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ABSTRACT 15 

Spectroscopic techniques can provide valuable information about post-mortem meat quality. 16 

In the current study, Raman, NIR and fluorescence spectroscopy was used to analyze pH, drip 17 

loss and intramuscular fat in pork longissimus lumborum (n = 122) at 4-5 days post-mortem. 18 

Results were promising for partial least squares regression (PLSR) from Raman spectroscopy, 19 

giving coefficients of determination from cross validation (𝑟𝑟𝑐𝑐𝑐𝑐2 )  ranging from 0.49 to 0.73 for 20 

all attributes examined. Important regions in the PLSR models from Raman spectroscopy 21 

were attributed to changes in concentrations of post-mortem metabolites and modifications of 22 

protein secondary structure. Near infrared and fluorescence spectroscopy showed limited 23 

ability to analyze quality, with 𝑟𝑟𝑐𝑐𝑐𝑐2  ranging from 0.06 to 0.57 and 0.04 to 0.18, respectively. 24 

This study encourages further research on the subject of Raman spectroscopy as a technique 25 

for meat quality analysis. 26 
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1. INTRODUCTION 31 

One of the most important quality parameters for pork is water-holding capacity (WHC), 32 

affecting monetary value, processing properties (Torley, D'Arcy, & Trout, 2000) and eating 33 

quality (Hughes, Oiseth, Purslow, & Warner, 2014). Many factors influence WHC of meat, 34 

including rate of post-mortem pH decline and ultimate pH (pHu) (Warriss & Brown, 1987), 35 

proteolysis (Huff-Lonergan & Lonergan, 2005) and chemical composition of meat (e.g. 36 

intramuscular fat (IMF)) (Lawrie, 1985), illustrating the complexity of this property. WHC of 37 

fresh meat is usually measured as amount of drip formed from an intact meat sample, e.g. the 38 

bag method (Honikel, 1998) and EZ-DripLoss method (Rasmussen & Andersson, 1996), 39 

which are invasive, labor- and time-consuming methods. Even the standard method for 40 

measuring pH requires a glass probe to be inserted into the meat and manually recording the 41 

pH-value. Development of rapid and non-invasive methods for meat quality assessment for 42 

on-line or at-line application is consequently of interest to the meat industry, for amongst 43 

others meat classification and optimization of production procedures. To this end, there have 44 

been many studies conducted utilizing spectroscopic techniques to analyze pH, WHC and 45 

chemical composition of meat. The most promising techniques for implementation in the 46 

abattoir are near infrared (NIR), Raman and fluorescence spectroscopy, because they are all 47 

non-invasive and rapid techniques that can be implemented in an abattoir. 48 

NIR spectroscopy has great potential for meat quality analysis because the technique 49 

measures absorption corresponding to overtones and combinations of vibrational modes 50 

involving C–H, O–H and N–H chemical bonds, which in principle makes it possible to 51 

analyze composition and functional properties of meat (Osborne, 2006). The use of NIR 52 

spectroscopy for meat analysis has been thoroughly reviewed within the last decade, showing 53 

the substantial effort put forth in this field (Prieto, Pawluczyk, Dugan, & Aalhus, 2017; Prieto, 54 

Roehe, Lavin, Batten, & Andres, 2009; Weeranantanaphan, Downey, Allen, & Sun, 2011). To 55 

the best of our knowledge, the benchmark of performance for VIS-NIR spectroscopy 56 

performed on pork are as follows: pH: coefficient of determination (𝑟𝑟𝑐𝑐𝑐𝑐2 ) = 0.82 and root mean 57 

square error of cross validation (RMSECV) = 0.10 (Liao, Fan, & Cheng, 2010); drip loss: 𝑟𝑟𝑝𝑝2 58 

= 0.76 and root mean square error of prediction (RMSEP) = 0.8% (Kapper, Klont, Verdonk, 59 

Williams, & Urlings, 2012); and IMF: 𝑟𝑟𝑐𝑐𝑐𝑐2  = 0.96 and RMSECV = 0.46% (Prevolnik et al., 60 

