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Abstract 

Enzymatic protein hydrolysis (EPH) is one of the industrial bioprocesses used to recover 

valuable constituents from food processing by-products. Extensive heterogeneity of by-

products from, for example, meat-processing is a major challenge in production of protein 

hydrolysates with stable and desirable quality attributes. Therefore, there is a need for process 

control tools for production of hydrolysates with defined qualities from such heterogeneous raw 

materials. In the present study, we are reporting a new feed-forward process control strategy 

for enzymatic protein hydrolysis of poultry by-products. Four different spectroscopic 

techniques, i.e., NIR imaging scanner, a miniature NIR (microNIR) instrument, fluorescence 

and Raman, were evaluated as tools for characterization of the raw material composition. Partial 

least squares (PLS) models for ash, protein and fat content were developed based on Raman, 

fluorescence and microNIR measurements, respectively. In an effort to establish feed-forward 

process control tools, we developed statistical models that enabled prediction of end-product 

characteristics, i.e., protein yield and average molecular weight of peptides (Mw), as a function 

of raw material quality and hydrolysis time. A multi-block sequential orthogonalised-PLS (SO-

PLS) model, where spectra from one or more techniques and hydrolysis time were used as 

predictor variables, was fitted for the feed-forward prediction of product qualities. The best 

model was obtained for protein yield based on combined use of microNIR and fluorescence (R2 

= 0.88 and RMSE = 4.8). A Raman-based model gave a relatively moderate prediction model 

for Mw (R2 = 0.56 and RMSE = 150). Such statistical models based on spectroscopic 

measurements of the raw material can be vital process control tools for EPH. To our knowledge, 

the present work is the first example of a spectroscopic feed-forward process control for an 

industrially relevant bioprocess.  
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1. Introduction 

By-products from industrial food processing constitute one of the major figures in the global 

food wastage footprint (Kummu et al. 2012; Parfitt et al. 2010). Recent advance in 

biotechnology opened several possibilities for utilization of by-products from industrial 

processing of milk, seafood and several meat products. Enzymatic protein hydrolysis (EPH), 

i.e., protease catalyzed digestion of proteins, is one of the well-recognized technologies in 

valorization of by-products and side-streams (Tavano 2013; Aspevik et al. 2017). This 

technology has been widely successful in production of high-value products, such as sports 

nutrition and infant formulations, from diary processing by-products (Nasirpour et al. 2006; 

Tang et al. 2009). However, similar successes are largely unaccomplished in the meat industry 

and, in many cases, by-products from this sector are regarded as high-volume-low-value side 

streams. This is, to a significant extent, because meat-processing by-products are very 

heterogeneous matrices characterized by high degree of composition variation. Hence, 

controlled production of protein hydrolysates with stable quality attributes is one of the major 

challenges in valorization of meat-processing by-products.  

The existing strategies in controlling quality of protein hydrolysates, nearly exclusively, rely 

on analysis of the end-product. Degree of hydrolysis (DH), molecular weight distribution 

(MWD), amino acid composition and total protein recovery are the key industrially relevant 

quality parameters that determine intrinsic properties of a given product (Li-jun et al. 2008; 

Rutherfurd 2010; Fountoulakis and Lahm 1998). While amino acid composition is mostly 

dependent on the raw material, the other three quality parameters (DH, MWD and yield) are 

strongly dependent on controllable process parameters such as hydrolysis time. Traditionally, 

these parameters are measured offline using chemical and chromatographic methods. Recent 

applications using Fourier transform infrared (FTIR) spectroscopy have also been reported as a 

potential technique for rapid monitoring of protein chain reduction in enzymatic hydrolysis of 
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dairy, fish and poultry by-products (Poulsen et al. 2016; Bocker et al. 2017; Wubshet et al. 

2017). The general limitation of all the methods is, however, that the measurements are 

performed either during hydrolysis or on the products. This means, process settings, such as 

enzyme concentration, cannot be adjusted to maintain a specific product quality. Therefore, 

new strategies for process modeling and control are highly relevant to ensure stable production 

of protein hydrolysates.  

Understanding the underlying relationship of raw material composition and process settings 

with end-product quality is a crucial aspect of controlling an industrial production (Jørgensen 

and Næs 2004). In a process where raw material variation is apparent, maintaining a stable 

product quality requires continuous monitoring of quality changes at a critical point in the 

production line. In this regard, rapid spectroscopic characterization of raw materials presents a 

valuable tool that allows progressive control measures of adjusting process settings in a feed-

forward manner. A feed-forward approach is one of the advanced process control strategies 

where a sensor installed upstream in the production line is used to measure raw material 

variability and transmit signal in real time to downstream unit operation to take the required 

compensative actions (Muteki et al. 2012). Such strategies are widely acknowledged in 

pharmaceutical production in the context of process analytical technology (PAT) (Hinz 2006). 

