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Abstract

Spectroscopic data is usually perturbed by noise from various sources that should be re-

moved prior to model calibration. After conducting a pre-processing step to eliminate un-

wanted multiplicative effects (effects that scale the pure signal in a multiplicative manner),

we discuss how to correct a model for unwanted additive effects in the spectra. Our approach

is described within the Tikhonov Regularization (TR) framework for linear regression model

building, and our focus is on ignoring the influence of non-informative polynomial trends. This

is obtained by including an additional criterion in the TR problem penalizing the resulting

regression coefficients away from a selected set of possibly disturbing directions in the sam-

ple space. The presented method builds on the Extended Multiplicative Signal Correction

(EMSC), and we compare the two approaches on several real data sets showing that the sug-

gested TR-based method may improve the predictive power of the resulting model. We discuss

the possibilities of imposing smoothness in the calculation of regression coefficients as well as

imposing selection of wavelength regions within the TR framework. To implement TR effi-

ciently in the model building, we use an algorithm that is heavily based on the singular value

decomposition (SVD). Due to some favourable properties of the SVD it is possible to explore

the models (including their generalized cross-validation (GCV) error estimates) associated

with a large number of regularization parameter values at low computational cost.

1 Introduction

Spectroscopic data are often contaminated by various sources of noise and disturbances making

analysis and/or interpretations challenging. Pre-processing of spectroscopic data before building

models may therefore be essential for obtaining both accurate predictions and useful interpreta-

tions.1,2 The noise in spectroscopic data is typically caused by various physical effects, depending

on the type of technology being used. Baseline shifts and various types of scatter effects are quite
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common in spectroscopic data. Mathematically we often model the noise as multiplicative and

additive effects, where we assume that the noisy part of each spectrum is unique.

The purpose of the present paper is to discuss how to eliminate the influence of additive effects

in linear regression model building by utilizing the Tikhonov Regularization (TR) framework. The

elimination part is attained by adding an extra criterion to the linear regression problem, forcing

the regression coefficients to be orthogonal to the directions in the sample space spanned by the

additive effects. By varying a tuning parameter, the directions corresponding to additive effects

can be completely removed or allowed to contribute to the model in a restricted fashion if this

contributes to improving predictive performance. The suggested method can be applied directly

to the raw data, or subsequent to any data pre-processing step. See also Andries and Kalivas3 for

a theoretical discussion of this idea.

The focus of our work is on how to remove the influence of polynomial trends efficiently as

an integrated part of the model building. We will also compare this approach with some exist-

ing pre-processing methods that correct for polynomial trends. This idea has been mentioned in

papers by Kalivas4 and Stout and Kalivas5 in the context of Tikhonov Regularization, and dis-

cussed in Vogt et al.6 in the context of principal component regression. The proposed method

solves a penalized linear least squares problem by including additional penalty terms within the

Tikhonov Regularization framework. The solution to this least squares problem will be orthogonal

to unwanted polynomial trends in the data.

Using raw spectra as input to this TR problem will often produce subpar results. The reason for

this is that spectral data often contains scattering effects that affect the spectra multiplicatively.

These effects should be corrected in a pre-processing step prior to model building. Here we discuss

using Extended Multiplicative Signal Correction (EMSC) and Standard Normal Variate (SNV) to

pre-process data prior to model building. In the examples we will use EMSC to pre-process the

spectra.

For regularization in the TR problem, we will discuss three different types of regularizations:

(1) L2 regularization, (2) discrete first derivative regularization, (3) discrete second derivative reg-

ularization. For L2 regularization without any wavelength selection we will show that polynomial

trends can be corrected for when pre-processing the data. We will also show that when using a

type of derivative regularization or L2 regularization with wavelength selection, an extra polyno-

mial criterion in the TR problem is necessary for obtaining orthogonality between the unwanted

polynomial trends and the regression coefficients. By using one of the above types of regulariza-

tions together with EMSC pre-processed spectra, we obtain regression models comparable to PLS

models with EMSC pre-processed spectra.
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In the following sections we give a short review of some common pre-processing methods for

spectroscopic data, and of the TR-framework. Thereafter we introduce the baseline correcting

approach as the main topic of this paper. The baseline correcting method is then compared to

EMSC and some similarities and differences between the two approaches are discussed. Finally we

show the results of applying the TR-method on two different data sets of Raman spectra.

2 Pre-processing of spectral data

2.1 Pre-processing

Pre-processing of spectral data is widely considered as necessary prior to regression model build-

ing.1,7,8 There are different ways to describe noise and artifacts in spectroscopic data. One can, for

example, distinguish between baseline, scatter, noise, and misalignments.7 In Raman spectroscopy,

fluorescence may cause large baseline effects8,9 which can result in a vertical shift of the spectra.

Many baseline correcting procedures rely on a baseline estimation and correction by fitting and

subtracting low degree polynomials from the spectra. See for example Liland et al.8 for a review

of several baseline estimation algorithms, or Liland et al.10 for a discussion of how to choose an

appropriate baseline correction.

In NIR spectroscopy there may be variations in the spectra due to variable path lengths that

light travels inside the samples, and/or scatter effects due to the particle size distribution.11,12

Ambient light and light intensity of the radiation source can also affect the spectra.13 Scatter

effects can be caused by the particle size in a sample being similar in size to the wavelength of

the light used, and it is often modeled by individual scaling factors adjusting each spectrum.7 The

most common scatter correction methods are multiplicative scatter correction (MSC) and standard

normal variate (SNV),7,14 as well as baseline correcting procedures.

