 50, or more than 50%
of the gill is covered with the amoeba. The fish were treated with
freshwater for 3 h at 21, 31, and 41 days post challenge. After the
freshwater treatments, all fish were re-challenged, and the gills
were again monitored on a weekly basis until an average gill score
of 2.8 was reached at day 24. All surviving fish were then scored
before the termination of the trial.

Year-Class 2016

In 2016, we challenged fish from SalmoBreed year-class 2016 at
Industrilaboratoriet (ILAB) challenge facility in Bergen. In total,
2,435 PIT-tagged smolts from 277 full-sib families (∼9 fish per
full-sib family) were transported from SalmoBreed Lønningdal
breeding station to ILAB. After the initial acclimatization,
the fish were challenged with an N. perurans isolate in full
salinity water (34 ppt) with 1,000 amoebas per liter. Fish were
monitored regularly for disease progression and mortalities.
After approximately 2 weeks, the fish had an average gill score
of 2 and were treated with freshwater for 5 h. The fish were then
held at 25 ppt salinity over 5 days before being re-challenged with
500 amoebas per liter at 34 ppt. After approximately 2 weeks,
when the fish had reached an average gill score of 2, all animals

were scored, weighed, and the experiment was terminated. The
samples and the scores from the second-gill scoring were used for
further genotyping and genomic data analyses. To better assess
the severity of AGD infection, the ILAB has optimized a scoring
system, suggested initially by Taylor et al. (2009a,b). According
to this scoring scheme, the 4-gill arches on each side of the head
are scored on both sides using the scale of Taylor et al. (2009a,b),
resulting in 16 independent scores. While the minimum score
in this system is 0, (

[

gill score
]∗

16 [number of gills] = 0),
the maximum score is calculated as 5∗16 = 80. The sum of
these scores across all gill arches was used as the phenotype for
each fish. Both challenge trials were approved by the Norwegian
Animal Research Authority (NARA), and were conducted under
regulations controlling experiments and procedures in live
animals in Norway (the Animal Welfare Act of December 20th
1974, No 73, chapter VI sections 20-22355 and the Regulation on
Animal Experimentation of January 15th 1996).

Transcriptome Sequencing, Alignment, and
Differential Gene Expression Assessment
To understand the host genetic response to AGD infection,
from the animals challenged in 2015, representing 30 different
SalmoBreed families, we collected the second left anterior gills
from 6 naïve individuals (before the challenge test), 6 fish after
the first infection and 24 fish by the termination of the test and
immersed the tissues in RNALater (Ambion) for transcriptome
analysis (Supplementary Figure 1). Sampling a higher number
of animals with various degrees of clinical symptoms against
AGD during the second challenge was aimed to increase the
power of identifying genes and genetic networks central for
improved resistance against this disease following the first
infection. Total RNA was extracted using RNeasy Plus mini kit
(Qiagen). The RNA integrity and size distribution were assessed
using Bioanalyzer 2100 (Agilent Technologies). All RNA had RIN
values (RNA Integrity Number) >8. Preparation of the mRNA
libraries and sequencing transcripts were performed by the
Norwegian High-Throughput Sequencing Centre (https://www.
sequencing.uio.no/) using standard protocols (https://support.
illumina.com/content/dam/illumina-support/documents/
documentation/chemistry_documentation/samplepreps_truseq/
truseqrna/truseq-rna-sample-prep-v2-guide-15026495-f.pdf).
Samples were sequenced on an Illumina HiSeq 4000 platform
as strand-specific, paired-end (PE) 150 bp reads. All the raw
sequences have been deposited in the NCBI Short Read Archive
(SRA) under the accession number PRJNA509327.

Following read quality assessment (www.bioinformatics.
babraham.ac.uk/projects/fastqc/), removing sequencing adapters
and trimming low quality bases (Bolger et al., 2014), the
remaining sequences were aligned to the salmon genome
assembly ICSASG_v2 using TopHat (v.2.0.13) (Trapnell et al.,
2009) and reads with more than a single hit were discarded. The
uniquely aligned sequences were then fed to Cufflinks (Trapnell
et al., 2010, 2012) to generate transcriptome assemblies for each
sequenced sample and all merged by Cuffmerge to construct
a single gene transfer file. Expression data were normalized
via the median of the geometric means of fragment counts
across all samples, where relative expressions are expressed
as fragments per kilobase of exon per million mapped reads
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(FPKM) values. Cuffdiff was then used to estimate the expression
abundances of the assembled genes and transcripts and to test
for differential levels of expression between phenotypic groups.
Genes or transcripts with >1.5-fold difference in expression and
corrected p-values (FDR adjusted) of <0.05 were assigned as
differentially expressed (DE).

Genotyping and Genotype Quality
Assessment
From the challenge test performed at the ILAB in 2016,
1,585 individuals, representing 136 families, were selected to
be genotyped on a custom-made 55K Affymetrix Axiom
array, developed by Nofima in 2016 in collaboration with
SalmoBreed and Marine Harvest (NOFSAL03). DNA extraction
and genotyping were performed by IdentiGEN Ltd. (https://
identigen.com/; Dublin, Ireland). In total 1,335 fish passed the
initial quality control during DNA extraction and the SNP
calling steps of the Affymetrix axiom analysis suite software.
Additional genotype and sample quality checks were undertaken
with PLINK v1.9 (Chang et al., 2015). We discarded samples
and SNPs with call rates <90%. Furthermore, SNPs with Hardy
Weinberg p-value (Fisher’s exact test) <10−10 and those with
minor allele frequency <1% were removed. Lastly, samples
with very low or high heterozygosity rate (heterozygosity rate
≤0.25 and ≥0.45) were also removed from the dataset. After
the quality checks, the final data consisted of 53,109 SNPs and
1,333 samples. It should be noted that although all the animals
from year-class 2015 were also genotyped (AROS Applied
Biotechnology, Aarhus, Denmark), the data were unfortunately
unusable due to problems associated with the correct sample
ID assignment.

Variance Components Estimation and
Genomic Relationship Matrices
Variance components were estimated using phenotype
information from the genotyped fish of the 2016 year-class.
The following linear mixed animal model was fitted using
ASReml v4 (Gilmour et al., 2009) as follows:

y = Xb+ Tm+ Zc+ Zg + e

where y is the vector of AGD scores; X,T, and Z are design
matrices assigning phenotype to the scoring person, tanks (fish
were kept in two tanks during the experimentation period),
common environmental effect of full-sibs prior to tagging and
genomic breeding values (GEBV), respectively; b is the effect of
scoring person (two scoring persons in total); m is the effect
of tank; c is the effect common to full-sibs other than additive
genetics; g is the vector of GEBVs, and e is the vector of
residuals. The effect common to full-sibs and the residual term
is assumed to follow a normal distribution c ∼ N(0, Iσ 2

c )
and e ∼ N(0, Iσ 2

e ), where I is an identity matrix and σ 2
c

and σ 2
e are the variances for effects common to full-sibs and

residual. GEBVs were assumed to follow a normal distribution
g ∼ N(0, Gσ 2

g ), where G is the genomic relationship matrix

computed using different approaches (described below) and σ 2
g

is the additive genetic variance for AGD scores. The analysis was

also undertaken with a similar model in which the G matrix was
replaced with the numerator relationship matrix and Zg with Za
where a was the vector of additive genetic breeding values. All
variance components were estimated using restricted maximum
likelihood (REML).

Two different types of G matrices were constructed in this
study to allow for incorporating gene expression information
from differential gene expression analysis in genomic prediction.
The first genomic relationship matrix (Gord) was constructed
as follows:

Gord =
WW

′

2
∑Nsnp

i=1 pi(1− pi)

where W is a centered (−2p) matrix of marker genotypes that
were coded as 0 for homozygote AA, 1 for the heterozygote (AB
or BA) and 2 for homozygote BB. pi is the allele frequency of the
B allele, and Nsnp represents the total number of markers used in
the analysis.

