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Abstract 

In many areas of science, multiple sets of data are collected from the samples. Such data sets can be 
analysed by data fusion (or multi-block) methods. The aim is usually to get a holistic understanding 
of the system or better prediction of some response. Lately, several scientific groups have developed 
methods for separating common and distinct variation between multiple data blocks. Although the 
objective is the same, the strategies and algorithms are completely different for these methods. 
 
In this paper, we investigate the practical aspects of the four most popular methods for separating 

common and distinct variation: JIVE, DISCO, PCA-GCA and OnPLS. The main barrier complicating the 

use of any of these methods is model selection and validation. Especially when the numbers of 

blocks is more than two. By the use of extensive simulations we have elucidated the three properties 

that are important for assessing the validity of the results: The ability to identify the correct model, 

the ability to estimate the true, underlying subspaces, and the robustness towards misspecification 

of the model.  

The simulated datasets mimic a range of “real life” data, with different dimensionalities and variance 

structures. We are thus able to identify which methods work best for different types of data 

structures, and pinpoint weak spots for each method. The results show that PCA-GCA works best for 

model selection, while JIVE and DISCO give the best estimates of the subspaces and are most robust 

towards model misspecification.  
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1 Introduction 
Multi-block methods are a family of data fusion methods designed to analyse and interpret systems 

where the same samples are characterized by several blocks of variables. Typical examples are found 

in food science, where the same products may be characterized by sensory attributes, instrumental 

measurements and consumer acceptance, or in medical science, where the blocks might correspond 

to different –omics platforms as well as clinical measurements and lifestyle variables of the same 



patients. Multi-block methods have existed for a long time1–3, but the interest in the field is renewed 

lately due to increased data generation in many scientific fields4–6. Multi-set analysis is a different 

type of data fusion, where the data are linked in the variables mode instead of the samples. In this 

paper we focus on the multi-block case, although several of the methods and results also apply for 

multi-set data. 

The motivation for analysing several data blocks simultaneously can be either a better 

understanding of the system at hand or an improved prediction of some response variable. So-called 

asymmetric fusion methods are used when there is a natural path or predictive direction between 

the data blocks, whereas symmetric methods treat all blocks on equal footing and are more suited 

for explorative analysis. In this paper, we focus on symmetric data fusion but the methods and 

conclusions are also relevant for asymmetric data fusion. 

The most straightforward way to fuse data is simply to combine all data blocks into one matrix and 

apply standard data analysis tools on the merged data. Simultaneous Component Analysis (SCA)7, 

also called SUM-PCA, is an example of such a method. The advantage of this approach is that it can 

easily handle any number of blocks. The drawback however, is that the individual block contribution 

and their relationship to each other is hard to interpret. To overcome this drawback, a subgroup of 

data fusion methods has emerged lately. These methods aim at identifying and separating common 

and distinct variation across data blocks. Several scientific groups have developed such methods in 

parallel. In this paper we compare four of the most used methods, called DISCO, JIVE, PCA-GCA and 

OnPLS8–11. Although the objective of all these methods is the sameAll these methods rely on latent 

variables for data compression, but the strategies and algorithms are completely different. A barrier 

for practical use of these methods is the model validation, especially when the numbers of blocks is 

more than two. A better understanding of the properties of these methods is therefore needed, in 

order to assess the validity of the resulting models. 

Common variation (also called joint or overlapping) refers to underlying phenomena that are 

captured in several of the data blocks, while distinct variation (also called individual or unique) 

correspond to phenomena that are only found in one block. The separation of common and distinct 

variation in cases with two, three and four data blocks is illustrated schematically in Figure 1. The 

problem is quite straightforward with two blocks, resembling a bi-directional regression problem 

with multivariate input and output where the common part is the predictive/predicted part of each 

block. The complexity increases dramatically with increasing number of data blocks, since the 

common variation can be either global (across all blocks) or local (across subsets of blocks). In most 

real cases however, several of the subspaces are likely to be empty, and the final model is not 

necessarily that complex. Not knowing the true underlying model however, makes it a challenge to 

define which subspaces to include in or to keep out of the model.  



 

Figure 1. Schematic illustration of the decomposition of common and distinct subspaces in the case of a) two, b) three and 
c) four data blocks. Common and distinct subspaces are denoted by the letters C and D respectively, followed by the block 
numbers they belong to. Subspaces that are common for all blocks are called “globally common” and subspaces across 
subsets of blocks are called “locally common”. 

 

A unifying framework for the aforementioned methods has been published lately, describing the 

scientific problem itself and the existing methods in linear algebraic terms12. The methods JIVE, 

DISCO and OnPLS have been compared previously in a two block scenario13.  Simulations were used 

to demonstrate the strength and weaknesses of the different methods and real data was used to 

demonstrate the applicability of the methods. Not knowing the true underlying sources of variation 

in the real data however,  a true performance of the methods could not be assessed. To complete 

the comparisons between the methods from a theoretical to a more practical point of view, in this 

paper we compare the true performances of the methods.  

In contrast to the previous work, we have done a broader range of simulations of a three-block 

scenario. We investigate the properties of four of the methods (JIVE, DISCO, PCA-GCA and OnPLS) 

with regard to three properties that are important for practical use of the methods: 

1. Model selection: The ability to identify the correct model, i.e. number of common and distinct 

components. 