2005). Although many studies have shown great promise, no NIR instruments for commercial 61 

use for prediction of pH and WHC have been developed. 62 



Raman spectroscopy can provide information about proteins, such as peptide backbone 63 

structure and amino acid side-chain properties, as well as characterization of fat, making it a 64 

suitable technique for analysis of meat quality (Li-Chan, 1996). Raman spectroscopy was first 65 

used for analysis of WHC in pork in 2003 and the results were very promising (𝑟𝑟𝑐𝑐𝑐𝑐2  = 0.98 and 66 

RMSECV = 0.27), but the sample size was small (n = 14) and the authors cited a need for 67 

further attention in future studies (Pedersen, Morel, Andersen, & Balling Engelsen, 2003). 68 

Raman spectroscopy has gained some traction for pork quality analysis in the last few years 69 

with the development of a handheld Raman instrument (Schmidt, Sowoidnich, & Kronfeldt, 70 

2010). Results of pHu and drip loss predictions have been promising from Raman spectra 71 

acquired between 30 and 120 min post-mortem in the abattoir, being able to predict pHu with 72 

𝑟𝑟𝑐𝑐𝑐𝑐2  = 0.68 and RMSECV = 0.09 and drip loss with  𝑟𝑟𝑐𝑐𝑐𝑐2  = 0.73 and RMSECV = 1.0% in one 73 

study (Scheier, Bauer, & Schmidt, 2014), and pH with 𝑟𝑟𝑐𝑐𝑐𝑐2  = 0.31 and RMSECV = 0.05 and 74 

drip loss with  𝑟𝑟𝑐𝑐𝑐𝑐2  = 0.52 and RMSECV = 0.6% in a follow-up study (Scheier, Scheeder, & 75 

Schmidt, 2015). We are unaware of any studies using Raman spectroscopy to analyze IMF of 76 

intact pork, but a study has been conducted for lamb meat, resulting in a 𝑟𝑟𝑐𝑐𝑐𝑐2  = 0.02 and 77 

RMSECV = 1.2% for IMF (Fowler, Ponnampalam, Schmidt, Wynn, & Hopkins, 2015). 78 

Not many studies have been conducted using fluorescence spectroscopy to analyze fresh pork 79 

quality. One of the few studies analyzing fresh pork quality with fluorescence was carried out 80 

by Brondum et al. (2000), where drip loss was predicted with 𝑟𝑟2 = 0.68 and SEP = 2.27% and 81 

IMF was predicted with 𝑟𝑟2 = 0.57 and SEP = 1.09%. Fluorescence spectroscopy has also 82 

shown promise to analyze pH in a model system containing isolated myofibrils from pork 83 

(Andersen, Veiseth-Kent, & Wold, 2017), encouraging further research in this area. 84 

The main aim of this work was to investigate the potential for Raman, NIR and fluorescence 85 

spectroscopy to predict drip loss and measure pHu of fresh pork, with a secondary aim to 86 

measure IMF. Using three spectroscopic techniques on the same set of samples allows for 87 

comparison of spectroscopic techniques under similar conditions, possibly indicating which 88 

techniques should be the focus in future research. 89 

2. MATERIALS AND METHODS 90 

2.1 Animals and meat quality analyses 91 

A selection of 122 Norwegian Landrace boars from an ongoing testing program at Norsvin’s 92 

boar test station in southeastern Norway were part of this study. The boars were fed ad libitum 93 

on conventional concentrates, and the average start and end weight at the test station was 35 94 



to 120 kg live weight, respectively. The boars were slaughtered in eight batches at a 95 

commercial abattoir over a period of 9 months. The animals were stunned with 90% CO2, 96 

followed by exsanguination, scalding and splitting within 30 min post-mortem. After 45 min 97 

the carcasses were transported through a cooling tunnel (-22 °C, air velocity 8-10 m/s). 98 

Following this, the carcasses were chilled in a cooler at 1 °C to 3 °C for 20 h until a core 99 

temperature of 7 °C was reached. Finally, the carcasses were transported to a partial 100 

dissection line at Animalia, the Norwegian Meat and Poultry Research Centre. 101 

At 4 or 5 days postmortem, the loin muscle (LL – Longissimus lumborum) was dissected from 102 

the right side of the carcasses, trimmed for fat and used for assessment of multiple meat 103 

quality traits and spectroscopic measurements as described in the following. Ultimate pH was 104 

measured at the last rib curvature using an insertion pH electrode (WTW 82362, pH 330i, 105 