The second Gmatrix was constructed using information from
the DE gene analysis. The log21F values from the DE analysis
was used as weights in the G matrix. In the DE analysis, the
log21F values are obtained for genes, and therefore markers on
the SNP array were mapped to their corresponding gene location.
We assigned the log21F value to markers that were n kilobase
pairs (kb) left or right of the genes start and end positions.
Since not all markers are located within or near to a gene, two
groups (close to a gene or not) of markers were generated. The
genomic relationship matrix (GDE) was then computed as GDE =
λGgenic + (1− λ)Gord. Ggenic had the following construction:

Ggenic =

[

WDEDWDE
′

2
∑NsnpDE

i=1 piDE
(

1− piDE
)

]

where Gord is as described before except that markers that were
not mapped into genic regions were used. WDE, piDE, NsnpDE
are as described for Gord matrix except that markers from the
genic regions were used to construct Ggenic. D is a diagonal

matrix of weights which was based on the log21F /(log21F)
of the differentially expressed transcriptome analysis. Although
the log21F from the DE analysis was used in this study,
−log10p values obtained for each gene from the DE analysis
could also be used. The script to compute the genomic
relationship matrices Gord and GDE is available at https://github.
com/soloboan/DEbased_Gmatrix. The λ parameter determines
how much of the genic matrix constitute GDE. Just as Zhang
et al. (2015) and Ni et al. (2017), λ was determined using a
cross-validation scheme in the training population by searching
through ranges of values from 0.1 to 1. When λ = 0, GDE= Gord.

Accuracy and Scale (Bias) of GEBVs
Genomic prediction of gill-scores was undertaken with the same
model as detailed under the variance component estimation
section. A random sample of 1,000 of the total 1,333 fish
was used as training animals while the remaining fish were
used as validation points. This approach was replicated 20
times and with the prediction accuracy and bias computed
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for each replicate. Prediction accuracy was computed for each
replicate as:

Accuracy (rcorr) =
ρ(GEBV , yadj)√

h2

where ρ is the Pearson moment correlation coefficient, GEBV
is the estimated genomic breeding values, yadj is the adjusted
phenotype (yadj = y − Xb − Tm), and h2 is the heritability of
the trait when λ = 0.

The scale of prediction was estimated by the regression
coefficient of yadj on GEBV. A regression coefficient of 1 indicates
no bias in EBVs, while a value higher or <1 is indicative of
deflated and inflated GEBVs, respectively. The accuracy and bias
of predation results are presented as the means and standard
deviations over the 20 replicates.

Scenarios Used for the Genomic Prediction
The scenarios considered were based on the proximity of
markers to the significant DE genes and the level of significance
of the genes based on the DE analysis. The scenarios are
presented below:

i) Markers that were 25 kb of a moderately significant DE genes
(p ≤ 2.4 × 10−3);

ii) Markers that were 100 kb of a moderately significant DE
genes (p ≤ 2.4 × 10−3);

iii) Markers that were 25 kb of a highly significant DE genes
(p ≤ 1.0 × 10−4);

iv) Markers that were 100 kb of a highly significant DE genes
(p ≤ 1.0 × 10−4);

For scenarios i, ii, iii, and iv, the number of markers used
to construct GDE were 864, 2,317, 354, and 941. Variance
components, heritability, prediction accuracies, and biases are
presented for all these scenarios.

Genome-Wide Association Study
GWAS was performed using the model described earlier, except
that marker effects were also fitted. Themodel was fitted in GCTA
v2 (Yang et al., 2011) as follows:

y = Xb+ Tm+Wα + Zg + e

where y, X, b, T, Z, g, and e have been described earlier;
W is the incidence matrix for marker genotypes, and α is the
allele substitution effect of the SNP. Markers were considered
genome- or chromosome-wide significant when they crossed the
Bonferroni threshold p ≤ 9.41 × 10 −7 and p ≤ 2.73 × 10 −5.

RESULTS

Challenge Testing and Comparative
Transcriptomic Analyses of 2015
Year-Class
Following filtering the low-quality sequences and discarding
reads with multiple hits against the genome, on average, we

obtained more than 13 million uniquely mapped PE reads per
individual. Comparative assessment of the transcriptome profiles
between the three sampling stages indicated that the host’s
response to the amoeba infection was positively correlated with
the duration at which an animal had encountered the parasite
(Supplementary Figure 2). In total, we identified 887, 2,107, and
1,145 genes with significant changes in their expression between
the naïve and the first, naïve and the second and the first and the
second infections, respectively. The principal component analysis
(PCA) of the gene expression data along with the clustering of
the differentially expressed transcripts, further showed a clear
distinction between the transcriptomic profiles of the host’s
response during each of the different stages of the challenge
(Figures 1A,B). As shown in the PCA plot, the animals’ global
transcripts during the second infection had a higher degree of
divergence and variation compared to the other two sampling
stages (Figure 1A). Such higher divergence in gene expression is
possibly an indication of considerable inter-individual diversity
in the genes and the genetic networks that become activated
following the amoeba re-infection.

Enrichment analysis of Gene Ontology (GO) associated
terms among the DE genes showed a significant reduction in
the transcription of different components of immune-related
genes following both infections compared to the naïve animals
(Supplementary Figures 3a,b). These genes are mainly involved
in the innate immunity of fish and particularly function in
immunoregulatory, inflammatory responses, and chemotaxis
(Figures 2A,B). For instance, many of these genes encode
chemokine ligands such as chemokine CCmotif ligand 4 (CCL4),
ligand 19 (CCL19), chemokine CXC motif ligand 9 (CXCL9),
and ligand 10 (CXCL10) (Figures 2A,B). For some of these
genes, we found similar changes in their expression profiles
among the paralogues and/or the homeologues. For example,
we detected multiple copies of CCL19 on ssa01, ssa11, ssa15,
and ssa24 to have significantly down-regulated their expressions.
Chromosome ssa01 shares duplicated regions with chromosome
ssa11 and similarly, ssa15 has ancestral segments in common
with ssa24 (Lien et al., 2016).

It is interesting to note that some of the down-regulated genes
in the primary infection were slightly up-regulated during the
subsequent encounter with amoeba (Figure 2A), even though
they still retained lower expression levels compared to the naïve
animals. Majority of these genes encode for chemokines and
are involved in recruiting T- and B-cells in association with
antigen-presenting cells such as dendritic cells (DCs). A similar
observation has previously been reported for Leishmania, the
parasitic agents, causative of leishmaniasis (Liu et al., 2009).
It was shown that the parasite could influence the host’s early
immune response bymodulating DCs function in a way to inhibit
their antigen-presenting role, and consequently, affect the T-
cell response. Here, a similar explanation can also be proposed,
although, further investigations are required.