2. Subspace recovery: The ability to estimate the true subspaces, given the correct model. 

3. Robustness: How the subspace recovery is affected by fitting a “wrong” model. 

The investigations are based on a series of simulations, where data sets with different variance 

structures and dimensions are simulated according to an experimental design. In this way, we try to 

mimic the diversity of “real life” multi-block situations as closely as possible, and identify how the 

different methods perform under varying conditions. No real data sets are analysed in this work, as 

the objective is to compare how each method recovers the true data structure (which is unknown 

for real data). By doing this, we are able to identify how the methods perform on different types of 

data structures, and point out weak spots for each method. We also suggest improvements for 

further method development.  

 

2 Data fusion methods 
Consider K data matrices X1,…,XK, with the same I samples and different Jk variables in each matrix. 

The most straightforward method for fusing these data sets is then to do a PCA of the concatenated 



matrices. This method is known under several names, for instance SUM-PCA7, which is identical to 

Simultaneous Component Analysis (SCA14; applied in the multi-block setting instead of the multi-set 

setting) for the case where data is linked in the sample mode. The solution is found by calculating 

the singular value decomposition of the concatenated matrix 

 𝐗 = [
𝐗1

𝑚1
|… |

𝐗𝐾

𝑚𝐾
],       (1) 

where 𝑚𝑘 is some scaling factor to correct for differences in variance. The concatenated X is 

decomposed into scores T and loadings P: 

𝐗 = 𝐓𝐏′ + 𝐄        (2) 

By splitting the loadings P into block-specific parts, each data block Xk can be represented by: 

𝐗𝑘 = 𝐓𝐏𝑘
′ + 𝐄𝑘       (3) 

Note that the scores T are the same for all blocks, and the model does not separate common and 

distinct components explicitly.  

The decomposition of common and distinct subspaces in three data blocks is illustrated 

schematically in Figure 1b). Each subspace is represented by a set of basis vectors (scores T), and the 

decomposition of each data block can be written as 

 

𝐗1 = 𝐓1
(𝐶123)

𝐏1
(𝐶123)′

+ 𝐓1
(𝐶12)

𝐏1
(𝐶12)′

+ 𝐓1
(𝐶13)

𝐏1
(𝐶13)′

+ 𝐓1
(𝐷1)

𝐏1
(𝐷1)′

+ 𝐄1 

𝐗2 = 𝐓2
(𝐶123)

𝐏2
(𝐶123)′

+ 𝐓2
(𝐶12)

𝐏2
(𝐶12)′

+ 𝐓2
(𝐶23)

𝐏2
(𝐶23)′

+ 𝐓2
(𝐷2)

𝐏2
(𝐷2)′

+ 𝐄2    (4) 

𝐗3 = 𝐓3
(𝐶123)

𝐏3
(𝐶123)′

+ 𝐓3
(𝐶23)

𝐏3
(𝐶23)′

+ 𝐓3
(𝐶13)

𝐏3
(𝐶13)′

+ 𝐓3
(𝐷3)

𝐏3
(𝐷3)′

+ 𝐄3 

 

Where the subscript represents the block index and the superscript shows if a subspace is common 

(C) or distinct (D), and which blocks that are included in the subspace. Each of the subspaces can be 

split into individual basis vectors, represented by lowercase letters and an additional subscript (in 

parenthesis) representing the index of the basis vector. For instance, the two-dimensional subspace 

𝐓1
(𝐶123)

𝐏1
(𝐶123)′

 can be split into 𝐭1(1)
(𝐶123)

𝐩1(1)
(𝐶123)′

+ 𝐭1(2)
(𝐶123)

𝐩1(2)
(𝐶123)′

. 

The assumption is that there exists some underlying phenomenon that is captured by several data 

blocks, yielding a subspace that is common between these blocks. This means that the basis vectors 

in 𝐓1
(𝐶123)

 , 𝐓2
(𝐶123)

 and 𝐓3
(𝐶123)

 should span the same column space, representing the globally 

common variation. The calculation of scores and loadings differ for the different methods, as well as 

orthogonality constraints between scores. This will be explained in more detail in the following 

sections, but for a thorough description of the mathematical framework we refer to reference12 

Note also that often, only a subset of all the possible common subspaces are included in the final 

model, especially if the number of blocks is large. 

 

2.1 DISCO 
The DISCO method is mostly used in behavioural sciences15, and can also be used in multi-set data 

fusion, i.e. when the blocks are linked in the variables mode. Simultaneous Component Analysis 



(SCA) acts as a starting point for the DISCO method. The SCA is followed by an orthogonal rotation 

towards a user-defined target loading matrix  𝐏∗ that defines the common and distinct parts. The 

loading matrix 𝐏 from equation 2 is rotated orthogonally towards 𝐏∗ with rotation matrix  𝐁 such 

that the squared sum ∑((𝟏 − 𝐏∗) ∗ 𝐏𝐁 )2 is minimized. The resulting rotation matrix is then used to 

calculate the rotated scores and loadings, representing either common or distinct variation. See 

original papers for further details10,16. 