The method suggested in this paper does not include the correction of multiplicative scatter

effects, so such effects must be handled prior to solving the regression problem. A review of the

two methods most commonly used to correct for multiplicative scatter effects is given in the next

section.

2.2 Scatter correction by SNV and (E)MSC

The SNV was introduced in Barnes et al.,11 where it is claimed that the main variation in near-

infrared diffuse reflectance spectra are due to (1) scatter, (2) path length, and (3) chemical compo-

sition. The variations due to scatter and path length may corrupt the spectra by both an unwanted
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vertical shift and an unwanted multiplicative effect (due to scatter rather than chemical informa-

tion). The SNV is simply an auto scaling procedure correcting each spectrum individually as

follows14 : Suppose we have n spectra represented by the vectors x(1), . . . ,x(n). Then for i =

1, . . . , n, we define the SNV-corrected spectra as

xcor(i) =
x(i) − x̄(i)

sd(x(i))
, (1)

where x̄(i) and sd(x(i)) denote the mean and standard deviation of the spectrum x(i), respectively.

In Barnes et al.11 the authors also suggest a baseline correcting procedure referred to as de-

trending. The detrending is obtained by regressing the spectra onto a polynomial evaluated at the

measured wavelengths and returning the residual vectors from these regressions.

The MSC was introduced in Geladi et al.12 to separate absorption in samples due to chemical

content from the various sources of scatter. The idea behind the MSC is that scatter and light

absorption due to chemical effects have different dependencies on electromagnetic wavelengths, and

that this fact should enable the possibility of separating the scatter phenomena from the signal of

interest. By using the MSC we model each spectrum as

x(i) = a · 1 + b · xref + emi (2)

where xref is a fixed reference spectrum and 1 is a vector of corresponding length. The scalars

a, b are obtained by least-squares regression, and emi is the associated residual vector (where the

subscript m is used to indicate MSC pre-processing). In the original description of the MSC, it is

argued that one should be using an ”ideal” sample as the reference spectrum xref , and correct the

other spectra ’so that all samples appear to have the same scatter level as the ”ideal”’.15 Choosing

the reference spectrum to be the sample mean of the considered spectra is often considered a useful

choice.9,12 In the end, the MSC-corrected spectrum is given by the formula

xm(i) =
x(i) − a · 1

b
= xref +

1

b
emi. (3)

It is a simple task to extend the MSC by including additional terms in the representation of the

spectrum x, and the resulting correction method is usually referred to as the Extended MSC

(EMSC).16 The most basic version of the EMSC has the representation

x(i) = a · 1 + b · xref + c1 · v1 + c2 · v2 + eei, (4)
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where the vectors v1 and v2 represent the measured wavelength numbers and the square of these

numbers, respectively. The subscript e in the residual eei is conventionally used to denote that

EMSC pre-processing is taking place. The scalars a, b, c1, c2 are obtained by linear least squares

fitting of x to the vectors 1, xref ,v1 and v2. The corrected spectra are given by (where the

subscript e is used to indicate EMSC pre-processing):

xe(i) =
x(i) − a · 1− c1 · v1 − c2 · v2

b
= xref +

1

b
eei. (5)

The basic EMSC modeling described above can also be extended to include polynomials of an

arbitrary degree.9 Note that the scalars a, b to be estimated in both the MSC and EMSC formulas

will in general not be identical because the vectors v1 and v2 are not required to be orthogonal to

the vectors 1 and xref .

In practice, this means that the estimated multiplicative effect (b) of a spectrum depends on

whether the MSC or the EMSC is chosen for the pre-processing. This is also pointed out in Rinnan

et al.,14 and more details will be given below.

By using the EMSC pre-processing we are eliminating the components of the spectra associated

with the subspace spanned by the vectors v1 and v2. Note that the projection of a corrected

spectrum xe(i) onto this subspace is identical to the projection of the reference spectrum xref for

all samples (1 ≤ i ≤ n), and that this projection in general will be non-zero. Therefore, the v1,v2-

directions will not influence the later models obtained by methods such as PLS as the (corrected)

data matrices are always centred prior to model building. As we will discuss later, these directions

may or may not affect the regression coefficients in TR depending on the type of regularization

used.

The MSC and SNV are often considered as similar for most applications when a representative

spectrum is used as the reference spectrum,14 as they both include a centering as well as a scaling

part. However, the two methods may in some cases produce very different results as their centerings

and scalings are calculated according to different strategies.17

It is worthwhile to note that the SNV operates on each spectrum completely individually,

whereas the EMSC uses a reference spectrum based on all the available spectra to be included in

the individual correction-models. This issue is relevant, for example, when using cross-validation

strategies for model selection. If the (E)MSC pre-processing is used and the reference spectrum

is taken as the mean spectrum of the training set, then strictly speaking a new (E)MSC model

should be re-calculated for each choice of training set, whereas this challenge does not occur when

the SNV-method is used.
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There are also other pre-processing methods that can be used to estimate and correct for

scatter effects. One example is the Optical Path-Length Estimation and Correction (OPLEC),2

which allows for estimating scatter when the concentration of the components in a sample is known.