We are also reporting some immune genes that have
significantly elevated their transcription levels in infected
animals. Primary innate immune response, following the first
infection, was initiated by the up-regulation of a single gene,
immunity-related GTPase M (IRGM; Figure 2A). IRGM plays
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FIGURE 1 | (A) Principle component of gene expression. (B) Clustering of the gene expression data between the naïve, animals during the first infection with scores 2

or 3 and animals during the second infection with scores 2 or 3. The scorings are based on the scheme outlined by Taylor et al. (2009a,b).

a significant role in the clearance of acute protozoan infection
via autophagy canonical pathway (GO:0006914) (Feng et al.,
2009). Moreover, it has been suggested that the product of
this gene may also be involved in adhesion and mobility of
interferon (IFN)-gamma-activated macrophages (Henry et al.,
2009). However, the expression of this gene was reduced
in the secondary infection as the immune response started

to shift from innate to adaptive. Following the re-infection,
modification in the expression of immune-related genes involved
in pathways associated with chemotaxis, inflammatory response,
and cytokine production was identified, of which about 20
genes had significantly up-regulated their expression compared
to the naïve fish (Figure 2B; Supplementary Figures 3c,d). We
found evidence of putative paralogous or homeologous copies
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FIGURE 2 | Heatmap of the standardized FPKM gene expression, showing relative levels of abundance of differentially regulated immune related transcripts between

(A) Naïve and animals during the first infection and (B) Naïve and animals during the second infection. Numbers following an underscore represent putative duplicated

genes.

of CXCL14 on ssa05 and ssa09, apoptosis antigen ligand
(FASLG) on ssa20 and ssa23 and CCL20 on ssa03 and ssa15 to
show alternative patterns of expression between the duplicates
(Figure 2B). Such an alternative profile in expression between
duplicated gene copies might be a suggestion of possible
neofunctionalization of these genes following the whole genome
duplication (Amoutzias et al., 2010).

Some of the up-regulated genes such as CCL8 and CCL20
(Figure 2B) are associated with the recruitment of T-cells, B-cells,
natural killer cells (NK), and DCs to the inflammatory sites (e.g.,
Jensen andGad, 2010). However, themost enriched groups of up-
regulated genes in animals during the second infection are genes
with functional properties related to cell and biological adhesion
(Figure 3; Supplementary Figure 3c). For instance, we identified
different members of the integrin receptor family, belonging to
both alpha and beta subunits, to have elevated their levels of
transcription (e.g., ITGA2, ITGA5, ITGB6). These cell surface
glycoproteins are not only crucial for mediating cell-cell and cell-
extracellular matrix adhesion (Giancotti and Ruoslahti, 1999),

but also play significant roles in the recruitment and activation
of immune cells (Evans et al., 2009). Also, same as before, among
these genes we further detected signatures of up-regulation of
putative homeologes located in duplicated chromosomal regions.
The duplicated copies of integrin alpha 2 (ITGA2) on ssa01 and
ssa13 as well as copies of thrombospondin-1 (THBS1) on the
homeologous segments of ssa01 and ssa09 showed significant
up-regulation during the second infection.

Comparing the transcriptomics of animals in the second
challenge, with different levels of infection (i.e., score 2 vs. score
3), we detected signatures of 289 differentially expressed genes,
with 206 having significantly higher expression in animals with
score 3. In particular, among the transcripts with elevated levels
of expression in animals with score 3, we found enrichment of
genes with functional properties in cell adhesion. These genes
included 1. Thrombospondin-2, a member of thrombospondins
gene family of calcium-binding glycoproteins, with roles in
regulation of angiogenesis, connective tissue organization and
immune response (Bentley and Adams, 2010), 2. Integrin
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FIGURE 3 | Heatmap of the standardized FPKM gene expression, showing

relative levels of abundance of differentially regulated transcripts with functional

properties in “cell-adhesion” between naïve and animals during the 2nd

infection. Numbers following an underscore represent putative duplicated

genes.

alpha-8 with functions as explained above, 3. Brevican core
protein, a proteoglycan that is involved in cell adhesion,
movement, and neuronal plasticity (Gill et al., 2012), 4.
Thrombospondin-1, an adhesive glycoprotein associated with
angiogenesis, motility, and cell growth (Lawler, 2002), and 5.
Tenascin C, an extracellular matrix glycoprotein with a critical
role in cell signaling in particular in response to inflammation
and tissue injury (Midwood and Orend, 2009). Further, we
also found signatures of many long-noncoding RNA (lncRNA)
with different transcription patterns between the two scoring
phenotypes. We expect these transcripts to be involved in
the transcription, translation and regulation of at least some
of the differentially expressed genes reported in this study
(Carrieri et al., 2012).

On the other hand, among the transcripts with significantly
higher expression in animals with less severe infection,
we identified a few immune-related genes. These genes
included: perforin-1, a glycoprotein with expression mainly
limited to the natural killer and CD8+ T-cells, which is
released to the target cells upon cell-cell contact (Voskoboinik
et al., 2015). Ectonucleotide pyrophosphatase/phosphodiesterase
family member 2, encoded by ENPP2 gene, also a glycoprotein,
with functions in both physiological and pathological pathways
that include inflammation and oncogenesis processes (Farquhar
et al., 2017). And finally, chemokine ligand 20 (CCL20), a
principal regulator of both innate and acquired immunity that
acts as a chemoattractant for immature dendritic cells, memory
T lymphocytes, and naïve B-cells (Schutyser et al., 2003).

TABLE 1 | Estimates of variance components and heritability from pedigree and

genomic information.

Parameters Pedigree Genomic

σ2g 4.380 (2.168) 3.821 (0.804)

σ2c 0.575 (0.958) 0.643 (0.390)

σ2e 8.812 (1.174) 9.200 (0.504)

σ2p 13.767 (0.638) 13.665 (0.627)

h2 0.318 (0.153) 0.280 (0.053)

c2 0.042 (0.069) 0.047 (0.028)

σ 2
g , genetic variance; σ 2

c , common environmental variance; σ 2
e , residual variance; σ 2

p ,
phenotypic variance; h2, heritability.

Challenge Test, Phenotypic Scores, and
Genotyping of 2016 Year-Class
The phenotypic distribution of AGD scores for the 1,333
genotyped animals of the 2016 year-class following the
second challenge is presented in Supplementary Figure 4. The
minimum, maximum, average and median scores were 0, 29,
5.79 (SD = 4.16), and 5.0, respectively. About 99.0% of the fish
received a score of≤ 20.When using the scoring system of Taylor
et al. (2009a,b), a gill score value of 3 and above directly implies
how severe a fish has been infected and treatment commences
when the average score exceeds 2. However, although the new
scoring system is detailed, it might be difficult to find the ideal
score that reflects infection severity.

Pedigree and Genomic Variance
Components
Moderate heritability estimate of AGD infection was obtained
using pedigree (0.32 ± 0.15) and genomic (0.28 ± 0.05)
information (Table 1). Therefore, the estimate of heritability
using genomic information was about 12.5% lower than that of
pedigree. The shared environmental variance was estimated to be
about 4.2–4.7% of the total phenotypic variance and 13.1–16.8%
of the genetic variance.

Genome-Wide Association Results
The results of the GWAS are presented in Figure 4 and Table 2.
Twelve markers exceeded the chromosome-wide significant
threshold of p ≤ 2.73 × 10 −5 threshold. The markers are
located on chromosomes 4, 9, and 13. Allele frequencies for
the significant markers ranged from 6 to 46%. In addition,
the proportion of genetic and phenotypic variance captured by
each marker was <5.5 and <2.0%, respectively. Markers AX-
97870670, AX-87625334, AX-87645824, and AX-97870670 on
ssa04 were in high linkage disequilibrium (LD; r2 = 0.98).
These markers fall within a region of the chromosome that
contains variousmembers of the cadherin gene family and at least
one of these genes were identified to be differentially expressed
between the naïve and animals at the second infection. AX-
88308327 on ssa09 is located in a genomic segment containing
protocadherin Fat 4 gene, amember of the Fat cadherin subfamily
with function in influencing planar cell polarity and Hippo
signaling (Sadeqzadeh et al., 2014). Markers on ssa13 were also

Frontiers in Genetics | www.frontiersin.org 8 February 2019 | Volume 10 | Article 68

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Boison et al. Genomics and Transcriptomics of AGD Resistance

FIGURE 4 | Manhattan plot from the genome-wide marker analysis of resistance to AGD. The red and blue represent Bonferroni and chromosome-wide significance

thresholds.

found to be in high LD (r2 = 0.98). Four out of six associated
markers on ssa13 are in relatively close proximity to each other,
spanning a genomic segment of approximately three million bp.
Within this region, we are reporting signatures of at least 11 genes
with different transcription profiles between sampling stages,
which included interleukin-18-binding protein, a key gene with
an important product for inhibiting the proinflammatory effect
of cytokine IL18 (Dinarello et al., 2013).