In contrast, despite few examples, application of PAT for process control is less established in 

food industries (van den Berg et al. 2013; Sahni et al. 2004; Tajammal Munir et al. 2015). 

Reduced degree of automation and lack of analytical method have been identified as some of 

the major challenges associated with the significantly less frequent application of PAT in food 

industries (Bernd et al. 2015). Therefore, there is a need for new analytical technologies and 

strategies that can serve as elements of PAT for food sectors.  

Rapid, real-time measurement with spectroscopic sensors represents a valuable tool for 

characterizing food matrices, and it is therefore a key element in the PAT. In the current work, 
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we have developed new feed-forward process control tools for enzymatic hydrolysis of poultry 

processing by-products based on rapid spectroscopic measurements. By-products from poultry 

slaughterhouses span significant variation in major constituents such as protein, ash and fat. 

Therefore, production of protein hydrolysates with predefined qualities such as molecular 

weight distribution and protein yield is a challenging task. The present work demonstrates the 

potential of four different spectroscopic techniques, i.e., NIR scanner, microNIR, fluorescence 

and Raman, as tools for rapid characterization of the raw materials. Finally, the spectroscopic 

techniques were evaluated as feed-forward process control tools for their efficiency in 

predicting product qualities (i.e., average molecular weight (Mw) and protein yield). Such feed-

forward prediction of product qualities using rapid spectroscopic measurements represents a 

novel analytical strategy in enzymatic protein hydrolysis. A summary of the concept and the 

major processes involved in enzymatic hydrolysis of by-product is illustrated in Fig 1. 
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2. Material and methods 

2.1. Chemicals and sample materials  

Sample materials were collected from both filleting (skin, thighs and carcasses) and mechanical 

chicken deboning (deboning residues and deboned meat) department of a Norwegian poultry 

processing plant (Nortura, Hærland, Norway). All samples are by-products either collected 

directly from the production line or were prepared by mixing in a defined proportion (see Table 

1). Samples were coarsely ground using a meat grinder prior to further analysis. A total of 32 

samples, 500 g each, were prepared and stored at -4 °C until further analysis. Protease 

from Bacillus licheniformis (Alcalase 2.4 L, 2.4 U/g; EC number 232-752-2), analytical grade 

acetonitrile, trifluoroacetic acid, monosodium phosphate and analytical standards for molecular 

weight calibration (Wubshet et al. 2017) were purchased from Sigma-Aldrich (St. Louis, MO). 

Water used for HPLC was purified by deionization and 0.22 μm membrane filtration (Millipore, 

Billerica, MA).  

2.2. Reference measurements (percentage protein, fat and ash) 

Percentages of protein, fat and ash were measured for the 32 raw materials. Total nitrogen of 

each sample was measured according to Nordic Committee on Food Analysis (NMKL) method 

number 6 (NMKL 2003). A nitrogen to protein conversion factor of 6.25 was used to calculate 

the percentage of protein. The fat and ash percentage was determined according to NMKL 131 

and NMKL 173, respectively (NMKL 1989; NMKL 2005). Protein yield (%) was calculated as 

follows: 

Protein yield (%) =
Total N in the water phase of the product

Total N in the ground raw material
× 100 
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2.3. Spectroscopic measurements 

Spectroscopic measurements of the 32 ground raw materials were performed using 

fluorescence, Raman, a miniature NIR instrument (microNIR) and an NIR imaging scanner. 

For acquisition of the spectra, 500 g of sample were arranged in cuboid shape with approximate 

dimension of 21 cm × 28 cm × 2 cm. Schematic summary of the four setups and sampling trails 

are presented in Fig 2. Fluorescence measurements, in front face mode, were performed using 

a Fluoromax-4 spectrofluorometer (Horiba Scientific, Kyoto, Japan) equipped with a FL-

300/FM4-3000 bifurcated fiber-optic probe. The scanning speed of the instrument was 80 

nm/second. The excitation light was 340 nm and emission spectra were recorded in the range 

360-650 nm. For each sample, spectra were acquired at five different spots and an average of 

the five spectra were used for the statistical analysis.  

The microNIR measurements were performed using a hand-held spectrometer by VIAVI (Santa 

Rosa, CA, USA). The spectrometer was positioned approximately 5 mm above the surface of 

the sample and was manually moved in a zigzag pattern during the acquisition. The 

measurements were performed in reflectance mode with an acquisition time of 4 seconds. 

Spectra were acquired between 950 nm and 1650 nm with a wavelength interval of 6.2 nm. All 

spectra were normalized using standard normal variate (SNV) prior to the statistical analysis.  