In DISCO, the common scores are  exactly the same for all blocks, so 𝐓1
(𝐶123)

= 𝐓2
(𝐶123)

= 𝐓3
(𝐶123)

, 

𝐓1
(𝐶12)

= 𝐓2
(𝐶12)

,  𝐓1
(𝐶13)

= 𝐓3
(𝐶13)

 and 𝐓2
(𝐶23)

= 𝐓3
(𝐶23)

. The scores are therefore in the column space 

of the concatenated 𝐗, but not necessarily in the columnspaces of each individual 𝐗𝑘. The rotation is 

orthogonal, meaning that all (both common and distinct) score vectors are othogonal to each other . 

While the orthogonality definitely has some advantages, there is little reason to expect all distinct 

phenomena to be orthogonal in real life data. These constraints might therefore be too strict and 

give a suboptimal representation of the common and distinct subspaces. 

The model selection consists of two steps: first, the total number of components is decided upon. 
Next, the best target rotation matrix (𝐏∗) is sought. Usually, the rotations to all possible targets for a 
pre-defined total number of components are evaluated in order to find the best model. The 
goodness of fit is evaluated by determining the sum of squared deviation of the normalized rotated 
score matrix with the target rotation matrix that was used.  The best rotation matrix is the one that 
shows the smallest deviation.  This process is very computationally intensive, as the number of 
possible targets quickly becomes large. In addition, several targets often have an approximately 
equal fit, and there is no clear global minimum. In such cases, it is a good idea to inspect all the 
models that are not significantly different from the global minimum.  
 

2.2 JIVE 
The JIVE method has gained popularity mainly in biomedical applications17–21. JIVE is, similar to 

DISCO, also an extension of the regular SCA decomposition and can be used for both multi-block and 

multi-set applications. In contrast to the other methods we address in this paper, the JIVE method 

only facilitates decomposition in global common and distinct subspaces and does not allow for local 

common subspaces. 

The optimisation criterion of JIVE is to minimize the squared residuals, ‖𝐄‖2, where E is the 

concatenated residuals for all data blocks. This is obtained through an iterative algorithm that starts 

by estimating the common components by SCA on the concatenated matrix 𝐗. Then, the distinct 

components for each block are found by applying SVD on what remains after deflating the common 

part. The original 𝐗 is then updated by deflating the distinct components, and the procedure is 

repeated until convergence of the residuals. For details, see the original JIVE paper8.  

As for DISCO, the common scores are equal for all blocks. The orthogonality constraints in JIVE 

however are a bit more flexible, as the distinct parts of the different blocks are not necessarily 

orthogonal to each other. 

The model complexity is estimated in a procedure where first a significant number of components 

for the distinct parts is estimated using permutation tests followed by the estimation of the number 

of common components in a similar manner. Details can be found in the supplementary material of 

the original JIVE paper8. In this work we have used a significance level of 5% for the permutation 

tests.  

 



2.3 PCA-GCA 
This method is a combination of PCA and Generalized canonical Correlation Analysis (GCA). Some 

applications of this approach have been published22–24, and a similar method for asymmetric data 

fusion has also been developed11,25. GCA is a generalized version of the two-block method Canonical 

Correlation Analysis (CCA), and can be applied to any number of blocks26.  

The PCA-GCA algorithm starts by decomposing each block individually by PCA, keeping a relevant 

number of scores from each block. Then, GCA is used to find common components between these 

scores. The common components are removed from the original blocks by orthogonalisation, and 

the distinct components are found by applying SVD on the remainders. It can also be used with 

multi-set data by applying GCA on the PCA-loadings instead of the scores. 

A major difference between PCA-GCA and the other methods is that it operates on the individual 
data blocks 𝐗𝑘, not on the concatenated data. This means that the common components are in the 
column spaces of each block, not of the concatenated 𝐗. Because of this, the method is invariant to 
between-block scaling, meaning that scaling by the factor 𝑚𝑘in Equation (1) is unnecessary.  
 
The common scores are not identical for the blocks, but the correlation between them should be 

high, meaning that 𝐓1
(𝐶123)

≈ 𝐓2
(𝐶123)

≈ 𝐓3
(𝐶123)

. The distinct components are not orthogonal to 

distinct components from other blocks, and neither to common components among the other 

blocks. For instance, 𝐓1
(𝐷1)

 is not orthogonal to 𝐓2
(𝐷2)

, 𝐓3
(𝐷3)

, 𝐓2
(𝐶23)

 and 𝐓3
(𝐶23)

, but it is orthogonal 

to all components which include block 1. 
 
Like for DISCO, the model selection is a two-step procedure. First, the numbers of components in the 
initial PCA’s has to be decided. Then, the GCA provides a number of candidates for common 
components, and the actual number is selected by evaluating the canonical correlation coefficient 
together with the explained variances for each of these candidates. The cut-offs should be set based 
on knowledge about the noise level in the data, and in this paper we have defined common 
components as those with a correlation>0.9 and explained variance >5% in all of the involved blocks. 
The model selection strategy may seem complicated, but we have seen from experience that the 
choice of initial PCA components is not crucial, as long as the number is not too low. If too many 
initial components are included, the GCA will yield some spurious noise components with high 
correlation, but these will be filtered out by the explained variance cut-off.   
 