The Q-Q plot of the observed and expected p-values is
presented in Supplementary Figure 5. Based on the observed
and expected test statistics, the inflation factor of 1.23 was
obtained which indicated a slight inflation of the observed p-
values. When the association analysis was performed with the
top 5 eigenvectors (they explained ∼10% of the variation in
relationships among animals) from a PCA, the inflation factor
did not change significantly.

Variance Component Estimate With
Varying DE Information
Figure 5 and Supplementary Table 1 present the results of the
variance component and heritability estimates with different λ

values. There was a gradual decrease in heritability when λ

increased from 0 to 1. The reduction in heritability was different
for the scenarios studied. When λ = 0, h2 was estimated
to be 0.28 but decreased by 14% when using markers that
were located within 100 kb region of moderately significant
(p ≤ 2.4 × 10−3) DE genes. The highest loss (35%) in h2 was
observed when using markers that were located within 25 kb
region of highly significant (p ≤ 1.0 × 10−4) DE genes. Using
markers that were located within 25 kb or 100 kb region of DE
genes with p ≤ 2.4 × 10−3 and p ≤ 1.0 × 10−4, resulted in a
similar loss (20%) in heritability estimate.

Accuracy and Bias of Prediction
Prediction accuracies and biases are shown in Figures 6, 7, for
all the 4 scenarios studied. Accuracies were highest, and biases
were lowest when λ = 0 for all scenarios, thus using DE
information and weighting SNPs based on the log21F values

decreased prediction accuracy and increased bias of breeding
values (EBV). The maximum and minimum accuracy was 0.72
± 0.06 and 0.49 ± 0.06, respectively. The loss in accuracy was
<15% for all scenarios when λ ≤ 0.60 (Figure 6). When λ = 1
and G was constructed with markers within 100 kb region of
moderately significant (p ≤ 2.4 × 10−3) DE genes, the decrease
in accuracy was 9.30% compared to when G was constructed
with markers within 25 kb, where the decrease in accuracy was
the highest (47.08%). The same trend was observed for the
scale of predictions of estimated EBVs. GEBVs were deflated
even at λ = 0 (regression coefficient of 1.24 ± 0.23), and the
incorporation of DE information (λ > 0) further increased the
deflation of GEBVs.

Although one of the aims of this study was to uncover
the potential of using results from gene expression analysis to
increase the accuracy of genomic prediction, we also computed
the prediction accuracy and bias with pedigree information.
Accuracy and bias from pedigree-based analysis were 0.61 (SD
= 0.07) and 1.30 (SD = 0.14), as compared to 0.72 (SD = 0.06)
and 1.24 (SD= 0.23) for GEBVs.

DISCUSSION

Similar to some previous studies, our findings also confirm the
higher levels of transcription in infected animals for some genes
functioning in immune and inflammatory responses such as
interleukin-1 beta, a pro-inflammatory cytokine (Bridle et al.,
2006; Morrison et al., 2007) and CCAAT/enhancer binding
protein beta (Wynne et al., 2008a). Interleukin-1 beta has been
indicated as one of the hallmarks of Atlantic salmon response to
AGDwith its transcript showing a linear pattern of up-regulation
throughout the disease progression starting from as early as day
12 post infection (Morrison et al., 2012; Nowak et al., 2014). Our
data partially support this finding, as we found the expression
in the naïve animals to be significantly higher compared to
the animals during the first infection while the expression
increased up to 3-folds during the second infection. We found
no differences in transcriptional levels between animals with
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TABLE 2 | Summary statistics of QTL regions associated with AGD infection.

CHR SNP BP AA/AB/BB MAF ASE (α) −logP Vmg Vmp

4 AX-97870670 39584257 2/166/1165 0.064 1.429 5.155 5.076 1.769

4 AX-87625334 39589437 2/167/1161 0.064 1.408 5.050 4.928 1.717

13 AX-87090633 81271722 24/281/1028 0.123 1.087 4.964 5.289 1.843

4 AX-87645824 39590212 2/165/1166 0.064 1.381 4.819 4.741 1.652

13 AX-96143022 80037333 99/576/657 0.291 −0.751 4.769 4.828 1.683

9 AX-88308327 58205845 7/220/1104 0.088 −1.187 4.746 4.692 1.635

13 AX-88260877 61211215 79/596/637 0.287 −0.768 4.666 5.008 1.745

4 AX-96497078 18773593 274/684/375 0.463 −0.698 4.620 5.026 1.752

13 AX-96340731 51418953 207/695/400 0.426 −0.723 4.589 5.304 1.848

13 AX-98318366 80039614 90/580/661 0.286 −0.739 4.526 4.627 1.613

13 AX-87232771 78068947 36/436/852 0.192 −0.853 4.524 4.684 1.632

CHR, chromosome; BP, base pairs; MAF, minor allele frequency; AA/AB/BB, genotype counts; ASE, Allele substitution effect; Vmg, proportion of total genomic variance explained by
SNP (2pqα2/σ 2

g =3.28) and Vmp, proportion of total phenotypic variance explained by SNP (2pqα2/[σ 2
p =13.63]).

FIGURE 5 | Estimate of heritability for different λ (blending of two genomic relationship matrices) values. The two genomic relationship matrices were generated for

SNPs that were either within significant differentially expressed (DE) genes in gene expression analysis or not. Markers within significant DE genes were also weighted

with the log21F of that gene.

different severity of infection during the second infection stage
(Supplementary Figure 6).

Also consistent with other studies (e.g., Wynne et al., 2008b;
Young et al., 2008), we are reporting the down-regulation of some
immune-related genes in AGD infected animals compared to
the naïve fish (Figures 2A,B; Supplementary Figures 3a,b). The
down-regulation of these genes is despite the finding that ∼60%
of differentially expressed transcripts had elevated their levels
of expression in infected animals. Such an immunosuppression
and down-regulation of different elements of host’s immune

system might be a means by which N. perurans restricts the host
response and facilitates animal infection (Wynne et al., 2008a,b;
Young et al., 2008; Benedicenti et al., 2015; Pennacchi et al.,
2016). Similar patterns have also been reported in some other fish
and human parasite infections (Sitjà-Bobadilla, 2008). However,
previously it was suggested that the observed down-regulation
of the immune genes is likely to represent an artifact of cell
types, as the AGD-like lesions mainly consist of epithelial cells
and these cells generally lack the majority of immune component
signatures (Nowak et al., 2014; Pennacchi et al., 2014). Our data
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FIGURE 6 | Accuracy of selection of genomic predictions for different λ (blending of two genomic relationship matrices) values. The two genomic relationship matrices

were generated for SNPs that were either within significant genes in gene expression analysis or not. Markers within significant DE genes were also weighted with the

log21F of that gene.

provide little support for this view as we found up-regulation
of various immune genes during the second infection compared
to the first infection and very little difference in the immune
response between the animals at the second infection with
different severity in gill lesions.

An interesting pattern that emerged from the analyses
of whole transcriptome data is the identification of over-
representation of transcripts, during the second infection or
amongmore severely infected animals, with functional properties
enriched in cell adhesion (Figure 3; Supplementary Figure 3c).
These findings point to the potential importance of such
molecules in AGD pathogenesis. The cell-cell interaction and
adhesion is a fundamental step in a diverse array of physiological
or pathological processes including angiogenesis, immune
response and inflammation (González-Amaro, 2011). The up-
regulation of transcripts belonging to some adhesion-related
genes in more severely affected animals might be an indication
of more intimate interference of amoeba with the host’s cells in
those infected fish and potentially a signature of the glycoproteins
within the host mucus to interact more effectively with those of
the N. perurans. It has been shown that at least some expressed
host gene products that are involved in cell-cell adhesion, to also
act as receptors for binding of pathogens to selective tissues (Soler
et al., 2001). Therefore, it can be speculated that genetic variations
within these genes to potentially be important in conferring
higher tolerance against the amoeba. Identification of significant
association of genetic markers on ssa04 and ssa09 which are

in proximity to various members of the cadherin gene family
provides further support for this view.