The on-line NIR system was a QVision500 (TOMRA Sorting Solutions, Leuven, Belgium), an 

industrial hyperspectral imaging scanner designed for on-line measurement of, typically, fat 

and protein in meat on conveyor belts (Wold et al. 2016; Wold et al. 2017). The instrument is 

based on interactance measurements where the light is transmitted into the meat and then back 

scattered to the surface. Optical sampling depth in the sample material is typically 10-20 mm. 

Each NIR measurement took about 1 sec. The scanner was placed 30 cm above the conveyor 

belt with no physical contact between samples and the instrument. The scanner collected 

hyperspectral images of 15 wavelengths between 760 and 1040 nm with a spectral resolution 
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of 20 nm. The output per sample scan was an image of the conveyor belt with the sample. Size 

of the image was 60 pixels in the direction perpendicular to belt movement and 200 pixels in 

the direction of belt movement. Each pixel represented a spatial area of about 7 mm × 5 mm 

across and along the conveyor direction, respectively. The imaging capability of the system was 

used mainly for effective sampling, to obtain one representative mean spectrum from each 

sample. The individual intensity spectra (int) were subjected to log transformation to obtain the 

absorption spectra (abs = log (1/int)). The absorption spectra were then normalized by SNV 

transformation.  

The Raman measurements were carried out using a RamanRXN2TM Hybrid system equipped 

with a non-contact PhAT-probe (Kaiser Optical Systems, Inc., Ann Arbor, MI). The excitation 

wavelength was 785 nm with a spot size of 6 mm at 25 cm working distance. Raman spectra 

were collected in range from 175 to 1875 cm-1 with an accumulation time of 15 sec × 4. The 

samples were moved manually as visualized in Fig 2 to secure representative sampling. Before 

statistical analysis, the Raman spectra were pre-processed using extended multiplicative scatter 

correction (EMSC) with a sixth order polynomial extension (Liland et al. 2016). The reference 

mean spectrum used for correction was subjected to asymmetric least squares baseline 

correction prior to EMSC.  

2.4. Enzymatic protein hydrolysis  

Of the 32 raw materials, the selected eight (highlighted in bold in Table 1) were subjected to 

enzymatic protein hydrolysis. The hydrolysis was performed in a Reactor-ReadyTM jacketed 

reaction vessel (Radleys, Saffron Walden, Essex, United Kingdom). Water running through the 

vessel jacket was kept at 50 °C and delivered using a JULABO circulator pump (Julabo GmbH, 

Seelbach, Germany). The homogenized samples (500 g) were suspended in 1 L of water and 

thoroughly mixed until the suspension reached 50±1 °C. The proteolysis was started by addition 

of 7.5 mL of Alcalase. Each raw material was processed in duplicate for either 10 or 60 min. 
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This resulted in a total of 32 hydrolysis experiments. Further analysis could not performed on 

two of the 32 hydrolysate (one of the replicates from 10 min hydrolysis of T5 and T4, see Table 

1) due to technical problems. After the specific hydrolysis time the enzyme was thermally 

inactivated by heating the reaction mixture in a water bath at 95 °C for 15 min. After 

inactivation, the contents in each batch was transferred to a 2 L centrifuge tube and centrifuged 

for 15 min at 4600g and 4 °C to afford two phases (i.e., water and fat) of supernatant and 

segmented solid residue. After volumetric measurements, samples were collected from the 

protein fraction (i.e., water phase) for total nitrogen and chromatographic measurements.  

2.5. Size exclusion chromatography 

Molecular weight distribution of protein fractions from each of the hydrolysis experiments were 

analyzed using size exclusion chromatography. Filtrates of the water phase collected from the 

hydrolysis were directly used as sample injection solution while injection solutions of standards 

were prepared in water at a concentration of 2 mg/mL. Chromatographic separation of both the 

standards and the hydrolysates was performed with an Agilent 1200 series instrument (Santa 

Clara, CA) consisting of a quaternary pump, a degasser, a thermostated column compartment, 

a photodiode-array detector and an auto sampler. An injection volume of 10 μL was used and 

separation was performed at 25 °C using BioSep-SEC-s2000 column (Phenomenex, 300 × 7.8 

mm). The mobile phase was a mixture of acetonitrile and ultrapure water in a proportion 30:70 

(v:v), containing 0.05% trifluoroacetic acid (TFA). Isocratic elution was carried out using a 

flow rate of 0.90 mL/min for 17 minutes. Between 17.0 and 17.1 minute the mobile phase was 

changed to NaH2PO4 (0.10 M) and maintained up to 20.0 minute for column cleaning. Elution 

conditions were restored between 20.0 and 20.1 minute and the column was equilibrated for 

additional 25 minutes. Chromatographic runs were controlled from OpenLAB CDS Rev. C. 