2.4 OnPLS  
OnPLS is the multiblock extension of the O2PLS algorithm, and the method is often used for 

integrating –omics data27–30. O2PLS is based on analysis of the covariance matrix of two blocks, 

𝐗1
t 𝐗2. If multiple blocks are involved, the different covariance matrices 𝐗𝑘

t 𝐗𝑙 (k,l = 1, .. ,K, k≠l) are 

concatenated and analysed similar to an SCA approach. In this way, a global common direction is 

estimated. Anything orthogonal to this direction is either distinct or partially common and is 

determined by repetitions of the OnPLS procedure on these orthogonal parts. After the global and 

local variation is determined they are removed from the original data and the global common 

variation is (re-)calculated.  For a full description of the algorithm used here, see appendix and 

reference9. 

The orthogonality characteristics are equal to those of the PCA-GCA method: The common scores are 

not identical for all the blocks, but the correlation between them should be high. The distinct 

components are not orthogonal to distinct components from other blocks neither to the common 

components among the other blocks. 



Similar to PCA-GCA, the number of common components is decided by evaluating the correlation 

between score vectors from different blocks, in addition to the explained variances. This correlation 

is however not the same as in PCA-GCA, and the threshold is usually set much lower. Here we have 

used a threshold of 0.5 for the correlation, as suggested in reference9, and 5% for the explained 

variance. No clear model selection strategy has been published for OnPLS, at least not for more than 

two blocks. We have therefore developed a strategy based on some cross-validation principles, see 

appendix.  

3 Simulation study 
 

3.1 Simulated data 
The simulation study is based on a situation with three data blocks, with varying dimensions and 

variance structures. In every case, each block has three underlying dimensions, according to Eq. (5). 

The number of variables is also kept constant at 40, 50 and 60 for the three blocks respectively. 

𝐗𝑘 = 𝐭𝑘(1)𝐩𝑘(1)
′ +𝐭𝑘(2)𝐩𝑘(2)

′ + 𝐭𝑘(3)𝐩𝑘(3)
′ + 𝐄𝑘 ,     𝑘 = 1,2,3  (5) 

All the methods have slightly different orthogonality constraints, and the simulated data is not 

intended to match the constraints of any specific method. The idea is rather to mimic the 

assumption that a common subspace is defined by the same underlying phenomenon, represented 

by identical score vectors in the simulated data. The score vectors (t) are therefore normally 

distributed random numbers (i.e. non-orthogonal), while the loadings (p) within each block are 

orthogonal vectors of normally distributed random numbers.  Three different allocations of common 

and distinct components were investigated as described in Table 1.  

  



 MODEL 1 
Two global common 

components 

MODEL 2 
One global and one local common 

component 

MODEL 3 
No common components 

M
o

d
el

 s
u

b
sp

ac
es

 

   

𝐗1 = 𝐗1
(𝐶123)

+ 𝐗1
(𝐷1)

+ 𝐄1 

𝐗2 = 𝐗2
(𝐶123)

+ 𝐗2
(𝐷2)

+ 𝐄2 

𝐗3 = 𝐗3
(𝐶123)

+ 𝐗3
(𝐷3)

+ 𝐄3 

𝐗1 = 𝐗1
(𝐶123)

+ 𝐗1
(𝐶12)

+ 𝐗1
(𝐷1)

+ 𝐄1 

𝐗2 = 𝐗2
(𝐶123)

+ 𝐗2
(𝐶12)

+ 𝐗2
(𝐷2)

+ 𝐄2 

𝐗3 = 𝐗3
(𝐶123)

+ 𝐗3
(𝐷3)

 + 𝐄3 

𝐗1 = 𝐗1
(𝐷1)

+ 𝐄1 

𝐗2 = 𝐗2
(𝐷2)

+ 𝐄2 

𝐗3 = 𝐗3
(𝐷3)

+ 𝐄3 

Eq
u
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y 
o

f 
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o
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s 
in

 
Eq

. 5
 

𝐭1(1) = 𝐭2(1) = 𝐭3(1) 

𝐭1(2) = 𝐭2(2) = 𝐭3(2) 

𝐭1(3) ≠ 𝐭2(3) ≠ 𝐭3(3) 

𝐭1(1) = 𝐭2(1) = 𝐭3(1) 

𝐭1(2) = 𝐭2(2) 

𝐭1(3) ≠ 𝐭2(3) ≠ 𝐭3(2) ≠ 𝐭3(3) 

 
𝐭1(1) ≠ 𝐭1(2) ≠ 𝐭1(3) ≠ 𝐭2(1) ≠ 𝐭2(2) ≠ 𝐭2(3) ≠ 𝐭3(1) ≠ 𝐭3(2) ≠ 𝐭3(3) 

Table 1 Overview of the three simulated models. The common components have identical scores in the simulations, but the estimates are not necessarily identical across blocks. MODEL 3 does 
not have any common components, and is included in the study only to evaluate false positives in the model selection.  