When using OPLEC there is also a polynomial correction by projection.

3 Tikhonov Regularization

3.1 A brief overview of Tikhonov Regularization for linear least squares

modeling

In this section we briefly review the Tikhonov Regularization framework for linear least squares

modeling. We assume we have a data matrix X ∈ Rn×p associated with n samples and p predictor

variables, and a corresponding response vector y ∈ Rn. We also assume we have a matrix L ∈ Rp×p,

and a tuning parameter λ > 0. The TR problem is specified by the linear system

 X
√
λ ·L

β =

 y

0

 . (6)

The corresponding least squares problem to be minimized with respect to β is

‖Xβ − y‖2 + λ‖Lβ‖2, (7)

where the regularization parameter λ is considered as fixed. The purpose of the regularization

matrix L in (6, 7) is to impose additional constraints on the regression coefficients and to overcome

problems with multicollinearity present in the ordinary least squares (OLS) formulation. The most

common choice for L is the identity matrix (I). Various discrete differential operators and diagonal

matrices representing wavelength selections are other popular choices.4,5 Note that the choice

L = I corresponds to the ordinary Ridge Regression problem18 without variable standardization.

As shown later in the examples, the choice of regularization may have a considerable impact on

the resulting regression coefficients.

3.2 Regression coefficients

In the following we will assume that the regularization matrix L in (6) is invertible. If L 6= I (the

identity matrix), one can then transform the problem into standard form by considering XL−1

in the place of the original X (see e.g. Stout and Kalivas5 for a more thorough explanation).
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Without loss of generality, we will therefore assume L = I in the following. If L is not invertible

the standardization process is a bit more involved. See e.g.19 for details about this case.

The least squares solution of (6) can be obtained by solving the corresponding normal equations

(X ′X + λI)β = X ′y. (8)

By considering the reduced singular value decomposition (SVD) of X = USV ′ (here S is the

diagonal matrix of non-zero singular values, U and V represent the corresponding left and right

singular vectors), the solution β to (8) simplifies to

β = V (S′S + λI)−1SU ′y. (9)

A derivation of this expression can be found in Hastie et al.20

The following properties of equation (9) should be noted:

1. The formula for the regression coefficients in (9) are only depending on λ in the inversion of a

diagonal matrix. This implies that from the reduced SVD of a data matrix, the computation

of the regression coefficients corresponding to any choice of the regularization parameter λ

only requires multiplication of matrices and the inversion of a diagonal matrix. Thus, having

calculated the reduced SVD of the data matrix, we can generate regression coefficients for

any value of λ at a very low computational cost.

2. From equation (9) it is clear that the matrix V (S′S+λI)−1SU ′ linearly transforms (by left

multiplication) any response vector y ∈ Rn to be associated with the data matrix X into a

corresponding vector β ∈ Rp of regression coefficients.

The above remarks imply that once we have calculated the reduced SVD of the data matrix X,

the desired model for any value of λ and any choice of response vector y, can be obtained directly

by ordinary matrix multiplications. The only restriction with this approach is its reliance upon

the SVD of X. If X is large and calculating its reduced SVD is not computationally feasible one

can solve the least squares problem (6) using alternative techniques, such as QR factorization.

3.3 Model selection

When using a regularized approach to linear modeling such as TR, choosing an appropriate value

of the regularization parameter(s) can make or break the modeling process.4 Thus having a good

procedure for choosing the value(s) of the parameter(s) is essential.
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Choosing an appropriate value of the regularization parameter is a trade-off between model

fit and model complexity.20 There is no known approach to this problem that always provides an

objectively optimal solution.19 Some alternatives include consideration of L-curves19,21 or more

statistically motivated techniques like cross-validation. In this paper we advocate for using the

generalized cross-validation (GCV) proposed by Golub et al.22 for the selection of an appropriate

regularization parameter value. The reason for this is that, as explained below, this can be im-

plemented very efficiently using the singular value decomposition of the data matrix X. In the

examples we will compare the TR models to PLS models. To make the comparison fair, we can

of course use LOOCV for both TR and PLS. In our experience, minimisation of the LOOCV and

GCV statistics results in comparable values of the regularization parameter, and it matters little

which one is used. We indicate this in the examples by giving prediction results for TR solutions

obtained from both LOOCV and GCV.

The primary motivation for preferring the GCV is that this method avoids some problems with

leave-one-out cross-validation (LOOCV) as the GCV is a rotation-invariant version of the LOOCV.

The GCV statistic is defined as (our projection matrix differs from the one in Golub et al.22

by a factor of n in the term with λ):

GCV (λ) =
‖(I −A(λ))y‖2[
1
nTr(I −A(λ))

]2 (10)

where A(λ) = X(X ′X + λI)−1X ′.

We now show how the GCV statistic can be calculated using matrix addition and multiplication

only when the SVD of X is known. Note that the numerator in (10) is simply the squared norm

of the residual. As discussed in the previous section, the regression coefficients (and hence the

corresponding residuals) can be calculated using only matrix multiplications. Using the reduced

SVD of X the matrix A can be expressed as

A(λ) = US(S′S + λI)−1S′U ′ = U [S2(S2 + λI)−1]U ′. (11)

The matrix inside the brackets in (11) is diagonal, and can be calculated directly by simple

scalar operations for any choice of λ.