Welheim, Germany). A 5-cm slice of the muscle (positioned 2 cm anterior and 3 cm posterior 106 

to the last rib curvature) was homogenized by grinding for 30 s using a mixer (Robot Coupe 107 

r5a+, W 1100, Robot Coupe, USA, Inc.) for subsequent measurement of IMF as described by 108 

Gjerlaug-Enger, Aass, Odegard, and Vangen (2010). 109 

Assessments of drip loss were performed using two different methods, the EZ-DripLoss 110 

method and purge loss in vacuum packages. For the EZ-DripLoss measurement (Rasmussen 111 

& Andersson, 1996), two samples at fixed locations on a 2-cm slice (positioned 3 to 5 cm 112 

posterior to the last rib curvature) were cut using a circular knife (2.5 cm diameter). Samples 113 

were placed in drip loss containers (C. Christensen ApS, Denmark), and stored at 4 °C for 24 114 

h, after which the weight of the drip loss was measured, and expressed as a percentage of the 115 

initial sample weight. For the purge loss measurement, a 5-cm thick slice (positioned 8 to 13 116 

cm posterior to the last rib curvature) was weighed before being placed in a plastic bag and 117 

vacuum packed using 98% vacuum. The vacuum packed slices were placed in a single layer 118 

on a rack in a cooler (4 °C), and stored for 8 days, after which the bags were opened, and the 119 

meat gently dabbed with paper before weighing again. Purge was calculated as a percentage 120 

of the initial sample weight. 121 

2.2 Spectroscopic analysis 122 

A freshly cut slice of approx. 3 cm (positioned 5 to 8 cm posterior to the last rib curvature) 123 

from LL was used for spectroscopic analyses at 4-5 days post-mortem. All samples were 124 

analyzed with NIR spectroscopy first, followed by fluorescence spectroscopy and finally 125 

Raman spectroscopy. 126 



2.2.1 NIR spectroscopy 127 

The meat slice designated for spectroscopy was cut and mounted in a Rapid content module 128 

sample cell (FOSS Analytical, Hillerød, Denmark). A spectrum from a sample surface with a 129 

diameter of 17.25 mm was recorded at eight different locations on the meat surface using an 130 

XDS Rapid content analyzer (FOSS Analytical, Hillerød, Denmark) measuring in the 400-131 

2500 nm wavelength region at 0.5 nm intervals. Spectra were recorded as log(1/R) with FOSS 132 

NIRSystem Vision software. All spectra from one sample were averaged prior to further 133 

analysis. 134 

2.2.2 Fluorescence spectroscopy  135 

Fluorescence was measured in front face mode on the same sample surface as was measured 136 

with NIR. The measurements were carried out with a FluoroMax-4 (Horiba Scientific, Edison, 137 

NJ, USA) in front face mode via  a FL-300/FM43000 bifurcated fiber-optic probe (Horiba 138 

Scientific). The distance between the probe head and sample was about 5 cm and created a 139 

circular measurement area of 40 mm diameter. Probe and sample were covered by a black 140 

shield to avoid ambient straylight. Emission spectra in the region from 300 to 500 nm (2 nm 141 

intervals) were recorded for excitation at 292 nm. 142 

2.2.3 Raman spectroscopy 143 

The sample was cut into three slices and one spectrum was recorded from the freshly cut 144 

surface of each slice using a Kaiser RamanRXN2™ Multi-channel Raman analyzer (Kaiser 145 

Optical Systems, Inc., Ann Arbor, MI, USA) with a spectral resolution of 5 cm-1. The 146 

spectrometer was equipped with a 785 nm laser and PhAT probe, measuring a spot size of 6 147 

mm in diameter. The spectra were recorded with a laser power set to 400 mW in the range of 148 

150-1890 cm−1 with 0.3 cm−1 intervals and exposure of 3 times 15 s was used for acquisition. 149 

Instrument set-up and experiment was controlled using iC Raman version X software (Mettler 150 

Toledo, Greifensee, Switzerland). 151 

2.3 Pre-processing of spectra and data analysis 152 

2.3.1 Pre-processing of spectra 153 

Pre-processing of spectral data was done to give comparable spectra for further analysis, by 154 

reducing or removing the impact of noise, scatter effects and other undesirable alterations in 155 

the spectra. 156 

The three Raman spectra from each sample were averaged. The oxygen peak from 1530 to 157 