01.07 (Agilent Technologies, Inc., Santa Clara, CA, USA). Average molecular weight (Mw) 
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calculations were performed using PSS winGPC UniChrom V 8.00 (Polymer Standards 

Service, Mainz, Germany) according to a previously published protocol (Wubshet et al. 2017). 

2.6. Statistical analysis 

Partial Least Squares (PLS) regression is a multivariate regression method that can handle 

thousands of collinear descriptor variables, and it is routinely used for fitting spectroscopic 

calibration models (Martens and Næs 1989). The PLS model is linear, and using matrix algebra, 

it can be written as: 

𝐲 = 𝐗𝐛 + 𝐟   (1) 

where y is the response, and X is a matrix whose rows correspond to samples and columns 

correspond variables (e.g. spectral wavelengths). The b vector contains regression coefficients, 

reflecting the relationship between each X-variable and the response. f contains the residuals, 

i.e. the variation in y that cannot be explained by the variables in X. The model estimation is 

based on a decomposition of X into a number of latent variables, 𝐗 = 𝐓𝐏′, where the scores T 

and loadings P can be used for model interpretation. In this paper, PLS regression was used to 

fit spectroscopic calibration models for the content of ash, fat and protein in raw materials, as 

well as for predicting the end-product yield and Mw based on reference measurements and 

hydrolysis time. 

Sequential Orthogonalised PLS (SO-PLS) is an extension of PLS regression for modelling 

multiple predictor blocks (Næs et al. 2013). The SO-PLS model for K predictor blocks can be 

written as:  

𝐲 = 𝐗1𝐛1 + ⋯ + 𝐗𝐾𝐛𝐾 + 𝐟  (2) 

where each 𝐗𝑘 is a matrix containing multiple collinear variables. The estimation is based on 

sequential PLS regressions of each predictor block (starting with 𝐗1), followed by an 



 

11 
 

orthogonalisation of the remaining blocks in each step. In this way, the incremental contribution 

from each data matrix can be interpreted separately. One advantage of SO-PLS is that it can be 

used to combine data blocks with very different dimensionalities, such as spectra and process 

variables. In this paper, SO-PLS was used to combine spectroscopic raw material measurements 

and hydrolysis time for prediction of protein yield and Mw. All the PLS and SO-PLS models 

were validated by segmented cross-validation, taking out all samples from the same raw 

material in each segment since these cannot be considered as statistically independent. This is 

a conservative validation strategy, especially since the raw material qualities are very 

heterogeneous, and it was chosen to prevent overfitting. The number of model components 

were selected by evaluating the root mean squared error of cross-validated predictions 

(RMSECV). A global model selection strategy was used for the SO-PLS models, meaning that 

all combinations of components were compared in a so-called Måge-plot (Næs et al. 2011).  In 

addition to the regression analysis, fixed effects analysis of variance (ANOVA) including main 

effects and interactions was used to analyse the effects of raw material (8 levels) and hydrolysis 

time (2 levels) on protein yield and Mw.  

All statistical analysis were performed using MATLAB (R2016a, The Mathworks, Inc., Natick, 

USA, www.mathworks.com). The MATLAB code for estimating SO-PLS models can be 

downloaded from http://nofimamodeling.org/software-downloads-list/multiblock-regression-

by-poso-pls/. 
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3. Results and discussion  

3.1. Raw material composition variations 

Descriptive statistics, i.e., minimum, maximum, mean, and standard deviation, of ash, fat and 

protein content of the 32 raw materials is presented in Table 2. A preliminary observation of 

the data revealed that the 32 raw materials spanned a significant variation in ash and protein 

whereas the fat content was relatively similar for the majority of the samples (approximately 

20%), Fig 3. Even though these samples were specifically selected or mixed to span as large a 

variation as possible, all the constitutes are low-value by-products. Therefore, the samples 

studied here can be regarded as representative examples of the expected raw material variation 

in industrial processing of poultry byproducts. The observed large variation highlights the 

significance of monitoring raw material composition and take progressive measures of 

adjusting process settings to meet desired product characteristics. An overall empirical 

correlation was observed between ash and protein content, with the sample mainly composed 

of tendon and skin (C7) outlying the correlation (Fig 3d). No other significant correlations were 

observed between the measured components. Pesti et al have reported a different set of 

correlations for broiler carcasses, where total nitrogen (i.e., a measure of protein content) is 

positively correlated with moisture while ash content remains relatively unchanged within fifty 

samples (Pesti and Bakalli 1997). The different trend observed in the current study is not 

unexpected since the samples were gathered from different body parts of different fowls and 

therefore no longer resemble native composition of a single broiler.  