It is therefore computationally ”inexpensive” to compute the GCV statistic once the SVD of the

data matrix X is available. Thus one way of finding a good value of the regularization parameter

λ using GCV is to consider it as a function of λ, and plot the GCV (λ)-function for a ”large” but

finite set of well-spread λ-values. Finally, we choose the particular λ-value associated with the
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smallest GCV-value. For a more genuine minimization of GCV (λ), the minimizer obtained from

the discrete procedure proposed above can be taken as a starting point for running a numerical

optimization routine.

A MATLAB implementation of this approach using the fminbnd-function from MATLABs

Optimization Toolbox is given in the appendix. The code in the appendix also include code for

calculating the GCV statistic for a selected sample of values of the regularization parameter. In

our experience this approach works equally well to using fminbnd to find the optimal value of

the regularization parameter, assuming a sufficiently sized sample of values of the regularization

parameter is selected in an appropriate range.

We note that the use of GCV here is primarily aimed at selecting an appropriate value of the

regularization parameter λ rather than providing an accurate error estimate of the model. Once a

good value for the regularization parameter has been found, the associated model may be validated

with respect to its predictive performance using some appropriate cross-validation strategy or a

separate test set.

3.4 Adding additional criteria to the model calibration

The basic formulation of the TR problem given in (6) is easily extended by including additional

rows in the equation. Such inclusions correspond to imposing additional constraints on the desired

regression coefficients.

The focus of this this paper is to eliminate the influence of additive effects in spectra by

integrating additional constraints in the TR problem formulation. This can be done by inserting

extra rows into the matrix on the left hand side in equation (6) and corresponding zeros on the

right hand side. The extra rows should be chosen as set of basis vectors spanning the subspace

of additive effects that are not supposed to influence our final model. In what follows we discuss

primarily polynomial trends. For a more general theoretical discussion, see e.g. Andries and

Kalivas.3

Additive effects are often modeled as lower-order polynomials. An orthogonal basis for such

polynomial spaces can be obtained by considering the Legendre polynomials up to some desired

degree.23 More precisely we create a matrix with the polynomial trends evaluated evenly in the

interval [−1, 1] as columns. We then find a QR-decomposition of this matrix and use the resulting

orthogonal vectors as rows in the matrix P (see the MATLAB-function Plegendre in the appendix

implementing the details). By multiplying P with a huge constant
√
µ, and inserting zeros in

the corresponding rows of the response vector on the right hand side of (6), the updated equation

becomes
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X

√
µ · P
√
λ ·L

β =


y

0

0

 . (12)

The least squares solution of (12) corresponds to finding the minimizer with respect to β of the

expression

‖Xβ − y‖2 + µ‖Pβ‖2 + λ‖Lβ‖2, (13)

where λ and µ are considered as fixed quantities. By selecting µ sufficiently large we can force

the regression coefficients solving the least squares problem (12) to be numerically as close to

orthogonal to the chosen P -directions in the measured samples as we like. The resulting model

will therefore ignore such polynomial trends directly, instead of deflating them off the spectra in a

pre-processing step.

We note that this method is also applicable in correcting for arbitrary known interferents (not

only polynomial trends) by specifying an appropriate set of basis vectors for the actual interferent-

subspace.

In the limiting case when µ grows large, the suggested method corresponds to projecting the

spectra onto subspaces orthogonal to the polynomial trends, but as we will show later, in the

context of TR with L 6= I the two approaches are not equivalent.

In the discussion above and what follows we suggest using a ”hard-coded” large value for µ. In

the code for the examples the value µ = 1024 is used. This value was chosen to be large enough to

make the regression coefficients obtained orthogonal to the polynomial trends to machine precision.

If the scale of the measurements is significantly different than for the examples used in the present

work then a different value of µ may be chosen. The result of this choice is to completely remove

the influence of the directions spanned by the rows in P on the regression coefficients. We note

that it is also possible to treat µ as an ordinary regularization parameter that may be chosen by

some model selection criterion. If this is done and the regularization parameter is not chosen too

large, then the rows in P are allowed to contribute partially in the resulting regression coefficients.

In the practical calculations we first centre X and y with respect to their column means before

appending
√
µP to X and calculating the singular value decomposition for the augmented matrix.

When computing the GCV statistic as described in the previous section, it is therefore important

to truncate the GCV calculations to only account for the upper n rows of the augmented X as it

does not make sense to consider the rows in P for model selection. See the code in the appendix

for the required details.
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4 Comparison with EMSC

4.1 MSC and EMSC explained by linear algebra

EMSC pre-processing is used for both eliminating polynomial trends and correcting for scatter

effects in spectroscopic data. By using the EMSC pre-processing with second order polynomial

correction, the spectra are projected onto a 4-dimensional subspace (where 3 of the basis vectors are

associated with the second degree polynomial subspace). In the present work we suggest including

the correction of polynomial trends as an integrated part of the TR approach by considering the

required equations enforcing the desired orthogonality properties. Because the EMSC as well as the

proposed TR-approach are aiming at the same purpose, it is of interest to compare and contrast

the two methods. Before comparing the two methods, we will briefly review the linear algebra

required for describing the MSC and the EMSC pre-processing.

Recall that the rows of the matrix X ∈ Rn×p and the vector y ∈ Rn represent our spectra and

associated response measurements. We also assume the reference spectrum xref ∈ Rp to be known.