1570 cm−1 was removed from the spectra by cutting out the variables from the spectrum 158 



matrix prior to further pre-processing in the range from 450 to 1775 cm−1. Raman spectra 159 

were first base-line corrected and fluorescence background was removed using polynomial 160 

curve-fitting (Lieber & Mahadevan-Jansen, 2003), before second order extended 161 

multiplicative scattering correction was applied (EMSC) (Liland, Kohler, & Afseth, 2016). 162 

The NIR spectra were divided into two regions, 400 to 1850 nm and 780 to 1850 nm, before 163 

standard normal variate (SNV) algorithm (Barnes, Dhanoa, & Lister, 1989) was applied to 164 

each region separately. Fluorescence spectra were pre-processed by SNV. 165 

2.3.2 Data analysis 166 

Partial least squares regression (PLSR) was used for determining relationships between 167 

reference measurements and spectroscopic data. PLSR emphasizes information in the spectra 168 

that is important for explaining variation in the reference measurements when making models 169 

(Martens & Martens, 2001). PLSR models were cross-validated by randomly dividing all 170 

samples in four segments, leaving one segment out at a time for validation, and using the 171 

same segments for all spectroscopic methods. An uncertainty test was performed for the 172 

PLSR models to give information about important variables in the models (Martens & 173 

Martens, 2000), and to use these variables to investigate if more reliable models could be 174 

made by using only the important variables. The principle for the uncertainty test is to analyze 175 

the stability of the β-coefficients from the sub-models developed during cross-validation, and 176 

the significantly stable variables are marked in the final model. Ratio of prediction to 177 

deviation (RPD) values were calculated as the standard deviation of the reference values 178 

divided by the models RMSECV to give a quick appraisal of a model (Williams & Sobering, 179 

1993). The following guidelines are given for evaluating RPD values and the recommended 180 

application of the model when analyzing biological samples: RPD < 2: very poor, not 181 

recommended; 2.0 < RPD < 2.4: poor, rough screening; 2.5 < RPD < 2.9: fair, screening; 182 

3.0<RPD<3.4: good, quality control; 3.5<RPD<3.9: very good, process control, and 4.0<x: 183 

excellent, any application (Williams, 2014). 184 

PLSR was performed in the following spectral regions: Raman: 450 to 1800 cm-1; NIR:  for 185 

pH: 400 to 1850 nm, for drip loss and IMF: 780 to 1850 nm; fluorescence: emission from 306 186 

to 412 nm. 187 

Pre-processing of Raman spectra were carried out using Open EMSC toolbox for MATLAB 188 

freely downloadable from http://nofimaspectroscopy.org in MATLAB version R2013b (The 189 

MathWorks, Natick, MA), while pre-processing of NIR and fluorescence spectra were carried 190 

http://nofimaspectroscopy.org/


out in The Unscrambler® X version 10.4 (CAMO Process AS, Norway). PLSR models were 191 

developed using The Unscrambler® X version 10.4 (CAMO Process AS, Norway). 192 

3. RESULTS AND DISCUSSION 193 

3.1 Reference meat quality measurements 194 

Results from reference analyses are summarized in table 1 and correlations between reference 195 

measurements are shown in table 2. The distribution of the reference measurements seemed to 196 

be sufficient for modelling purposes, since the standard deviation divided by range was 0.21 197 

for all analyses. The range of pHu and drip loss measurements were considered as reflective of 198 

what is expected in Norwegian landrace pigs, while the IMF content was relatively low in the 199 

current study. The reference measurements were conducted later than what is typical for 200 

studies regarding pork quality, 4-5 days post-mortem, as opposed to the more common 24 h 201 

(Christensen, 2003; Otto, Roehe, Looft, Thoelking, & Kalm, 2004). This could have affected 202 

some of the reference measurements, for instance, drip loss can be influenced by post-mortem 203 

proteolysis (Gardner, Huff Lonergan, & Lonergan, 2005). The reason for conducting analyses 204 

at 4-5 days post-mortem was that this is a procedure established by the collaborating pig-205 

breeding association. They analyze thousands of pigs yearly, which have led to highly 206 

standardized operating procedures for meat quality analysis. 207 

Of note when comparing the two drip loss measurements is that the EZ-DripLoss 208 

measurement had a larger range than the vacuum drip (VD), even though the measurement for 209 