  



 

For each of these models, data sets with different sample sizes, variance distributions and noise 

levels were simulated according to a full factorial design, giving eighteen different combinations of 

the design factors. The design factors and levels are detailed in Table 2. Fifty data sets were 

simulated for each model type and each combination of design factors.  

 

Table 2 Overview of the design factors and their levels. For MODEL 3 (no common components), only design factors F1 and 
F3 are relevant. Note also that 𝒕𝑘(1)is globally common and 𝒕𝑘(3) is distinct in both MODEL 1 and MODEL 2. 𝒕𝑘(2) , on the 

other hand, is globally common in MODEL 1 and locally common (between X1 and X2) in MODEL 2. The percentages 
explained variance for F2 refer to noise-free data.   

Design factor Levels 

F1 
sample size 

1. 20 samples. Number of samples << number of variables 
2. 60 samples. Number of samples ≈ number of variables 
3. 200 samples. Number of samples >> number of variables 

F2 
variance 
distribution 

1. Common components dominate all blocks 
o 𝐭𝑘(1) explain 50%, 𝐭𝑘(2) explain 35% and 𝐭𝑘(3) explain 15% 

2. Unequal variance distribution 
o X1: 𝐭1(1) explain 50%, 𝐭1(2) explain 35% and 𝐭1(3) explain 15% 

o X2: 𝐭2(1) explain 30%, 𝐭2(2) explain 20% and 𝐭2(3) explain 50% 

o X3: 𝐭3(1) explain 15%, 𝐭3(2) explain 15% and 𝐭3(3) explain 70% 

3. Distinct components dominate all blocks 
o 𝐭𝑘(1) explain 15%, 𝐭𝑘(2) explain 10% and 𝐭𝑘(3) explain 75% 

F3 
noise 

1. 5% (of average signal) homoscedastic noise in all three blocks, mimicking 
precise data 

2. 20% (of average signal) homoscedastic noise in all three blocks, 
mimicking noisy data 

 Full factorial design = 3*3*2 = 18 different combinations 

 

3.2 Analysis of the simulated data  
All datasets were analysed by the four methods JIVE, DISCO, PCA-GCA and OnPLS. The analysis was 

done in three steps: 

1. Model selection. Each method has a procedure for estimating the dimension of the common and 

distinct subspaces, as explained in sections 2.1-2.4. We have put main emphasis on the numbers 

of common components, as this affects all data-blocks and consequently is the most critical for 

model interpretation. Furthermore, all methods but DISCO (where there is no order) start by 

estimating/determining the common part, indicating its significance.  

2. Subspace recovery. Models were fitted using the correct numbers of common and distinct 

components, and the estimated scores were compared to the true (noise-free) simulated score 

vectors. For each subspace, the recovery was calculated as the explained variance after 

regressing the estimated score vectors on the true scores, in the same manner as was done in 

reference13.  

3. Robustness. Models were fitted using incorrect numbers of components for one or several 

subspaces. In each case, at least one subspace was also modelled with the correct number of 

components. The list of misspecified models is given in Table 3. The recovery of the correctly 

specified subspace(s) was then calculated and compared to the recovery using the correct model 



(step 2). In this way, we are able to evaluate to what extent the estimation of a given subspace is 

affected by the other subspaces in the fitted model.    

 

MODEL 3 does not have any common components, and was only used for comparing the model 

selection strategies (i.e. identifying false common components). All the simulations and analyses 

were done in MATLAB (R2016a, The MathWorks Inc.). An implementation of JIVE was downloaded 

from the University of North Carolina8. A graphical user interface of DISCO was downloaded from KU 

Leuven31, and converted into a command line version for this paper. The OnPLS implementation is 

our interpretation of the algorithm as described by the original authors9,32. MATLAB code for OnPLS 

,PCA-GCA as well as the code to generate the simulation data can be downloaded from Nofima33. 

 

Table 3. Overview of the misspecified models used to evaluate robustness. The shaded cells represent the incorrectly 
specified subspaces. See Table 1 for description of the subspaces and MODEL1/2. 

Case True model Fitted model: Number of components 
in each subspace 

  C123 C12 C13 C23 D1 D2 D3 

Mis-1 MODEL 1 2    2 2 2 

Mis-2 MODEL 1 2 1   1 1 1 

Mis-3 MODEL 2 1 1   2 2 2 

Mis-4 MODEL 2 1    2 2 2 

Mis-5 MODEL 2 1 2   1 1 2 

Mis-6 MODEL 2 2 1   1 1 2 

Mis-7 MODEL 2 1 1 1  1 1 2 

Mis-8 MODEL 1 1 1   1 1 1 

Mis-9 MODEL 2 2    1 1 2 

Mis-10 MODEL 1 3    1 1 1 

 

 

4 Results 
In this section, the results for model selection and subspace recovery are described separately for 

the three models in Table 1 (subsections 4.1-4.3). Then, the robustness with regard to model 

misspecification is described in subsection 4.4. 