3.2. Spectroscopic analysis of raw material 

As a first step to establish a feed-forward strategy of controlling product qualities, the four 

spectroscopic measurements were evaluated for their prediction efficiency of the raw materials 

compositions. PLS regression was used to correlate the spectra to the contents of protein, fat 

and ash, see Table 3 for details of the results. For protein estimation, the fluorescence-based 
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model gave a relatively higher R2 (0.81) value and lower RMSECV (0.7). The predicted versus 

reference values and regression coefficients for the fluorescence model are given in Figs 4a and 

b, respectively. A contribution from an emission band at 376 nm dominates the regression 

coefficients of the fluorescence-based model. This band, with a shoulder peak at 440 nm, has 

previously been assigned as a characteristic signal of collagen in meat (Pu et al. 2013). Due to 

higher share of connective tissues in the by-products used in the study, a significantly high 

content of collagen is expected.    

For fat content, the best predictions were obtained using the two NIR techniques (see Figs 4c-

d for microNIR). The microNIR model was mainly influenced by a band at 1200 nm which was 

assigned as the second overtone of the CH stretching originating from the fatty acid residues 

(Burns and Ciurczak 2008). Raman gave the best ash predictions (Figs 4e-f), while microNIR 

was only slightly behind. The distinct Raman shift strongly influencing the ash prediction 

model, i.e. approximately at 960 cm-1, was assigned as a phosphate band (ν1PO4
3−), a 

characteristic feature of apatites from bone. Therefore, the significance of the phosphate band 

in the model for ash prediction is comprehensible, since bone minerals are the major 

contributors of the total ash content in the samples. Raman profiling has previously been used 

to qualitatively characterize composition of bone in several medical studies (Mandair and 

Morris 2015; Morris and Mandair 2011). However, to the knowledge of the authors, 

quantitative prediction of ash contents in meat-based samples has never been reported before.  

3.3. Protein yield and molecular weight distribution 

Among the crucial quality attributes of a product from hydrolysis of a protein-based by-

products are the protein yield and molecular weight distribution of peptides. The latter is 

typically measured using size exclusion chromatography as either a distribution profile (Li-jun 

et al. 2008) or average molecular weight (Wubshet et al. 2017).  These two quality parameters 

are often analyzed at the end of a given process and are distinctly related to both the raw material 
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composition and process settings (Gilmartin and Jervis 2002; Šližytė et al. 2005). In the present 

study, eight selected poultry by-products were subjected to enzymatic hydrolysis using two 

different process settings, i.e., hydrolysis time of 10 and 60 minutes. Selection of the eight raw 

materials for the hydrolysis was based on a criteria that samples should span a wide variation 

in composition (i.e., fat, protein and ash) and also equally represent the two animal origins (i.e., 

chicken or turkey). The selected samples are highlighted in bold in Table 1, and highlighted in 

red color in Figs 4a, c and e.  Protein yield and Mw were analyzed as key quality parameters of 

the products.  

Analysis of variance with the two factors, i.e., raw material composition and hydrolysis time, 

revealed that there are significant effects of both factors on protein yield and Mw, and a small 

but statistically significant interaction effect (see Table 4 and Fig 5). As expected, products 

acquired from 60 minutes of hydrolysis were characterized by a relatively higher protein yield 

and lower Mw compared to those acquired from 10 minutes of hydrolysis (Fig 5).  This was 

consistent with time dependencies of the two quality parameters where longer hydrolysis time 

is related to both higher degree of solubilization (i.e., protein yield) and higher degree of 

hydrolysis (i.e., lower Mw). Interestingly, the effect of raw material composition was found to 

be larger than the effect of hydrolysis time for both of the product quality parameters. This can 

be seen from the vertical shift of the lines in Fig 5, and confirms the significance of raw material 

composition. The interaction effect was most prominent for Mw, where we clearly see that some 

of the raw materials have a higher rate of hydrolysis compared with others (represented by the 

steepness of the lines in Fig 5). The raw materials C4, C7, C11 and T11 have a steeper decrease 

in Mw than the other raw materials. 

3.4. Feed-forward prediction of Mw and protein yield  

Feed-forward process control requires a model for prediction of end-product characteristics as 

a function of raw material quality and controllable process parameters. Such a process model 
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may then be used to decide the optimal settings of process parameters based on the raw 

materials at hand and the desired product characteristics. As a baseline, we fitted a regular PLS 

model for protein yield and Mw using the reference analysis of ‘protein’, ‘fat’ and ‘ash’ 

composition in the raw materials together with ‘hydrolysis time’ as predictor variables. The 

models gave satisfactory predictions of both protein yield and Mw, with cross-validated R2 of 

0.77 and 0.70, respectively. Models with interaction terms were also tested, but we found no 

improvement in R2 and RMSECV values, despite the interaction effect identified by analysis of 

variance (Table 4). The reported models, therefore, contain linear terms only. The predicted 

versus measured values and regression coefficients are shown in Fig 6, and the model is also 

summarized in the first line of Table 5.  