The heritability estimate in this study was similar to those
reported by Robledo et al. (2018) and Taylor et al. (2009a) but
higher than the estimate obtained by Gjerde et al. (2017). The
higher heritability observed in this study compared to the study
of Gjerde et al. (2017) could be due to the increased resolution
of the scoring system in this study. Heritability estimate from
first infection has been reported to be lower than those from the
second or third infections (Taylor et al., 2009a; Kube et al., 2012).
However, estimates based on a different SalmoBreed breeding
nucleus year-class (Gjerde et al., 2017) suggests an opposite trend.
In a simplistic scenario, we can say that response of the host
organism to the first infections (challenge) might mainly trigger
genes involved in the innate immunity, while the response to
subsequent infections seems to stimulate more of the adaptive
immune system genes.

The heritability estimate with genomic information in our
study was also lower than the estimate from pedigree. The
reduction in genetic variance observed while using genetic
markers has also been previously reported by several authors
(e.g., Erbe et al., 2013; Loberg et al., 2015; Robledo et al., 2018).
Depending on the trait, heritability estimate from markers have
been 10–50% lower than those with the pedigree information
(Erbe et al., 2013; Loberg et al., 2015; Robledo et al., 2018).
Factors such as incomplete LD between SNP variants and the
causative mutations, marker density, and non-availability of
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FIGURE 7 | Regression coefficient of adjusted phenotype on genomic breeding values for different λ (blending of two genomic relationship matrices) values. The two

genomic relationship matrices were generated for SNPs that were either within significant genes in gene expression analysis or not. Markers within significant DE

genes were also weighted with the log21F of that gene.

other variations in the genome that might be associated with
the trait can explain the reduction in heritability estimate with
marker information (Erbe et al., 2013; de los Campos et al., 2015).

The results of the gene expression analysis of the AGD
infection in a controlled challenge test environment were used to
separate marker information into two groups: i. Markers within
genes that were significant in the DE analysis and ii. Polygenic
effect. Two genomic relationship matrices were constructed from
the two marker sets and used directly in a GBLUP model
to estimate genetic variation and EBVs. Further, we applied
differential weights (based on log21F values) to the markers
that were located within/close-to significant genes identified
from the DE analysis. An advantage of incorporating results
from DE-based analysis through weighted genomic relationship
matrix approach is that it can be easily incorporated into genetic
evaluation routines.

In this study, we observed that the genetic variance,
heritability, accuracy and bias of genomic prediction decreased
when DE information was used. de Los Campos et al.
(2013) also observed a reduced heritability (2.75–28%) when
using a weighted genomic relationship matrix for variance
component estimation. Heritability reduced by 0–50% in this
study and was dependent on the 1 − λ (polygenic markers)
parameter. The loss in genetic variance did not, however,
decrease genomic prediction accuracy in the study of de
Los Campos et al. (2013). Su et al. (2014) also observed
an increase in accuracy using weighted genomic relationship

matrix with −log10 p-value weights from a GWAS. However,
the opposite was observed by Ni et al. (2017). The reason
for the decline in prediction accuracy in this study could be
because of the uncertainty and noise (sampling variance) of
the estimated log21F from the DE analysis. Since in most
gene expression analysis, the estimate of this effect is based
on only a few samples, sampling variance of these estimates
are often large and can affect the predictive accuracy of
genomic prediction.

Furthermore, the decline in prediction accuracy could
also be attributed to using DE results from a different year-
class/population to give differential weights to markers.
There is some level of genetic differentiation between
these populations since they came from a different genetic
base, and therefore the response to AGD in these two
population might be different. We also used −log10 p as
differential weight, but the trend we observed for accuracy,
bias, and heritability was the same as using the log21F,
except that the reduction was lower with the −log10 p-values
(Supplementary Figures 7a,b).

In this study, the use of genomic information resulted
in about 18% increase in prediction accuracy and 4.8%
decrease in the bias of EBVs compared to using pedigree
information. Recently, Robledo et al. (2018) reported an increase
of 18% in prediction accuracy and 12.5% reduction in the
bias of EBVs for resistance to AGD from using genomic
information compared to pedigree information. Several other
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studies have also pointed out the potential of using genomic
information in aquaculture species for parasite resistance
(e.g., Odegård et al., 2014; Correa et al., 2017).

In conclusion, our transcriptomic analysis of fish during naïve
and subsequent infections with N. perurans has now provided
a more detailed profile of the host’s response to this amoeba.
The results presented in this study have indicated changes in
expression of many genes, particularly genes with functional
properties in the immune system as well as in cellular-adhesion
among infected animals. While during the initial stages of the
infection many components of the immune system seem to
have significantly reduced their levels of expression, an increase
in the transcription of some immune genes is reported during
the second challenge. Further, comparative analysis of animals
with different severity to infection highlights the potential
importance of genes such as perforin-1, ENPP2 and CCL20 in
conferring higher resistance against AGD. The up-regulation
of many genes involved in cell adhesion processes provides
further clues to AGD pathogenesis. Some of these genes are
in proximity to the QTL identified through GWAS, further
supporting their potential role in resistance against this disease.
With regards to prediction accuracy and bias of EBVs, the
results from this study show that accuracy of selection and
bias EBVs were better with genomic than pedigree information.
However, using information from gene expression analysis to
further increase the accuracy of genomic predictions through
blending of different genomic relationship matrices in a GBLUP
model was not beneficial regardless of the weighting factors
(log21For −log10p) and λ (the amount of blending of G
matrices used).
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Supplementary Figure 2 | A Venn diagram, showing the overlaps of the

differentially expressed transcripts between the samples collected at the naïve (n),

first (i1), and the second infections (i2). The total number of differentially expressed

genes have been indicated in the brackets.

Supplementary Figure 3 | Bar graphs showing the top functional categories in

the gene ontology domain of biological processes. The pathways are indicated on

the y-axis, while the x-axis depicts the significant scores (–log10p value calculated

based on Fisher exact test). (a) Naïve vs. primary infection of down-regulated

genes; (b) Naïve vs. secondary infection of down-regulated genes; (c) Naïve vs.

secondary infection of up-regulated genes; (d) Naïve vs. secondary infection of

up-regulated immune genes.

Supplementary Figure 4 | Distribution of AGD scores of the 2016 year-class of

the SalmoBreed population. AGD scores were based on the sum of Taylor et al.

(2009a,b) score of all 16 gill surfaces of infected animals.

Supplementary Figure 5 | Quantile-quantile plot for the test statistics used in the

genome-wide association analysis of resistance to AGD.

Supplementary Figure 6 | Expression bar plot of interleukin-1 beta, shown in

FPKM, and the associated standard errors for the 36 sequenced animals at the

naïve stage (n), first infection (i1), second infection with score 2 (i2_2) or the

second infection with score 3 (i2_3).

Supplementary Figure 7 | (a) Accuracy of selection of genomic predictions and

(b) regression coefficient of adjusted phenotype on genomic breeding values for

different λ (blending of two genomic relationship matrices) values. The two

genomic relationship matrices were generated for SNPs that were either within

significant genes in gene expression analysis or not. Markers within significant DE

genes were also weighted with the –log10p
of that gene.