4.1 Two global common components (MODEL 1) 
The simulations revealed that the four methods handle the data sets with different characteristics 

quite differently, with regard to both model selection and recovery of the true subspaces. When it 

comes to model selection, PCA-GCA performs best on average, finding the correct number of 

common components for 79% of the data sets. OnPLS, DISCO and JIVE follow with 59%, 53% and 

43% respectively. The actual estimated numbers of common components are visualized in Figure 2, 

and we clearly see that:  

 JIVE performs well for the case where the common components dominate, but fails 

completely when the variance distribution is unequal or when the distinct components 

dominate. The performance is better with larger sample sizes, but it is not affected by noise.   



 PCA-GCA always finds the correct number when the noise is low, but fails in some cases 

when the noise level is high and common components are not dominating all blocks. 

Surprisingly, the performance decreases as the sample size increases for these instances. 

The reason might be that the correlation threshold should be set lower than 0.9 for noisy 

data, and the correlation is simply overestimated when the sample size is low. 

 DISCO has problems with low sample size, and the performance is very poor for noisy data. 

The estimated number of common components is often five, which is the maximum number 

set in the analysis for this model. This means that it defines all components as common. 

DISCO performs best when the distinct components dominate the data, which is expected 

since the rotation criterion is designed to find distinct subspaces. As explained in section 2.1, 

there are often several models with approximately equal fit. If all these are taken into 

account, the percentage of correct models increases from 53% to 75%. However, the models 

with equally good fit are often very different, and there is no easy way to single out the 

correct one.   

 OnPLS is quite variable across all combinations of design factors. The best results are 

obtained for the “easiest” data set (low noise and dominating common components), and 

the poorest results are obtained when the distinct components dominate the data.  

 

The same conclusions hold for the estimated numbers of distinct components (results not shown). 

When it comes to recovery of the true common and distinct subspaces (given the correct model), 

the overall average values are 94% (JIVE), 92% (PCA-GCA), 92% (DISCO) and 88% (OnPLS). Multiple 

comparisons (Tukey-Kramer, 5% significance level) show that there are no statistically significant 

differences between JIVE, DISCO and PCA-GCA, while OnPLS is significantly lower than all the other 

methods. The average recoveries for each setting of the design factors are plotted in Figure 3. All 

methods have lower recoveries for the distinct subspaces when sample size is low, and data sets 

where the distinct components dominate are generally the most challenging. Although these effects 

can be seen for all methods, they are larger for OnPLS, causing the lower overall average value.  

OnPLS is based on concatenated pairs of covariance matrices. As the number of blocks increase, this 

concatenated data matrix becomes very wide. It is therefore reasonable to assume that the 

estimation depends on the number of data blocks. In order to investigate this further, we did 

additional simulations with two and four data blocks. The results showed no differences in subspace 

recovery related to the number of blocks, for any of the four methods.  



 

Figure 2 MODEL 1: Estimated numbers of common components from JIVE (.), PCA-GCA (x), DISCO (*) and OnPLS (+) for all 
combinations of design factors. Each symbol represents one of the fifty repetitions of each combination. The numbers are 
integers, but some random jitter is added in order to see the amount of symbols at each location. The solid line represents 
the true number of common components.   

 



 

 

Figure 3 Subspace recoveries (%) of MODEL 1 for each combination of the design factors “F1: sample size” and “F2: variance 
distribution”. Recoveries for the distinct subspaces are averaged over the three blocks. Only results for the high noise level is 
shown, as results for the low noise level show a similar pattern. 

 

4.2 One global and one local common component (MODEL 2) 
The selected numbers of global and local common components are illustrated in Figure 4 and Figure 

5 respectively, and the recovery of subspaces are shown in Figure 6. On average, PCA-GCA finds the 

correct model for 73% of the data sets, followed by OnPLS (58%) and DISCO (34%). Compared to 

MODEL 1, OnPLS performs slightly better while DISCO performs poorer. Aside from that, the 

methods handle different types of data structures in the same way as described for MODEL 1. 

JIVE does not distinguish between global and common components. In these simulations, JIVE 

identified one common component in 50% of the data sets, and two common components in 11% of 

the data sets. This suggests that local common components are usually defined as distinct in the 

model selection procedure. However, we should not put too much emphasis on these results, given 

the shortcomings of the JIVE model selection procedure illustrated in the previous section. In order 

to investigate further how JIVE handles local components, models with either one or two common 

components were fitted. When one common component was fitted, the true local component was 

recovered in the individual subspaces of blocks one and two. When the fitted model had two 

common components, one of these corresponded to the true local component. This component 

explained very little variance (<5%) in block three, which indirectly identifies it as a local component.  

The average recovery over all common and distinct subspaces was very similar to the MODEL 1 

results:  93% (JIVE), 92% (PCA-GCA), 91% (DISCO) and 84% (OnPLS). Again, OnPLS is significantly 

lower than the other three methods. The recovery for all combinations of design factors are shown 



in Figure 6. It is clear that data sets where the distinct components dominate are the most 

challenging for all methods, and that it is necessary to have a large sample size in such cases. This 

effect is most profound for OnPLS, which completely fails to recover the global and local common 

subspaces for data sets with only 20 samples and where the distinct components dominate.  

 

Figure 4 MODEL 2: Estimated numbers of global common components from JIVE (.), PCA-GCA (x), DISCO (*) and OnPLS (+) 
for all combinations of design factors. Each symbol represents one of the fifty repetitions of each combination. The numbers 
are integers, but some random jitter is added in order to see the amount of symbols at each location. The solid line 
represents the true number of components. 