As stated in the previous section, the hydrolysis time was found to be highly significant for 

prediction of both the yield and Mw. The regression coefficient ‘protein’ was found to be 

negative for the prediction of yield, meaning that a high-protein raw material gives a lower 

yield. This is probably due to the fact that raw materials with higher content of protein need a 

longer hydrolysis time in order to afford a higher yield. In contrary, the recovery process from 

raw materials with lower protein content will be faster and afford a relatively higher yield in a 

given hydrolysis time. In addition, it should also be noted that raw materials with higher 

percentage of protein are characterized by higher amount of connective tissues and bones. 

Therefore, poor extractability of connective tissue proteins is expected to contribute to the lower 

yield in the case of raw materials with higher percentage of protein. For the Mw model, a 

positive regression coefficient of ‘protein’ was observed. Another important regression 

coefficient was ‘fat’ which was negative in prediction of yield. This is in agreement with the 

study by Šližytė et al. 2005, which has shown a negative relationship between the amounts of 

lipids in fish-based by-products, used as raw materials for enzyme-catalyzed hydrolysis, and 

recovered proteins in the resulting hydrolysates (Šližytė et al. 2005). 
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To utilize the feed-forward approach in an industrial setting, the analysis of raw materials has 

to be performed by fast and noninvasive measurements. We, therefore, evaluated two different 

strategies for replacing the reference analysis with spectroscopic measurements. First, the cross-

validated predictions of protein, fat and ash (from the models in Table 3) were plugged into the 

baseline model. The prediction uncertainties introduced by using spectra instead of lab 

measurements are then propagated to the predicted yield and Mw, resulting in larger prediction 

errors (see Table 5). Then, the spectra were used directly in the model without relating them to 

the reference analysis. In addition, SO-PLS was used to fit multiblock models as shown in 

Equation (2), using spectra in the first X-block(s) and hydrolysis time in the last X-block. The 

four spectroscopic techniques were evaluated both separately and in combinations, and the best 

models are summarized in Table 5.  

For feed-forward prediction of protein yield, the multiblock model with blocks microNIR, 

fluorescence and hydrolysis time gave the best model (RMSECV of 4.4 and R2
CV of 0.88). The 

most striking observation was that this model resulted a significantly better prediction of protein 

yield than the baseline model using reference measurements. This indicates that the spectra 

contain more useful information than simply the amounts of ash, fat and protein. The loadings 

from microNIR and fluorescence are shown in Fig 7. Interestingly, the overall profile of the 

microNIR (Fig 7b) and fluorescence (Fig 7c) loadings from the multiblock model of protein 

yield are very similar to those observed for the PLS models of fat (Fig 4d) and protein (Fig 4b), 

respectively. However, these major features of the loadings in the protein yield model have, 

notably, the opposite sign compared to the regression coefficients for the fat and protein model. 

This strongly agrees with the previously discussed baseline model (Fig 6), where a clear 

negative relationship was observed between both fat and protein content of the raw materials 

and the protein yield. 
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For Mw, the Raman-based model gave similar prediction error as the baseline model whereas 

the rest of the techniques did not result in adequate model. The molecular weight distribution 

of peptides, here measured as Mw, is a characteristic of a product highly related to the molecular 

structure of the substrate protein. In the current study, we attempted to predict this parameter 

based on spectroscopic techniques that are, with the exception of Raman, less sensitive to fine 

structure of the protein components and are more of a reflection of the gross composition. 

Therefore, prediction of a detailed molecular information such as molecular weight distribution 

was expected to be challenging. 

Raman spectroscopy provides a platform for probing detailed structural information on protein 

structure and is, therefore, a promising technique for prediction of Mw. However, despite 

affording the best model in the current study, the obtained R2 (0.59) and RMSECV (150) values 

were considerably moderate. This is mostly because the Raman spectra of the byproducts is 

dominated by vibrational shifts from the fat component. These vibrational shifts highly overlap 

with bands related to protein secondary structure, e. g., amide I and III, that are potentially 

relevant for prediction of Mw (Wubshet et al. 2017). Therefore, substantial improvement of the 

Raman-based model could be achieved by performing the data acquisition on the water phase 

after the byproducts are solubilized and before addition of the enzyme. This will provide an 

opportunity to disregard the dominant vibrational shifts from the fat and capture relevant 

information on the protein component of the byproducts.    

Overall, we have demonstrated the application of four rapid spectroscopic techniques as 

potential process control tools in EPH of poultry by-products. The current study is the first 

example of a process modelling strategy for EPH, where spectroscopic measurements of raw 

materials are used to predict important product quality parameters. This study is a vital step in 

developing an integrated feed-forward process control system where the early predictions can 

be used as signals to take a compensative action for the inevitable raw material variation. Such 
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action, for example, can be increasing enzyme concentration or hydrolysis time to meet a higher 

yield.  