EZ-DripLoss was conducted over a 24 h period, as opposed to 8 d for VD. This is likely 210 

caused by the more invasive procedure and larger surface area to volume of the EZ-DripLoss 211 

method and that the VD samples might have an upper limit of drip formation attributed to 212 

physical constraints of the vacuum bag. Another cause for lower drip loss in vacuum packed 213 

samples could be reabsorption of water during storage, as hypothesized by Kristensen and 214 

Purslow (2001). The correlation between the two measurements was 0.60, meaning that they 215 

most likely measure different phenomena related to drip formation, e.g. the impact of vacuum 216 

packing or the effect of sample morphology.  217 

The correlation of pHu and IMF with the drip measurements showed the same tendency for 218 

both drip methods, where low values for pH and IMF were significantly correlated with high 219 

drip. This correlation was stronger for EZ-DripLoss than for VD, even though their SD/range 220 

values were comparable. This implies that the EZ-DripLoss measurement could be closer 221 

related to physical attributes of the meat than the VD measurement, thus giving reason to 222 



believe that EZ-DripLoss measured more of the inherent meat characteristics while VD to a 223 

larger extent was influenced by the method. However, it is still of interest to investigate if VD 224 

can be predicted by spectroscopic techniques, as this is how meat is often presented to 225 

consumers. Additionally, there is no golden standard for measurement of drip loss in meat, 226 

meaning that the method of measuring drip loss needs to be tailored to the specific 227 

applications. 228 

3.2 Spectroscopy 229 

A summary of the performance for PLSR models from NIR, fluorescence and Raman 230 

spectroscopy and reference measurements is shown in table 3. It was evident that models from 231 

Raman spectroscopy performed better than NIR and fluorescence for all reference 232 

measurements, and that NIR performed better than fluorescence. The RPD for each model 233 

ranged from 1.01 to 1.93, meaning that no model meets the recommended threshold for rough 234 

screening at 2.0 (Williams, 2014). Nevertheless, the models based on Raman spectroscopy 235 

seemed to be suitable for rough sorting of samples in batches according to their predicted 236 

values (Fig. 1). For instance, by selecting 20% of the samples with highest predicted EZ-237 

DripLoss from the PLSR model and comparing the reference measurement of EZ-DripLoss 238 

from these samples with the remaining 80% of samples, there was an average of 2.2% 239 

(p<0.001) higher EZ-DripLoss in the high predicted drip loss group. Batches of meat with 240 

higher drip loss can be sorted from the rest and used in products where the inferior quality is 241 

accounted for, such as canned pork (Florowski et al., 2017), while simultaneously increasing 242 

the average quality of the remaining pork. 243 

Model performance has to be considered in relation to the error of the reference analysis, 244 

which is difficult to obtain for drip loss measurements because it is impossible to analyze the 245 

same sample twice. It is possible to estimate this error by measuring adjacent samples, but 246 

then it is important to acknowledge that there is an inherent difference in drip loss, both 247 

longitudinal and transversal, along the entire longissimus thoracis et lumborum (Christensen, 248 

2003; Otto et al., 2004).  249 

When performing PLSR it was discovered that some samples could be considered as outliers. 250 

For EZ-DripLoss, one sample was poorly described by all spectroscopic methods, giving 251 

strong reason to believe that something went wrong when conducting the reference 252 

measurement. This happened for one of the sample batches for VD; therefore, the entire batch 253 

(19 samples) was left out when conducting both PLSR and correlation analyses between 254 

reference measurements. Manual inspection of NIR spectra revealed two severely deviating 255 



spectra, and these were consequently left out of all NIR PLSR models. It is also worth noting 256 

that the model performance improved a lot by removing a few samples with high residual 257 

sample calibration variance for reference measurements (Y-variance) for most models, 258 

without changing the important variables in models, suggesting that some of the reference 259 

measurements or spectra might have been incompatible or that the reference measurements 260 

could be considered as outliers. For instance, by removing 12 samples (n = 110) in the model 261 

from Raman spectroscopy and EZ-DripLoss, the model improved to give a 𝑟𝑟𝑐𝑐𝑐𝑐2  = 0.76 and a 262 

RMSECV of 0.83, resulting in an RPD > 2.0, which is sufficient for rough screening. 263 