REFERENCES

Amoutzias, G. D., He, Y., Gordon, J., Mossialos, D., Oliver, S. G., and Van de Peer,
Y. (2010). Posttranslational regulation impacts the fate of duplicated genes.
Proc. Natl. Acad. Sci. U.S.A. 107, 2967–2971. doi: 10.1073/pnas.0911603107

Benedicenti, O., Collins, C., Wang, T., McCarthy, U., and Secombes, C.
J. (2015). Which Th pathway is involved during late stage amoebic
gill disease? Fish Shellfish Immunol. 46, 417–425. doi: 10.1016/j.fsi.2015.
07.002

Bentley, A. A., and Adams, J. C. (2010). The evolution of thrombospondins
and their ligand-binding activities. Mol. Biol. Evol. 27, 2187–2197.
doi: 10.1093/molbev/msq107

Bhuju, S., Aranday-Cortes, E., Villarreal-Ramos, B., Xing, Z., Singh, M., and
Vordermeier, H. M. (2012). Global gene transcriptome analysis in vaccinated

cattle revealed a dominant role of IL-22 for protection against bovine
tuberculosis. PLoS Pathog. 8:e1003077. doi: 10.1371/journal.ppat.1003077

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120.
doi: 10.1093/bioinformatics/btu170

Bridle, A. R., Morrison, R. N., Cunningham, P. M. C., and Nowak, B. F. (2006).
Quantitation of immune response gene expression and cellular localisation
of interleukin-1 beta mRNA in Atlantic salmon, Salmo salar L., affected by
amoebic gill disease (AGD). Vet. Immunol. Immunopathol. 114, 121–134.
doi: 10.1016/j.vetimm.2006.08.002

Carrieri, C., Cimatti, L., Biagioli, M., Beugnet, A., Zucchelli, S., Fedele, S.,
et al. (2012). Long non-coding antisense RNA controls Uchl1 translation
through an embedded SINEB2 repeat. Nature 491, 454–457. doi: 10.1038/
nature11508

Frontiers in Genetics | www.frontiersin.org 13 February 2019 | Volume 10 | Article 68

https://www.frontiersin.org/articles/10.3389/fgene.2019.00068/full#supplementary-material
https://doi.org/10.1073/pnas.0911603107
https://doi.org/10.1016/j.fsi.2015.07.002
https://doi.org/10.1093/molbev/msq107
https://doi.org/10.1371/journal.ppat.1003077
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1016/j.vetimm.2006.08.002
https://doi.org/10.1038/nature11508
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Boison et al. Genomics and Transcriptomics of AGD Resistance

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., and Lee, J. J.
(2015). Second-generation PLINK: rising to the challenge of larger and richer
datasets. Gigascience 4:7. doi: 10.1186/s13742-015-0047-8

Correa, K., Bangera, R., Figueroa, R., Lhorente, J. P., and Yáñez, J. M. (2017).
The use of genomic information increases the accuracy of breeding value
predictions for sea louse (Caligus rogercresseyi) resistance in Atlantic salmon
(Salmo salar). Genet. Sel. Evol. 49:15. doi: 10.1186/s12711-017-0291-8

Costa, V., Aprile, M., Esposito, R., and Ciccodicola, A. (2013). RNA-Seq and
human complex diseases: recent accomplishments and future perspectives. Eur.
J. Hum. Genet. 21, 134–142. doi: 10.1038/ejhg.2012.129

Daetwyler, H. D., Calus, M. P. L. L., Pong-Wong, R., de Los Campos, G., and
Hickey, J. M. (2013). Genomic prediction in animals and plants: Simulation
of data, validation, reporting, and benchmarking. Genetics 193, 347–365.
doi: 10.1534/genetics.112.147983

de los Campos, G., Sorensen, D., and Gianola, D. (2015). Genomic heritability:
what is it? PLoS Genet. 11:e1005048. doi: 10.1371/journal.pgen.1005048

de Los Campos, G., Vazquez, A. I., Fernando, R., Klimentidis, Y. C.,
and Sorensen, D. (2013). Prediction of complex human traits using
the genomic best linear unbiased predictor. PLoS Genet. 9:e1003608.
doi: 10.1371/journal.pgen.1003608

Dinarello, C. A., Novick, D., Kim, S., and Kaplanski, G. (2013). Interleukin-18 and
IL-18 binding protein. Front. Immunol. 4:289. doi: 10.3389/fimmu.2013.00289

Dyková, I., Nowak, B. F., Crosbie, P. B. B. B., Fiala, I., Pecková, H., Adams, M. B.,
et al. (2005).Neoparamoeba branchiphila n. sp., and related species of the genus
Neoparamoeba Page, 1987: Morphological and molecular characterization of
selected strains. J. Fish Dis. 28, 49–64. doi: 10.1111/j.1365-2761.2004.00600.x

Erbe, M., Gredler, B., Seefried, F. R., Bapst, B., and Simianer, H. (2013).
A function accounting for training set size and marker density to
model the average accuracy of genomic prediction. PLoS ONE 8:e81046.
doi: 10.1371/journal.pone.0081046

Evans, R., Patzak, I., Svensson, L., De Filippo, K., Jones, K., McDowall, A., et al.
(2009). Integrins in immunity. J. Cell Sci. 122, 215–225. doi: 10.1242/jcs.019117

Farquhar, M. J., Humphreys, I. S., Rudge, S. A., Wilson, G. K., Bhattacharya,
B., Ciaccia, M., et al. (2017). Autotaxin-lysophosphatidic acid receptor
signalling regulates hepatitis C virus replication. J. Hepatol. 66, 919–929.
doi: 10.1016/j.jhep.2017.01.009

Feng, C. G., Zheng, L., Lenardo, M. J., and Sher, A. (2009). Interferon-
inducible immunity-related GTPase Irgm1 regulates IFNγ-dependent
host defense, lymphocyte survival and autophagy. Autophagy 5, 232–234.
doi: 10.4161/auto.5.2.7445

Giancotti, F. G., and Ruoslahti, E. (1999). Integrin signaling. Science 285,
1028–1032. doi: 10.1126/science.285.5430.1028

Gill, J. L., Tsai, K. L., Krey, C., Noorai, R. E., Vanbellinghen, J. F., Garosi, L. S.,
et al. (2012). A canine BCAN microdeletion associated with episodic falling
syndrome. Neurobiol. Dis. 45, 130–136. doi: 10.1016/j.nbd.2011.07.014

Gilmour, A., Gogel, B., B, C., and Thompson, R. (2009).ASReml User Guide Release

3.0. VSN Hemel Hempstead: International Ltd.
Gjerde, B., Boison, S. A., Aslam, M. L., Moghadam, H., Lillehammer, M., Løvoll,

M., et al. (2017). Is Genetic Resistance to AGD From a Bath Challenge-Test a

Good Predictor of Genetic Resistance From a Field-Test? Ås.
González-Amaro, R. (2011). Cell adhesion, inflammation and therapy: old

ideas and a significant step forward. Acta Pharmacol. Sin. 32, 1431–1432.
doi: 10.1038/aps.2011.154

Haugland, G. T., Olsen, A.-B. B., Rønneseth, A., and Andersen, L. (2017).
Lumpfish (Cyclopterus lumpus L.) develop amoebic gill disease (AGD)
after experimental challenge with Paramoeba perurans and can transfer
amoebae to Atlantic salmon (Salmo salar L.). Aquaculture 478, 48–55.
doi: 10.1016/j.aquaculture.2016.04.001

Henry, S. C., Daniell, X. G., Burroughs, A. R., Indaram, M., Howell, D.
N., Coers, J., et al. (2009). Balance of Irgm protein activities determines
IFN–induced host defense. J. Leukoc. Biol. 85, 877–885. doi: 10.1189/jlb.
1008599