4. Conclusions 

The present study aimed at developing a feed-forward strategy for prediction of process 

outcomes from an enzymatic protein hydrolysis of poultry by-products. Four different 

spectroscopic techniques were employed for measuring gross compositions of the raw materials 

and evaluated as tools for prediction of Mw and protein yield in feed-forward manner. Multi-

block regression models, using spectra measured on the raw materials and hydrolysis time as 

concatenated predictor blocks, were developed for the two product characteristics. The best 

model was obtained for protein yield using microNIR and fluorescence. There have already 

been several advancements, in terms of optical engineering and robotics, in the field of both 

NIR and fluorescence spectroscopy. Hence, these techniques can further be developed and 

adapted in industrial setting for on-line measurements of raw materials in enzymatic protein 

hydrolysis. Therefore, the presented approach using microNIR and fluorescence holds strong 

potential as an industrial process control tools in enzymatic protein hydrolysis of meat-based 

by-products. However, more research has to be done to develop a robust model covering 

substantial amount of samples with the relevant composition variation. 
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Table captions  

Table 1. Description of raw materials and their corresponding composition (% ash, % fat and 

% protein) from reference measurements. The fat and ash percentage was determined according 

to NMKL 131 and NMKL 173, respectively. While percentage protein was determined using 

Kjeldahl method (NMKL 6) with nitrogen to protein conversion factor of 6.25. 

Table 2. Descriptive statistics [minimum (Min), maximum (Max), mean, and standard deviation 

(SD)] of the composition (% ash, % fat and % protein) of the 32 raw materials. 

Table 3. PLS regression results of prediction models for % ash, % fat and % protein based on 

the four spectroscopic measurements.  

Table 4. Summary of results from ANOVA showing the effects of raw material and hydrolysis 

time on the protein yield and Mw. 

Table 5. Summary of results from the feed-forward prediction models. Results from a baseline 

model using reference analysis, baseline models using predicted values of % ash, % fat and % 

protein from the four different spectroscopic methods and multi-block models are presented.   
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Tables  

Table 1 

Sample ID Category By-product composition % Asha % Fata % Proteina 

C1¶ Chicken MDR 7.46 16.90 16.83 

C2¶ Chicken MDR 7.27 16.80 16.23 

C3¶ Chicken MDM 0.89 27.30 13.80 

C4¶ Chicken MDM 0.88 26.07 13.33 

C5¶ Chicken Skin from thighs 0.62 42.63 14.90 

C6¶ Chicken Skin from thighs 0.69 46.33 15.90 

C7¶ Chicken Tendon and skin  2.56 19.23 20.10 

C8† Chicken 90% MDR + 10% MDM 8.15 16.27 16.47 

C9† Chicken 80% MDR + 20% MDM 7.65 14.63 17.43 

C10† Chicken 70% MDR + 30% MDM 4.73 20.57 16.30 

C11† Chicken 60% MDR + 40% MDM 5.46 16.23 16.27 

C12† Chicken 50% MDR + 50% MDM 3.97 16.33 16.03 

C13† Chicken 50% MDR + 50% MDM 6.13 15.63 16.37 

C14† Chicken 90% MDR + 10% TS 5.85 20.87 15.83 

C15† Chicken 80% MDR + 20% TS 7.15 18.43 16.97 

C16† Chicken 70% MDR + 30% TS 6.18 20.67 15.80 

T1¶ Turkey Carcass 8.41 22.50 18.60 

T1¶ Turkey Carcass 7.03 19.50 17.33 

T3¶ Turkey MDR 11.30 17.10 20.13 

T4¶ Turkey MDR 13.93 18.40 20.00 

T5¶ Turkey MDM 1.13 22.67 16.23 

T6¶ Turkey MDM 1.05 22.17 16.07 

T7† Turkey 90% MDR + 10% MDM  9.70 17.93 19.63 

T8† Turkey 80% MDR + 20% MDM 8.26 19.37 17.53 

T9† Turkey 70% MDR + 30% MDM 10.45 18.10 19.27 

T10† Turkey 60% MDR + 40% MDM 8.57 20.20 17.67 

T11† Turkey 50% MDR + 50% MDM 7.63 19.03 17.53 

T12† Turkey 50% MDR + 50% MDM 6.57 20.70 17.30 

T13† Turkey 90% MDR + 10% TS 10.47 20.13 18.63 

T14† Turkey 80% MDR + 20% TS 10.38 23.60 18.27 

T15† Turkey 70% MDR + 30% TS 10.34 25.93 18.03 

T16† Turkey/Chicken ⅓ MDR (T) + ⅓ MDR (C) + ⅓ MDM (T) 4.97 19.17 16.67 

¶Sample acquired directly from the production line 
†Sample prepared by mixing different by-products 

MDM: Mechanically deboned meat; MDR: Mechanical deboning residue; TS: Turkey skin from filleting section; C: Chicken; T: Turkey 

Samples selected for enzymatic hydrolysis are highlighted in bold font 
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Table 2.  