 



 

Figure 5 MODEL 2: Estimated numbers of local common components from PCA-GCA (x), DISCO (*) and OnPLS (+) for all 
combinations of design factors. Each symbol represents one of the fifty repetitions of each combination. The numbers are 
integers, but some random jitter is added in order to see the amount of symbols at each location. The solid line represents 
the true number of components. 



 

Figure 6. Subspace recoveries (%) of MODEL 2 for each combination of the design factors “F1: sample size” and “F2: 
variance distribution”. Recoveries for the distinct subspaces are averaged over the three blocks. JIVE does not support local 
common components, so the local common is fitted as a global common for JIVE. Only results for the high noise level is 
shown, as results for the low noise level show a similar pattern. 

4.3 Zero common components (MODEL 3) 
Datasets with no common components were simulated in order to assess the type I error for finding 

common components (false positives). The PCA-GCA method was exceptional in this case, with no 

false positives at all. DISCO and OnPLS had 66% and 4% false positives when the sample size was low 

(20 samples), but not for the higher sample sizes. JIVE, on the other hand, had substantial amounts 

of false positives regardless of samples size (14%, 20% and 6% for sample size 20, 60 and 200 

respectively). These results agree with the previous assertion that there is a problem with the model 

selection procedure for JIVE. 

4.4 Robustness towards model misspecification 
The robustness of each method was investigated by changing the dimensions of at least one of the 

fitted subspaces, while other subspace(s) were correctly specified. In this way, we could evaluate 

how the recovery of a correctly defined subspace was affected by changing other subspaces in the 

model.  The misspecified models are listed in Table 3, and the reductions in recovery compared to 

those obtained with correct model settings (calculated as Recoverycorrect -Recoverymisspecified) are 

shown in Figure 7. The results were similar for both noise levels, so the figure shows data sets with 

high noise level only. Note that some reductions are slightly above zero, meaning that the recovery 

is better for the misspecified than the true model. This occurs by chance in some cases where the 

recovery by the true model is low.  

Only two of the models can be fitted by JIVE (models Mis-1 and Mis-10), since it does not fit local 

subspaces. These models show good robustness for both the global and distinct subspaces, with a 

maximum reduction in subspace recover of approximately thirteen percentage points. Small sample 

size makes the recovery of subspaces less robust, especially for the distinct components. 

PCA-GCA is a sequential method, where the global components are extracted first. The global part is 

therefore never affected by changing the local and distinct parts. Similarly, the local components are 

not affected by changing the distinct components. If we increase the number of global components, 

as in model Mis-6, the local component is modelled as global and the recovery of the local 

component therefore drops towards zero. The huge impact however diminishes after closer 



inspection which reveals that one of the global components explains little variance in one of the 

blocks and therefore should be interpreted as local. The distinct components are extracted in 

succession to the local and global components and are therefore affected by changes in both global 

and local components.  

DISCO is remarkably stable for most of the misspecified models. The largest reduction in subspace 

recovery is seen for the global common subspace when fitting Mis-4 (Figure 7c), except when 

distinct components dominate all blocks. This is logical, since the rotation in DISCO is defined by the 

distinct components. We also notice that the robustness is often poorer for data sets with small 

sample size (small dots), especially for the distinct subspaces. 

For OnPLS, the robustness of the common parts is stable though subpar compared to DISCO and 

PCA-GCA. The distinct parts however are relatively robust and are comparable to DISCO for most of 

the misspecified models.  Like DISCO, it has problems with recovering the global subspace for Mis-4 

except from when distinct components dominate all data blocks (black dots). For the local subspaces 

in Figure 7h), it has big problems with Mis-6, but not as severe as PCA-GCA. Mis-3 is problematic for 

data sets where the common components dominate (black dots). 

Overall, DISCO and JIVE are the most robust methods. OnPLS is quite variable, but it is poorer or 

approximately equal to DISCO in all cases. PCA-GCA is able to recover the global common variation in 

all cases of misspecification of the subspaces. The local and distinct subspaces however, are very 

sensitive to misspecification of the global part. To some extend this is also true for OnPLS.  Both 

these methods determine the subspaces in successive order, first global then local and finally the 

distinct. In cases where the dimension of the global subspace is uncertain, there is a high risk of 

misinterpretation when using PCA-GCA and OnPLS. 

 

 

 

 

 



 

Figure 7. Robustness towards model misspecification. Each subplot displays the reduction in subspace recovery for various 
misspecified models (defined in Table 3). Each dot represents one of the nine combinations of sample size and variance 
distribution (defined in Table 2), averaged over fifty repetitions. The dot size represents sample size and colour represents 
variance distribution (red: common dominates all blocks, blue: unequal variance distribution, black: distinct dominates all 
blocks). Note that several of the models cannot be fitted by JIVE, since the method does not allow for local common 
components.  