3.2.1 Raman spectroscopy 264 

It is useful to identify which spectral regions are important for establishing the relationship 265 

between spectroscopy and reference measurements for elucidating the qualitative association 266 

to known changes in post-mortem meat. To evaluate which spectroscopic regions are 267 

important for the models, the weighted regression coefficients for the best models for each 268 

reference analysis were evaluated (Fig. 2). The changes in Raman spectra related to reference 269 

measurements of pHu and drip loss could in general be categorized in two groups, one being 270 

related to post-mortem metabolism and the other being changes in protein secondary 271 

structure. 272 

For pHu, the important regions related to metabolism from the PLSR model were at 973 cm−1 273 

and 1045 cm−1, which have been assigned to the PO3
2− stretching vibration of the phosphate 274 

moiety (Rimai, Cole, Parsons, Hickmott, & Carew, 1969) and creatine (Cr) or lactate in meat 275 

(Scheier, Kohler, & Schmidt, 2014), respectively. The phosphate signal at approx. 980 cm−1 is 276 

stronger under more basic conditions (Scheier & Schmidt, 2013), likely contributing to the 277 

positive correlation in the model. Conversely, peaks attributed to phosphate at approx. 880 278 

cm−1 and 1080 cm−1 are expected to increase as pH decreases (Scheier & Schmidt, 2013), but 279 

this was only detected for the peak at 880 cm−1 in the current study. The reason for not 280 

detecting a change at 1080 cm−1 might be that this region contains signals from other Raman 281 

active molecules, such as glycogen and adipose tissue, thus obscuring the relatively low signal 282 

from phosphates. As concentration of lactate increases post-mortem, pH decreases, thus 283 

giving a negative correlation for the peak at 1045 cm−1. For the EZ-DripLoss and VD models, 284 

the region at 977 cm−1 had an opposite sign compared to the pH model, most likely caused by 285 

the inverse relationship between pH and drip loss. The EZ-DripLoss model introduced 286 

contributions from another molecule related to metabolism in the region at approx. 880 cm−1, 287 

attributed to the acidic form of inorganic phosphate (Scheier, Kohler, et al., 2014). 288 



Important regions related to protein secondary structure changes were in the amide I and 289 

amide III regions, where the bands at 1635 cm−1, 1269 cm−1 and 942 cm−1 are assigned to α-290 

helical structures and the bands at 1685 cm−1 and 1237 cm−1 are assigned to β-sheet structures 291 

(Krimm & Bandekar, 1986; Tu, 1986). Intensity of regions related to α-helical structures 292 

increased with increased pH, while intensity of regions related to β-sheet structures decreased 293 

with increased pH. As noted for metabolites, the relationship in the models is opposite for drip 294 

loss models compared to models from pH. These changes might be caused by increased 295 

denaturation of proteins when pH declines rapidly post-mortem (Joo, Kauffman, Kim, & 296 

Park, 1999), and similar changes to protein secondary structure have been shown to be a 297 

direct consequence of changes in pH (Andersen et al., 2017). 298 

The important regions for the IMF model were all in close proximity to some of the 299 

characteristic peaks from pork adipose tissue, most prominent at 802 cm−1, 1296 cm−1, 1438 300 

cm−1 and 1655 cm−1 (Beattie, Bell, Borgaard, Fearon, & Moss, 2006), but some of the regions 301 

were also close to protein secondary structure regions (e.g. amide I). As IMF content was 302 

relatively low in the analyzed samples, and the characteristic fat peaks (at e.g. 1296 cm−1 and 303 

1438 cm−1) were only clearly visible in a few of the samples, it is plausible that the model 304 

relies on collinear regions from other molecular structures or the high correlation between fat 305 

and protein concentration in meat (Isaksson, Nilsen, Togersen, Hammond, & Hildrum, 1996).  306 

For improving the model for IMF predictions, effort should be put forth to make models 307 

where larger variation in IMF is included. 308 

The overlap of vibrations from fat and proteins highlights one of the difficulties when 309 

developing models for meat quality assessments, namely that it is difficult to distinguish the 310 

influence of one meat component from another. One of the traditionally limiting factors for 311 