For MSC and EMSC the two subspaces required for filtering the samples are given by the subspace

bases WMSC = {1,xref} ⊂ Rp and WEMSC = {1,xref ,v1,v2} ⊂ Rp, respectively. According to

Section 2.2, the formulae for MSC and EMSC pre-processing are given by the equations (3) and

(5).

For both types of pre-processing, the scaled residuals 1
b·i
e·i are considered to be representa-

tive for the interesting chemical information of the associated samples x·(i). To make a direct

comparison of xm(i) and xe(i), one needs to express these vectors with respect to a common

basis. An appropriate basis can be obtained by extending WEMSC into a complete basis for

Rp. Such a basis can be found by introducing a set of basis vectors Wr = {r1, . . . , rp−4} ⊂ Rp

that spans the orthogonal complement of span(WEMSC), i.e. span(Wr) = span(WEMSC)⊥ and

Rp = span(WEMSC)⊕ span(Wr).

With respect to the basis WEMSC ∪Wr, the pre-processed spectra given in (3) and (5) can be

represented as follows:

xm(i) =
aei − ami

bmi
· 1 +

bei
bmi
· xref +

ci1
bmi
· v1 +

ci2
bmi
· v2 +

1

bmi
·
p−4∑
j=1

αjrj (14)

and

xe(i) = 0 · 1 + 1 · xref + 0 · v1 + 0 · v2 +
1

bei
·
p−4∑
j=1

αjrj (15)

for MSC and EMSC, respectively. The first of these equations is obtained by applying the MSC

pre-processing to the sample x(i) with the basis WEMSC ∪Wr. The differences between the scatter
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correction scalars (the bmi and bei in the above equations) will typically be small for MSC and

EMSC. However, in some cases they may be noticeably different and the differences may affect

the predictive power of the model (as is shown for the fish oil data in Section 5). Aside from

the different estimates of the scatter correction scalars bmi and bei, the differences between the

MSC and EMSC pre-processed spectra are clearly located in the subspace spanned by the vectors

{1,v1,v2,xref}.

4.2 MSC with trend correction versus EMSC

We will now compare the removal of polynomial trends by EMSC to the removal of such trends

by including the required polynomial orthogonality as an additional constraint in the TR problem.

Although we will limit investigation to considering polynomials of degree 2 or less, the given

argument readily generalizes to the correction of polynomial trends of any degree. Consider the

following two regression problems:

 XEMSC

√
λ ·L

β =

 y

0

 (16)

and


XMSC

√
µ · P
√
λ ·L

β =


y

0

0

 (17)

where P is a matrix with 3 rows representing the space of polynomials of degree 2. First we

consider the case when L = I (this corresponds to putting restrictions on the L2-norm of the

solution vector β) and the corresponding solution of (16).

Denote the reduced SVD of XEMSC by XEMSC = USV ′. From (9) we see that the solution β

to (16) is a linear combination of the columns in V . From equation (15) we see that after centering

XEMSC , the rows in XEMSC will be orthogonal to the vectors in WEMSC . By considering the

the full SVD of XEMSC , all the vectors in WEMSC can be expressed as linear combinations of the

right-singular vectors associated with the singular value zero.

As the right singular vectors are orthogonal, it follows that the columns of V are orthogonal to

WEMSC . Therefore the solution of (16) will be orthogonal to the vectors in WEMSC . Because we

assume L = I together with EMSC pre-processed spectra the solution vector will be orthogonal

to the trends being corrected for in the EMSC pre-processing. Thus, in this case, adding an extra

polynomial correction criterion to (16) will not affect the regression coefficients.
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Now consider the solution of (17). From (3) and (14) we see that after centering, the rows

in XMSC will be orthogonal to the vectors in WMSC . Without the inclusion of the additional

polynomial criterion (represented by the matrix P ) the solution vector of (17) would in general

only be orthogonal to the vectors xref and 1. However, the additional polynomial criterion forces

the solution β̂ of (17) to also be as close to orthogonal to the vectors v1 and v2 as we like by

choosing
√
µ to be sufficiently large. The difference in the solutions of (16) and (17) is therefore

explained by the difference in the estimated scatter coefficients. Such estimates will often be

fairly similar, but as demonstrated in the fish oil example below, their differences may affect the

predictive power of the model.

In the more general case with L 6= I, one can solve (16) and (17) by first transforming the data

as indicated in Section 3.2. Such transformations will in general affect the right singular vectors

of the data matrix. Therefore, the above argument based on L = I to show that the solution to

(16) is orthogonal to the vectors in WEMSC is no longer valid. So when using a regularization

matrix L 6= I, the resulting regression coefficients will not in general be orthogonal to the trends

corrected for in the pre-processing. In this case adding the extra polynomial block
√
µP to (16)

corresponding to the polynomial trends removed in the pre-processing may affect the resulting

regression coefficients (this point is illustrated in the examples presented below). In the examples

we will also in some cases add an extra criterion to the TR problem consisting of a diagonal matrix

with large entries for wavelengths that are irrelevant for prediction. In this case, for the same reason

as discussed above, it will be necessary to add an extra orthogonality condition to the TR problem

to ensure orthogonality between the regression coefficients and the unwanted polynomial trends.