Jensen, S. S., and Gad, M. (2010). Differential induction of inflammatory
cytokines by dendritic cells treated with novel TLR-agonist and cytokine
based cocktails: targeting dendritic cells in autoimmunity. J. Inflamm. 7:37.
doi: 10.1186/1476-9255-7-37

Karlsbakk, E., Olsen, A. B., Einen, A.-C. C. B., Mo, T. A., Fiksdal, I.
U., Aase, H., et al. (2013). Amoebic gill disease due to Paramoeba

perurans in ballan wrasse (Labrus bergylta). Aquaculture 412–413, 41–44.
doi: 10.1016/j.aquaculture.2013.07.007

Krasnov, A., Moghadam, H., Larsson, T., Afanasyev, S., and Mørkøre, T. (2016).
Gene expression profiling in melanised sites of Atlantic salmon fillets. Fish
Shellfish Immunol. 55, 56–63. doi: 10.1016/j.fsi.2016.05.012

Kube, P. D., Taylor, R. S., and Elliott, N. G. (2012). Genetic variation in parasite
resistance of Atlantic salmon to amoebic gill disease over multiple infections.
Aquaculture 364–365, 165–172. doi: 10.1016/j.aquaculture.2012.08.026

Lawler, J. (2002). Thrombospondin-1 as an endogenous inhibitor
of angiogenesis and tumor growth. J. Cell. Mol. Med. 6, 1–12.
doi: 10.1111/j.1582-4934.2002.tb00307.x

Lien, S., Koop, B. F., Sandve, S. R., Miller, J. R., Kent, M. P., Nome, T., et al. (2016).
The Atlantic salmon genome provides insights into rediploidization. Nature
533, 200–5. doi: 10.1038/nature17164

Liu, D., Kebaier, C., Pakpour, N., Capul, A. A., Beverley, S. M., Scott, P., et al.
(2009). Leishmania major phosphoglycans influence the host early immune
response by modulating dendritic cell functions. Infect. Immun. 77, 3272–3283.
doi: 10.1128/IAI.01447-08

Loberg, A., Dürr, J. W., Fikse, W. F., Jorjani, H., Crooks, L., and Loberg, C.
A. (2015). Estimates of genetic variance and variance of predicted genetic
merits using pedigree or genomic relationship matrices in six Brown Swiss
cattle populations for different traits. J. Anim. Breed Genet. 132, 376–385.
doi: 10.1111/jbg.12142

Midwood, K. S., and Orend, G. (2009). The role of tenascin-C in
tissue injury and tumorigenesis. J. Cell Commun. Signal. 3, 287–310.
doi: 10.1007/s12079-009-0075-1

Morrison, R. N., Cooper, G. A., Koop, B. F., Rise, M. L., Bridle, A. R.,
Adams, M. B., et al. (2006). Transcriptome profiling the gills of amoebic
gill disease (AGD)-affected Atlantic salmon (Salmo salar L.): a role for
tumor suppressor p53 in AGD pathogenesis? Physiol. Genomics 26, 15–34.
doi: 10.1152/physiolgenomics.00320.2005

Morrison, R. N., Young, N. D., and Nowak, B. F. (2012). Description of an Atlantic
salmon (Salmo salar L.) type II interleukin-1 receptor cDNA and analysis
of interleukin-1 receptor expression in amoebic gill disease-affected fish. Fish
Shellfish Immunol. 32, 1185–1190. doi: 10.1016/j.fsi.2012.03.005

Morrison, R. N., Zou, J., Secombes, C. J., Scapigliati, G., Adams, M. B., and Nowak,
B. F. (2007). Molecular cloning and expression analysis of tumour necrosis
factor-α in amoebic gill disease (AGD)-affected Atlantic salmon (Salmo salar

L.). Fish Shellfish Immunol. 23, 1015–1031. doi: 10.1016/j.fsi.2007.04.003
Ni, G., Cavero, D., Fangmann, A., Erbe, M., and Simianer, H. (2017). Whole-

genome sequence-based genomic prediction in laying chickens with different
genomic relationship matrices to account for genetic architecture. Genet. Sel.
Evol. 49:8. doi: 10.1186/s12711-016-0277-y

Nowak, B., Valdenegro-Vega, V., Crosbie, P., and Bridle, A. (2014). Immunity to
amoeba. Dev. Comp. Immunol. 43, 257–267. doi: 10.1016/j.dci.2013.07.021

Odegård, J., Moen, T., Santi, N., Korsvoll, S. A., Kjøglum, S., and Meuwissen,
T. H. E. (2014). Genomic prediction in an admixed population of
Atlantic salmon (Salmo salar). Front. Genet. 5:402. doi: 10.3389/fgene.2014.
00402

Oldham, T., Rodger, H., and Nowak, B. F. (2016). Incidence and distribution of
amoebic gill disease (AGD) - An epidemiological review. Aquaculture 457,
35–42. doi: 10.1016/j.aquaculture.2016.02.013

Pennacchi, Y., Adams, M. B., Nowak, B. F., and Bridle, A. R. (2016). Immune
gene expression in the gills of Atlantic salmon (Salmo salar L.) following
experimental reinfection with Neoparamoeba perurans. Aquaculture 464,
410–419. doi: 10.1016/j.aquaculture.2016.07.025

Pennacchi, Y., Leef, M. J., Crosbie, P. B. B., Nowak, B. F., and Bridle, a R.
(2014). Evidence of immune and inflammatory processes in the gills of AGD-
affected Atlantic salmon, Salmo salar L. Fish Shellfish Immunol. 36, 563–570.
doi: 10.1016/j.fsi.2013.12.013

Prensner, J. R., Iyer, M. K., Balbin, O. A., Dhanasekaran, S. M., Cao, Q., Brenner,
J. C., et al. (2011). Transcriptome sequencing across a prostate cancer cohort
identifies PCAT-1, an unannotated lincRNA implicated in disease progression.
Nat. Biotechnol. 29, 742–79. doi: 10.1038/nbt.1914

Robledo, D., Matika, O., Hamilton, A., and Houston, R. D. (2018). Genome-
wide association and genomic selection for resistance to amoebic gill disease
in Atlantic Salmon. G3 (Bethesda). 8, 1195–1203. doi: 10.1534/g3.118.2
00075

Frontiers in Genetics | www.frontiersin.org 14 February 2019 | Volume 10 | Article 68

https://doi.org/10.1186/s13742-015-0047-8
https://doi.org/10.1186/s12711-017-0291-8
https://doi.org/10.1038/ejhg.2012.129
https://doi.org/10.1534/genetics.112.147983
https://doi.org/10.1371/journal.pgen.1005048
https://doi.org/10.1371/journal.pgen.1003608
https://doi.org/10.3389/fimmu.2013.00289
https://doi.org/10.1111/j.1365-2761.2004.00600.x
https://doi.org/10.1371/journal.pone.0081046
https://doi.org/10.1242/jcs.019117
https://doi.org/10.1016/j.jhep.2017.01.009
https://doi.org/10.4161/auto.5.2.7445
https://doi.org/10.1126/science.285.5430.1028
https://doi.org/10.1016/j.nbd.2011.07.014
https://doi.org/10.1038/aps.2011.154
https://doi.org/10.1016/j.aquaculture.2016.04.001
https://doi.org/10.1189/jlb.1008599
https://doi.org/10.1186/1476-9255-7-37
https://doi.org/10.1016/j.aquaculture.2013.07.007
https://doi.org/10.1016/j.fsi.2016.05.012
https://doi.org/10.1016/j.aquaculture.2012.08.026
https://doi.org/10.1111/j.1582-4934.2002.tb00307.x
https://doi.org/10.1038/nature17164
https://doi.org/10.1128/IAI.01447-08
https://doi.org/10.1111/jbg.12142
https://doi.org/10.1007/s12079-009-0075-1
https://doi.org/10.1152/physiolgenomics.00320.2005
https://doi.org/10.1016/j.fsi.2012.03.005
https://doi.org/10.1016/j.fsi.2007.04.003
https://doi.org/10.1186/s12711-016-0277-y
https://doi.org/10.1016/j.dci.2013.07.021
https://doi.org/10.3389/fgene.2014.00402
https://doi.org/10.1016/j.aquaculture.2016.02.013
https://doi.org/10.1016/j.aquaculture.2016.07.025
https://doi.org/10.1016/j.fsi.2013.12.013
https://doi.org/10.1038/nbt.1914
https://doi.org/10.1534/g3.118.200075
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Boison et al. Genomics and Transcriptomics of AGD Resistance