Raman spectroscopy is the small sample area analyzed, which was improved in the current 312 

study by using a probe with a laser spot diameter of 6 mm.  Conversely, the increased spot 313 

size comes at the cost of including strong scattering from IMF. Future studies are needed to 314 

investigate the impact of scattering from fat on the validity of models for other quality 315 

parameters from Raman spectroscopy concerning meat quality, as spectra with a fat signature 316 

purposely have been avoided by others (Scheier, Bauer, et al., 2014; Scheier et al., 2015).  317 

PLSR models developed in the current study performed on a comparable level to those 318 

developed by Scheier, Bauer, et al. (2014) and Scheier et al. (2015) for pH and drip loss 319 

predictions. Our results emphasized many of the same spectral regions as the two cited 320 

studies, thus strengthening the evidence for the importance of regions related to metabolites 321 



and protein secondary structure for predicting pH and drip loss. One important difference in 322 

the current study compared with the work of Scheier et al. (2014; 2015) is the time of 323 

measurement, where theirs were done on pre-rigor muscle at 30-120 min post-mortem, the 324 

analysis in the current study was performed on post-rigor muscle at 4-5 days post-mortem, 325 

making it harder to directly compare the results. Regarding estimation of IMF, results from 326 

the current study showed vastly improved model performance compared to a study on lamb 327 

(Fowler et al., 2015). This is most likely caused by the larger laser diameter in the current 328 

study, thus measuring a larger sample area (approx. 14000 times increase in measuring area). 329 

3.2.2 NIR spectroscopy 330 

Inspection of important regions of models from NIR spectroscopy was only meaningful for 331 

pH and IMF models, as the regression coefficients for drip loss did not reveal large enough 332 

stable regions and were rather noisy. The most important regions for the pH model were 333 

mainly in the visible part of the spectra, from 400 nm to 780 nm, likely caused by the 334 

correlation between color and pH (Joo et al., 1999), in addition to a stretch at 1410 nm to 335 

1435 nm and a stretch from 1750 nm to 1850 nm. The stretch from 1410 nm to 1435 nm is 336 

attributed to water and it may be related to the strength of hydrogen bonds or the amount of 337 

water in the analyzed area (Segtnan, Sasic, Isaksson, & Ozaki, 2001). The longer stretch from 338 

1750 nm to 1850 nm can be attributed to a mix of CH and OH vibrations (Li-Chan, Ismail, 339 

Sedman, & van de Voort, 2002). For the IMF model two regions were important, one from 340 

1690 nm to 1708 nm, and a second from 1720 nm to 1735 nm, assigned to protein and fat, 341 

respectively (Williams & Norris, 2001). The model β-coefficients were positive for fat and 342 

negative for protein, again emphasizing the inverse correlation between these parameters. 343 

This shows that some regions seem to have chemical information relevant for interpretation 344 

(e.g. 1720 nm to 1735 nm for IMF), while some important regions seem to rely on non-345 

chemical information which is difficult to interpret (e.g. 1750 nm to 1850 nm for pH). 346 

The NIR models did not perform well compared to previous studies on fresh pork (Kapper et 347 

al., 2012; Liao et al., 2010; Prevolnik et al., 2005). A number of factors may have caused this 348 

discrepancy in the current study compared with others, including number of samples, relative 349 

time of measurements, total variation in the reference measurements and so forth. The reason 350 

for worse performing PLSR models than Raman spectroscopy might be that NIR 351 

spectroscopy exhibits relatively poor sensitivity and selectivity (Blanco & Villarroya, 2002). 352 



3.2.3 Fluorescence spectroscopy 353 

Fluorescence spectroscopy models did not perform particularly well for any of the reference 354 

measurements (Table 3). One of the reasons for this might be that samples were excited only 355 

at 292 nm, which may not be enough to capture the complexity of intact meat. Another reason 356 

for very poor performance regarding drip loss measurements might be that fluorescence 357 

spectroscopy is not very sensitive to structural changes responsible for drip development. It 358 

has been shown that excitations at longer wavelengths are optimal for fat and connective 359 

tissue, at 322 nm and 380 nm, respectively (Skjervold et al., 2003). The reason for choosing 360 

the wavelength used in the current experiment was that previous model system experiments 361 

have indicated a connection between a shift in the emission spectra from this excitation and 362 

changes in pH (Andersen et al., 2017), and it captures the emission from the most fluorescent 363 

amino acid, tryptophan, in proteins (Christensen, Norgaard, Bro, & Engelsen, 2006). 364 