We note that if SNV is used for pre-processing the data, the detrending described in Barnes et

al.11 will correspond to the polynomial trend correction proposed here if L2 regularization is used

together with a large ”hard-coded” value of the µ parameter. We also note that if the µ parameter is

chosen by validation instead of using a hard-coded value, then the method of removing polynomial

trends discussed here will not be equivalent to other methods that removes the projection onto

subspaces spanned by polynomials, such as e.g. EMSC and SNV with trend correction.

The regression coefficients (i.e. the model parameters) obtained when using EMSC pre-processing

may sometimes represent information considered to be useful for interpretations.24 When using

both MSC pre-processing and correction of polynomial trends by the method suggested in this

paper, we do not derive these coefficients explicitly, as we obtain regression coefficients that are

orthogonal to the subspaces of interest without explicitly calculating the sample projections onto

these subspaces (for prediction purposes these parameters are clearly irrelevant). The EMSC model

parameters are the regression coefficients obtained by solving multiple OLS problems, so these pa-
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rameters can always be calculated at the computational cost of solving the regression problem

A′B = X ′, where A is a matrix with columns being the vectors in the basis WEMSC .

5 Examples

Here we will study the practical side of the theoretical considerations discussed in this paper by

applications to two data sets of Raman spectra. We will primarily use EMSC to pre-process the

spectra. When using EMSC to correct Raman spectra it is common to use polynomials up to

degree six or seven. This choice of polynomial degree can be justified as the chemical information

in Raman spectra is generally contained in very steep peaks.9 In both examples, unless otherwise

stated, we use EMSC to pre-process the spectra and correct for polynomial trends up to and

including degree 6, and we refer to this as EMSC(6) pre-processing.

In addition to TR models we also provide PLS models for comparisons. Selection of the PLS

models are based on LOOCV. The regularization parameter values for the TR models shown in the

tables are primarily obtained by LOOCV. The regularization parameter values for the associated

models obtained by GCV are in most cases very similar to the LOOCV-results. The tables in

the examples below also include prediction results from TR models obtained using GCV. This is

included to illustrate that LOOCV and GCV typically performs very similarly for selecting the

value of the regularization parameter in TR. As we have shown earlier, the GCV statistic can

be calculated very efficiently. We can therefore safely recommend using GCV for estimating an

appropriate value of the regularization parameter.

The fminbnd function from the MATLAB Optimisation Toolbox was used to determine the

value of the regularization parameter giving the minimal GCV or RMSECV statistic. The

fminbnd-function requires a lower and upper bound on the value of the regularization parame-

ter. A minimum value of 0 was chosen as the regularization parameter is non-negative, and a

maximum value of 1020 was chosen as for the examples considered here this is outside of the range

of a reasonable value of the regularization parameter. For some models the minimizer failed and

generated models with the maximum allowed value of the regularization parameter (1020). In this

case a lower maximum value of the regularization parameter was set, and the model calculation

redone. This was repeated, lowering the maximum value each time, until a reasonable model was

found. An alternative to using the fminbnd function which from our experience works equally well

is to simply sample a range of values for the λ-parameter and calculate the GCV statistic or the

RMSECV associated with these values. One can then simply choose the λ corresponding to the

minimum GCV or RMSECV statistic. The code for this approach using GCV is integrated into
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the MATLAB function given in the appendix.

Note that by following the above steps we are, strictly speaking, not calculating the LOOCV

estimates and GCV statistic correctly, as we are not generating new EMSC models for each spec-

trum we remove from the model (which we should clearly do for LOOCV, and for GCV as GCV

is LOOCV in a particular coordinate system). This should not have any significant impact as the

only information we use from all the spectra in the training set is the mean of the spectra, but our

estimates will have a small bias.

The optimal model in a model family is defined as the model with the value of the regularization

parameter with the minimum RMSECV (or GCV) value.

5.1 Raman spectra of fish oil

First we look at a data set of Raman spectra of oil samples from salmon.10,25,26 The response

variable is the iodine value, which is used as a measure of unsaturation in the fat. This data set

was also analyzed in Liland et al.,10 using various baseline correction algorithms with PLSR. For

comparison purposes, we use the same training/test set split and the same wavelength truncations

as in Liland et al.10 The data set consists of 45 spectra (30 samples used for training, 15 for testing)

with 2263 wavelengths between 790cm−1 and 3050cm−1 (after truncation).

Figure 1: Top: Raw Raman spectra of salmon oil. Notice in particular the non-linearities in the
baseline. Bottom: EMSC(6) pre-processed Raman spectra of salmon oil.

There are unwanted additive and multiplicative noise effects affecting the spectra, as well as

an instrument detector shift at about 1800cm−1. Following the analysis in Afseth and Kohler,9

we use EMSC including corrections for polynomials up to degree 6 to pre-process the spectra.

The raw spectra and the EMSC(6) pre-processed spectra are shown in Figure 1. There is still a
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clear baseline in the spectra, as can be seen in the corrected spectra in Figure 1, but most of the

unwanted variation between the spectra has been removed. As we are centering the data prior to

modeling this baseline will not affect the predictions. The test spectra were corrected using the

reference spectrum obtained from the training spectra, i.e. the mean of the training spectra.

Following the steps given at the beginning of Section 5 we generated models for EMSC pre-

processed spectra with L2 regularization, discrete first derivative and second derivative regulariza-

tion (hereafter referred to as D1 and D2 regularization, respectively).