Composition Min Max Mean SD 

% Ash 0,62 13,93 6,43 3,53 

% Fat 14,63 46,33 21,29 6,82 

% Protein 13,33 20,13 17,11 1,67 

 

Table 3.  

 Protein Fat Ash 

 Number of 

components 

RMSECV R2
CV Number of 

components 

RMSECV R2
CV Number of 

components 

RMSECV R2
CV 

Fluorescence 2 0.7 0.81 4 2.6 0.86 3 2.6 0.42 

Raman 5 1.0 0.69 2 3.6 0.74 1 1.3 0.87 

MicroNIR 3 1.1 0.57 2 1.9 0.93 4 1.6 0.80 

NIR imaging 

scanner 

3 1.4 0.34 4 2.0 0.92 4* 1.9 0.73 

* No preprocessing of the spectra 

Table 4.  

 d.f. Protein yield Mw 

  Sum-of-squares  

(% of total) 

p-value Sum-of-squares  

(% of total) 

p-value 

Hydrolysis time (HT) 1 28.8 <0.001 39.3 <0.001 

Raw Material (RM) 7 68.6 <0.001 54.2 <0.001 

HT x RM 7 1.6 0.028 4.7 0.005 

Error 14 1.0  1.8  

R2
adj  0.98  0.96  
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Table 5.  

 Protein yield Mw 

 Number of 

components 
RMSECV R2

CV 
Number of 

components 
RMSECV R2

CV 

Baseline model  
(Reference analysis combined with hydrolysis time) 

2 6.3 0.77 3 127 0.77 

Baseline model using predictions from:       

  -best spectroscopic technique*  7.4 0.72  165 0.50 
  -Fluorescence  8.0 0.68  177 0.43 

  -Raman  8.4 0.64  170 0.47 

  -MicroNIR  8.0 0.67  185 0.37 
  -NIR imaging scanner  10.7 0.41  176 0.43 

Multiblock models with blocks:       

 -X1=Fluoresc., X2=Hydr.time 1+1 8.8 0.60 1+1 172 0.46 

 -X1=Raman, X2=Hydr.time 2+1 11.7 0.30 3+1 150 0.59 

 -X1=MicroNIR, X2=Hydr.time ** - - 1+1 182 0.40 

 -X1=Fluoresc., X2=Raman,   X3=Hydr.time 1+1+1 6.9 0.76 - - - 

 -X1=MicroNIR, X2=Fluoresc.,   X3=Hydr.time 2+1+1 4.8 0.88 - - - 

* The three constituents (i.e., ash, protein and fat) are predicted from three different models shown in Fig 3. 

** Model breaks down because the samples coming from raw material C7 are extreme outliers. 
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Figure caption  

Fig. 1 Schematic presentation of the major processing steps in enzymatic hydrolysis of poultry 

by-products and illustration of the proof-of-concept where spectroscopic measurements on the 

raw material are used to predict product quality in a feed-forward approach. 

 

Fig. 2 Illustration of the different setups used for fluorescence (a), Raman (b), microNIR (c) 

and NIR imaging scanner (d) measurements. All measurements, except the NIR imaging 

scanner, were performed by manually moving the probe for spatially representative sampling. 

The measurement location or path is indicated with broken line.  

 

Fig. 3 Distribution of protein (a), fat (b) and ash (c) among 32 poultry-based by-products used 

in the present study. The graph (d) is illustrating the empirical correlation of ash and protein 

content within the sample set. 
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Fig. 4 Predicted versus measured values and regression coefficients from the best prediction 

models for protein (a-b, fluorescence), fat (c-d, microNIR) and ash (e-f, Raman). The samples 

that were selected for hydrolysis are highlighted with black solid fill. 
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Fig. 5 Interaction plots showing the effects of raw material and hydrolysis time on the protein 

yield (a) and Mw (b). 

 

Fig. 6 Plots of predicted versus measured values and regression coefficients for the PLS models 

using reference values of ash, fat and protein in the raw material and hydrolysis time to predict 

end-product protein yield (a-b) and Mw (c-d). 

 

Fig. 7 Predicting protein yield from microNIR, fluorescence and hydrolysis time. Predicted 

versus measured values (a), loadings from the two microNIR components (b), loadings from 

the fluorescence component (c). 
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