4. CONCLUSION 365 

The current study reinforces the perception that Raman spectroscopy is a promising technique 366 

for analysis of pork quality. PLSR models for pH and drip loss relied largely on muscle 367 

metabolic state and protein structure, while the IMF model relied on characteristic regions for 368 

adipose tissue. The information provided in the Raman spectra seems to be appropriate to 369 

analyze complex biological systems, like that of meat, and may be applicable for other 370 

muscles and species because of the universal nature of post-mortem metabolism. NIR 371 

performed poorly in the current study, but has shown good ability to analyze meat quality in 372 

earlier studies, and further research is still encouraged. Fluorescence spectroscopy did not 373 

show much promise for meat quality assessment, believed in part to be explained by only 374 

exciting the samples at one wavelength, thus, fluorescence spectroscopy cannot be ruled out 375 

as a possible future technique.  376 

Before addressing the need for development of instruments applicable for testing in abattoir 377 

conditions, an effort should be put forth to improve upon the current experiment, by for 378 

example, analyzing the same sample with spectroscopy and the reference method and 379 

minimizing the delay between spectroscopic analysis and reference analysis. There is also a 380 

need to evaluate the optimal time of analysis post-mortem for a given parameter, both for 381 

improvement of models and for utilization of the results, which in a large part depends on the 382 

workflow in the abattoir. In conclusion, our results encourage further research focusing on the 383 

possible applications of Raman spectroscopy to assess meat quality. 384 
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Table 1. Mean value, minimum and maximum value, standard deviation (SD) and SD divided 532 

by range for reference measurements (n = 122, except for VD where n = 103). 533 

 534 

  535 

 Mean Min Max SD SD/range 

pHu 5.46 5.29 5.66 0.08 0.21 

EZ-drip % 7.9 3.9 12.4 1.8 0.21 

VD % 6.3 3.7 8.8 1.1 0.21 

IMF 1.1 0.8 1.6 0.17 0.21 



Table 2. Correlation between quality measurements (n = 122, except for VD where n = 103). 536 

(* denotes significant correlation with p < 0.05). 537 

 pHu EZ-drip % VD % 

EZ-drip % -0.48*   

VD % -0.30* 0.60*  

IMF 0.03 -0.30* -0.22* 

 538 

  539 



Table 3. Performance of PLSR models from Raman , NIR and fluorescence spectroscopy vs. 540 

reference measurements. EZ = EZ-DripLoss in %, VD = vacuum drip loss in % and IMF = 541 

intramuscular fat in %. 542 

 543 

 544 

 545 
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 547 

 548 

 549 

 550 

 551 

 552 

 553 
a SNV 400-1850 nm 554 
b SNV 780-1850 nm 555 

  n 𝑟𝑟𝑐𝑐𝑐𝑐2  RMSECV Factors RPD 

Raman EZ  121 0.49 1.24 3 1.43 

 VD  103 0.50 0.75 4 1.41 

 pHu 122 0.52 0.06 3 1.35 

 IMF 122 0.73 0.09 5 1.93 

NIR EZ  119 0.06b 1.69 1 1.05 

 VD  101 0.12b 1.00 3 1.06 

 pHu 120 0.28a 0.07 3 1.16 

 IMF 120 0.57b 0.11 12 1.58 

Fluorescence EZ  121 0.10 1.66 2 1.07 

 VD  103 0.04 1.05 1 1.01 

 pHu 122 0.06 0.08 4 1.01 

 IMF 122 0.18 0.16 4 1.09 



 556 

Figure 1. Predicted versus reference measurement plots showing results of PLSR from 557 

Raman spectroscopy, where target line is shown as a solid line and RMSECV for each model 558 

as dotted lines. A) EZ-DripLoss in %, B) Vacuum drip loss (VD) in %, C) pH and D) 559 

intramuscular fat (IMF) in %. 560 

 561 



 562 

Figure 2. Regression coefficients from PLSR models for A) EZ-DripLoss, B) vacuum drip 563 

loss, C) pH and D) intramuscular fat. Regions determined to be significant according to 564 

uncertainty test are colored red. Spectral regions referred to in the discussion are marked with 565 

stars. 566 

 567 
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