For comparison PLS models were created with up to 20 components, using EMSC(6) pre-

processed data for the results in Table 1, and using MSC pre-processing for the results in Table

2. For each PLS model the RMSECV was calculated using leave-one-out cross-validation. The

optimal PLS model was selected as the model with the minimum RMSECV. This resulted in a PLS

model with 2 components for the EMSC(6) pre-processed spectra, and a model with 3 components

for the MSC pre-processed spectra.

The results are summarized in Tables 1 and 2.

The GCV statistic reported in the tables is the square root of the GCV statistic as defined

earlier in the paper. This is done for easier comparison with the RMSEP values.

The rows of the matrix P with the polynomial trends used in this example are plotted in Figure

2.

Figure 2: Plot of the rows in the matrix P appended to the TR problem. There are 7 curves as we
are correcting for polynomial trends up to and including degree 6.

Notice from Table 1 that the performance increase on the test set by adding degree 6 orthog-

onalization to the TR problem using LOOCV for model selection is roughly 26%. This should be
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Orthogonalization Reg.
Optimal λ
(LOOCV)

Min. RMSECV
(LOOCV)

RMSEP
(LOOCV)

RMSEP
(GCV)

TR (No orth.) L2 1.45 · 107 3.02 2.03 2.00
TR (Degree 6) L2 1.45 · 107 3.02 2.03 2.00
TR (No orth.) D1 9.56 · 109 3.12 2.15 1.99
TR (Degree 6) D1 1.35 · 109 3.17 1.97 1.83
TR (No orth.) D2 1.55 · 1012 3.13 2.35 2.15
TR (Degree 6) D2 2.74 · 1013 3.36 1.74 1.83

PLS (2 components) NA NA 3.07 1.83 NA

Table 1: Fish oil data with EMSC(6) pre-processing. Comparison of properties of the regression co-
efficients. The orthogonality column refers to which polynomials (if any) are added as an additional
criterion to the TR problem.

considered an extreme case, but it illustrates how adding an additional orthogonalization crite-

rion to the TR problem can impact prediction even if ’the same correction’ has been made in the

pre-processing of the spectra. From Figure 3 we see that the model family generated by adding a

degree 6 correction to the TR problem has better prediction in the region containing the λ-values

that are likely to be chosen based on the RMSECV statistic. From the same Figure we also see

that the curves for the training set does not give an indication that the model created with a degree

6 orthogonalization will be significantly better than the model with only D2-regularization. We

note that the corresponding curves for GCV look very similar to the LOOCV curves. This shows

that using LOOCV and GCV for model validation can be problematic.

Figure 3: Fish oil data with ESMC(6) pre-processing. LOOCV and RMSEP plots for models with
D2 regularization.

The optimal regression coefficients for the models with an additional orthogonalization crite-

rion are plotted in Figure 4. As can be seen from Table 1 the regression coefficients obtained
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using derivative regularization and extra orthogonalization perform better on the test set than

the regression coefficients obtained from L2 regularization. This will clearly not be the case in

general, but often the loss in prediction will be relatively small. For smaller data sets such as

the one discussed here, the computation of the regression coefficients for the PLS models and the

three regularization types considered does not take more than a minute on a personal computer.

A possible strategy for modeling is thus to generate models from all families and select the final

model based on the performance on e.g. a validation set. If this is done, then clearly a split into

training, validation and test set is preferable if an estimate of predictive power is also wanted.

Figure 4: Fish oil data with ESMC(6) pre-processing. LOOCV-optimal regression coefficients for
different regularizations and an additional orthogonalization criterion in the TR problem (constant
term omitted). See Table 1.

One problem with the regression coefficients obtained using derivative regularization is that

the extra criterion can force structure on the regression coefficients that is not supported by

the data. From Figure 1 we can, for example, see that we do not expect non-zero regression

coefficients in the area corresponding to roughly 1800cm−1 − 2600cm−1. Comparing this to the

coefficients in Figure 4 we see that the coefficients with derivative regularization have non-zero

coefficients in this area. There are several ways to remedy this problem if one wants smooth

regression coefficients, and the easiest way is perhaps to use some form of wavelength selection.4

One possibility is to add an additional criterion to the TR problem in the form of a diagonal

matrix with large entries in the columns corresponding to the wavelengths we want to exclude.

This results in regression coefficients with local norm smoothing in this area. The regression

coefficients are shown in Figure 5. We see that that this results in regression coefficients that are

18



zero for wavenumbers 1800cm−1 − 2600cm−1 and continuous on the border of this region. On

the test set the RMSEP of the model with a diagonal matrix added to the TR problem with

2nd derivative regularization is 1.73. For comparison, PLS coefficients with the same wavelength

selection where also calculated. The calculation for PLS was done by excluding the columns of the

data matrix corresponding to the wavenumbers we want to exclude from the regression problem,

and afterwards inserting an appropriately sized zero vector into the obtained regression coefficients.