5 Discussion 
JIVE has a great potential and should be extended to handle local common components. The 

estimation of the model complexity however fails terribly. This might be due to the permutation 

procedure that is used to determine the number of significant components with. Recently it was 

described that the determination of the number components based on permutation tests has to be 

corrected for the reduced ranks of the lower components34,35. This is currently not done in the JIVE 

method. Incorporation of such a correction might lead to a better estimation of the number of 

components.  

DISCO is also a good method to fit a known model. This might seem counterintuitive, since it 

imposes full orthogonality of components between all data blocks. The rotation towards the 

orthogonal solution however, is never perfect for real data (i.e. the rotated loadings are not exactly 

equal to the target matrix  (𝐏∗). The distinct components are therefore not truly distinct and if the 

fit is poor they might explain a substantial amount of variation in other data blocks. Because of this 

“imperfect” rotation towards the target, the residuals with (normalized) target matrices 𝐏∗ with 

more common components are often much lower than those with only few common components. 

Consequently, the ‘congruence’ approach to select the best model with is biased towards models 

with (too) many common components. This is exactly what was observed in the simulations.  

The results of OnPLS show a high susceptibility towards unequal distributions of variation across the 

different data-blocks. If the common variation is large however, it seems to decompose the original 

sources of variation well. One reason might be that OnPLS never is a true combination of common 



components but rather a concatenation of pairs of common blocks (i.e. covariance matrices 

between the different pairs of blocks).  It can be argued that these concatenations are skewed with 

respect to the original common direction, especially if the common direction is weak. OnPLS is also 

more sensitive to sample size than the other methods. This is logical since the estimation of 

covariance matrices are unstable when samples are few. Furthermore, the OnPLS (and O2PLS) 

algorithm has an unclear step in defining the parts orthogonal to the common direction, which forms 

the basis for the resulting local and/or distinct parts. The subsequent deflation steps are not 

necessarily in the direction of most explained variation of the residual and could therefore limit the 

interpretability of these parts. It was observed that the recovery of the local and distinct parts is the 

lowest when using OnPLS, and the robustness towards model misspecification was also variable. 

PCA-GCA is not a new method, but rather a combination of two good old workhorses in multivariate 

data analysis. The results show that it works well for both model selection and recovery of the 

subspaces. Due to its sequential approach, PCA-GCA is however vulnerable for misspecification of 

the subspaces that are extracted early in the sequence. PCA-GCA is therefore not recommended for 

fitting models where the dimensionalities of the first subspaces are doubtful. Both in PCA-GCA and 

OnPLS, the results depend on the order of extraction of the common subspaces that are on the same 

“level”. This means that in a three-block case, the order of subspaces C12, C23 and C13 is not 

arbitrary (e.g.  C12, if removed first from block1 and block2 can be different from C12 when C23 is 

removed first from block2 and block3). In practise, however, changing the order will not have a 

significant effect on the results if the selected model fits the data well.  

In real applications, the model selection is usually done manually by inspecting some model 

characteristics. This can be a quite complicated task, especially if there are many blocks. In PCA-GCA 

and OnPLS one needs to evaluate both the correlations and the explained variances for every 

potential component in all subspaces. Although cumbersome, the procedure can also be seen as an 

advantage for the experienced data analyst since it is transparent and interactive. The same goes for 

DISCO, where it is advisable to inspect several alternative models thoroughly with regard to 

explained variances and the interpretability of scores/loadings. JIVE, on the other hand, has a less 

transparent model selection procedure where the user only has to decide on a confidence level. This 

approach is easy-to-use and very appealing to a less experienced analyst, but may be seen as a black 

box by others. In its current state, however, this method does not work properly.  

 

6 Conclusion 
The idea is that separation of common and distinct subspaces will give better interpretation of 

complex systems. However, the applicability of these methods is limited by difficulties in assessing 

the validity of the separation. The separation in each of these methods is a very intricate process. To 

prevent these methods of being used as a black box however, we have compared JIVE, DISCO, PCA-

GCA and OnPLS with respect to their capability in selecting the right model complexity, their ability 

to estimate common and distinct variation in different datasets, and their robustness towards fitting 

a slightly “wrong” model. The results provide some clear guidelines on how to use the methods in 

practise. 

Most of the complexity concerns the model selection procedure, i.e. deciding the dimensionalities of 

the common and distinct subspaces. This is not a trivial task, and the interpretation of the system 

will depend heavily of the selected model. Our simulations showed that PCA-GCA works best for 

model selection in most of the cases.  



The simulations showed that JIVE, PCA-GCA and DISCO have good recovery of the underlying 

common and distinct subspaces in most conditions. It is also clear that OnPLS performs the worst in 

recovering the real underlying components. DISCO and JIVE are most robust to misspecifications of 

the fitted model but in its current implementation JIVE is not able to deal with local common 

components. 

Recommended strategy for the current methods: 

 Use PCA-GCA for model selection. 

 If PCA-GCA finds that there are no local common components, use JIVE for model fitting. 

 If there are local common components, but the dimensions of the common subspaces are 

not well defined, use DISCO for model fitting. Alternatively, if the dimensions of the common 

subspaces are clear use PCA-GCA 

It is always a good idea to fit models with both DISCO, PCA-GCA and JIVE, and compare results. Since 

the goal of all methods is the same, similar scores and loadings imply that the fitted models are 

valid.  
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