Sadeqzadeh, E., De Bock, C. E., and Thorne, R. F. (2014). Sleeping giants: emerging
roles for the fat cadherins in health and disease. Med. Res. Rev. 34, 190–221.
doi: 10.1002/med.21286

Schutyser, E., Struyf, S., and Van Damme, J. (2003). The CC chemokine
CCL20 and its receptor CCR6. Cytokine Growth Factor Rev. 14, 409–26.
doi: 10.1016/S1359-6101(03)00049-2

Sitjà-Bobadilla, A. (2008). Living off a fish: a trade-off between parasites
and the immune system. Fish Shellfish Immunol. 25, 358–372.
doi: 10.1016/j.fsi.2008.03.018

Soler, A. P., Gilliard, G., Xiong, Y., Knudsen, K. A., Martin, J. L., De Suarez, C.
B., et al. (2001). Overexpression of neural cell adhesion molecule in Chagas’
myocarditis. Hum. Pathol. 32, 149–155. doi: 10.1053/hupa.2001.21562

Su, G., Christensen, O. F., Janss, L., and Lund, M. S. (2014). Comparison of
genomic predictions using genomic relationship matrices built with different
weighting factors to account for locus-specific variances. J. Dairy Sci. 97,
6547–6559. doi: 10.3168/jds.2014-8210

Taylor, R. S., Kube, P. D., Muller, W. J., and Elliott, N. G. (2009a). Genetic
variation of gross gill pathology and survival of Atlantic salmon (Salmo salar

L.) during natural amoebic gill disease challenge. Aquaculture 294, 172–179.
doi: 10.1016/j.aquaculture.2009.06.007

Taylor, R. S., Muller, W. J., Cook, M. T., Kube, P. D., and Elliott, N. G. (2009b).
Gill observations in Atlantic salmon (Salmo salar L.) during repeated amoebic
gill disease (AGD) field exposure and survival challenge. Aquaculture 290, 1–8.
doi: 10.1016/j.aquaculture.2009.01.030

Taylor, R. S., Wynne, J. W., Kube, P. D., and Elliott, N. G. (2007).
Genetic variation of resistance to amoebic gill disease in Atlantic salmon
(Salmo salar) assessed in a challenge system. Aquaculture 272, S94–S99.
doi: 10.1016/j.aquaculture.2007.08.007

Trapnell, C., Pachter, L., and Salzberg, S. L. (2009). TopHat: discovering
splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111.
doi: 10.1093/bioinformatics/btp120

Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R.,
et al. (2012). Differential gene and transcript expression analysis of RNA-
seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578.
doi: 10.1038/nprot.2012.016

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., Van Baren, M.
J., et al. (2010). Transcript assembly and quantification by RNA-Seq reveals
unannotated transcripts and isoform switching during cell differentiation. Nat.
Biotechnol. 28, 511–515. doi: 10.1038/nbt.1621

Voskoboinik, I., Whisstock, J. C., and Trapani, J. A. (2015). Perforin and
granzymes: function, dysfunction and human pathology. Nat. Rev. Immunol.

15, 388–400. doi: 10.1038/nri3839
Wynne, J. W., O’Sullivan, M. G., Cook, M. T., Stone, G., Nowak, B. F.,

Lovell, D. R., et al. (2008a). Transcriptome analyses of amoebic gill
disease-affected Atlantic salmon (Salmo salar) tissues reveal localized host
gene suppression. Mar. Biotechnol. 10, 388–403. doi: 10.1007/s10126-007-
9075-4

Wynne, J. W., O’Sullivan, M. G., Stone, G., Cook, M. T., Nowak, B. F.,
Lovell, D. R., et al. (2008b). Resistance to amoebic gill disease (AGD)
is characterised by the transcriptional dysregulation of immune and cell
cycle pathways. Dev. Comp. Immunol. 32, 1539–1560. doi: 10.1016/j.dci.2008.
05.013

Yang, J., Lee, S. H., Goddard, M. E., and Visscher, P. M. (2011). GCTA: A
tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82.
doi: 10.1016/j.ajhg.2010.11.011

Young, N. D., Cooper, G. A., Nowak, B. F., Koop, B. F., andMorrison, R. N. (2008).
Coordinated down-regulation of the antigen processing machinery in the gills
of amoebic gill disease-affected Atlantic salmon (Salmo salar L.).Mol. Immunol.

45, 2581–2597. doi: 10.1016/j.molimm.2007.12.023
Zhang, X., Lourenco, D., Aguilar, I., Legarra, A., and Misztal, I. (2016).

Weighting strategies for single-step genomic BLUP: an iterative approach
for accurate calculation of GEBV and GWAS. Front. Genet. 7:151.
doi: 10.3389/fgene.2016.00151

Zhang, Z., Erbe, M., He, J., Ober, U., Gao, N., Zhang, H., et al. (2015). Accuracy
of whole-genome prediction using a genetic architecture-enhanced variance-
covariance matrix. G3 5, 615–627. doi: 10.1534/g3.114.016261

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2019 Boison, Gjerde, Hillestad, Makvandi-Nejad and Moghadam. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Genetics | www.frontiersin.org 15 February 2019 | Volume 10 | Article 68

https://doi.org/10.1002/med.21286
https://doi.org/10.1016/S1359-6101(03)00049-2
https://doi.org/10.1016/j.fsi.2008.03.018
https://doi.org/10.1053/hupa.2001.21562
https://doi.org/10.3168/jds.2014-8210
https://doi.org/10.1016/j.aquaculture.2009.06.007
https://doi.org/10.1016/j.aquaculture.2009.01.030
https://doi.org/10.1016/j.aquaculture.2007.08.007
https://doi.org/10.1093/bioinformatics/btp120
https://doi.org/10.1038/nprot.2012.016
https://doi.org/10.1038/nbt.1621
https://doi.org/10.1038/nri3839
https://doi.org/10.1007/s10126-007-9075-4
https://doi.org/10.1016/j.dci.2008.05.013
https://doi.org/10.1016/j.ajhg.2010.11.011
https://doi.org/10.1016/j.molimm.2007.12.023
https://doi.org/10.3389/fgene.2016.00151
https://doi.org/10.1534/g3.114.016261
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Genomic and Transcriptomic Analysis of Amoebic Gill Disease Resistance in Atlantic Salmon (Salmo salar L.)
	Introduction
	Materials and Methods
	SalmoBreed Population and Challenge Tests
	Year-Class 2015
	Year-Class 2016

	Transcriptome Sequencing, Alignment, and Differential Gene Expression Assessment
	Genotyping and Genotype Quality Assessment
	Variance Components Estimation and Genomic Relationship Matrices
	Accuracy and Scale (Bias) of GEBVs
	Scenarios Used for the Genomic Prediction
	Genome-Wide Association Study

	Results
	Challenge Testing and Comparative Transcriptomic Analyses of 2015 Year-Class
	Challenge Test, Phenotypic Scores, and Genotyping of 2016 Year-Class
	Pedigree and Genomic Variance Components
	Genome-Wide Association Results
	Variance Component Estimate With Varying DE Information
	Accuracy and Bias of Prediction

	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References