For this data set the RMSECV-curve is very flat so that choosing the PLS model from the model

with minimum RMSECV value results in a sub-optimal model with 4 components (with an RMSEP

of 2.55). Manual inspection of the RMSECV-curve shows that a model with 2 components is much

more reasonable (the resulting model has an RMSEP of 1.32). In Figures 4 and 5 we see that we

can generate regression coefficients that have very different profiles but also have similar predictive

power, showing that one should be very careful when interpreting regression coefficients. The

problem of interpreting regression coefficients and how very different regression coefficients can

have similar predictive power is a well-known problem.27

Figure 5: Fish oil data with ESMC(6) pre-processing. Plot of mean EMSC(6) pre-processed spectra
and regression coefficients with 2nd derivative smoothing (with an extra orthogonalization criterion
in the TR problem) with and without wavelength selection (constant term omitted). We can make
the regression coefficients zero in a region where we do not expect any chemical information by
appending an extra criterion to the TR problem.

Finally we consider using MSC to pre-process the spectra and create models as before with

L2 regularization. The results are summarized in Table 2. We can see that including a degree 6

orthogonalization improves the prediction, but the prediction is still different from the prediction

from using EMSC pre-processing.
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Orthogonalization Reg.
Optimal λ
(LOOCV)

Min. RMSECV
(LOOCV)

RMSEP
(LOOCV)

RMSEP
(GCV)

TR (No orth.) L2 4.53 · 107 3.72 2.39 2.70
TR (Degree 6) L2 1.56 · 107 3.38 2.31 2.30
TR (No orth.) D1 5.92 · 109 3.85 2.98 2.91
TR (Degree 6) D1 3.52 · 1010 3.70 2.21 2.13
TR (No orth.) D2 6.81 · 1013 3.90 3.04 2.97
TR (Degree 6) D2 1.67 · 1012 3.97 2.03 1.95

PLS (3 components) NA NA 3.71 2.21 NA

Table 2: Fish oil data with MSC pre-processing. Comparison of properties of the regression coeffi-
cients. The orthogonality column refers to which polynomials (if any) are added as an additional
criterion to the TR problem.

The difference can mostly be explained by the different estimates of the multiplicative scalars. If

we use MSC to pre-process the spectra and do TR with L2 regularization, but replace the estimates

of the multiplicative scalars with the ones obtained from the EMSC pre-processed spectra the

RMSEP of the models obtained using GCV falls from 2.70 to 2.01, which is reasonably close to the

estimate obtained using EMSC pre-processing. This example shows that the polynomials chosen

in the EMSC pre-processing not only affect the regression coefficients by what is subtracted from

the spectra, but can also impact the prediction by affecting the estimates of the mulitplicative

effects.

5.2 Adipose data

We will now investigate a data set of Raman spectra of fat from pork adipose tissue.28 This data

set was also analyzed in Liland et al.24 The data set consists of 77 samples, with 50 samples being

used for training. From the data we made 500 random partitions into training and test sets. We

will perform a similar analysis as for the previous data set, but we will primarily report the mean

results from these 500 different partitions. There are 4967 wavenumbers evenly distributed in the

range 120cm−1 − 3099.6cm−1 after trimming. The response variables are monounsaturated fatty

acids (MUFA), polyunsaturated fatty acids (PUFA), iodine values, and saturated fatty acids (SFA).

Here we only look at the responses MUFA and iodine value as the results for PUFA and SFA are

similar to the results for MUFA and iodine value. As with the fish oil data, we use EMSC with a

degree 6 polynomial correction to pre-process the data. The raw spectra and the corrected spectra

for one partition of the data set are plotted in Figure 6. After pre-processing the data, much of

the variation between the spectra is removed. We note, however, that there is still large variation

in the spectra in particular in the region 1310cm−1 − 1420cm−1. This variation could be removed

from the spectra by adding a term representing this interferent to the EMSC pre-processing (this is

done in Liland et al.24), or from only the model by adding an interferent term to the TR problem.
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Figure 6: Top: Raw Raman spectra of adipose tissue. Bottom: EMSC(6) processed Raman spectra
of adipose tissue.

As with the previous data set we see that there is a large region (again corresponding roughly to

the wavenumbers 1800cm−1 − 2600cm−1) in Figure 6 where we do not expect non-zero regression

coefficients, but we will have non-zero regression coefficients for D1 and D2 regularization as a

consequence of the smooth derivative criterion. We will therefore also create regression models

where we have excluded these wavelengths. We note that these are roughly the same wavelengths

that are excluded in Olsen et al.28

We will perform the same analysis as on the previous data set: We create TR models using

L2, D1 and D2 regularization, and also create a PLS model for comparison (using EMSC(6) pre-

processing for all methods). The number of components in the PLS model was chosen using

LOOCV. We begin by considering the MUFA response. The mean results from the 500 train/test

set splits are summarized in Table 3 and Table 4, and LOOCV optimal regression coefficients for

one particular train/test set split are plotted in Figures 7 and 8.

For PLS the mode number of components is 8 both with and without wavelength selection. From

Table 3 we see that the inclusion of an extra orthogonalization criterion in the TR problem generally

improves prediction. Including wavelength selection also improves prediction for all models. The

effects of the extra orthogonalization criterion in the TR problem and wavelength selection is most

apparent for 2nd derivative regularization. Including both the extra orthogonality criterion and

wavelength selection for 2nd derivative regularization results in a more than 30% improvement on

RMSEP, making the models created using 2nd derivative regularization comparable to the other

models.

Consider next the iodine response and the results given in Table 4. In this case the mode
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Figure 7: Adipose data with ESMC(6) pre-processing. LOOCV-optimal regression coefficients for
MUFA prediction with different regularizations (constant term omitted). See Table 3.

number of PLS components is 5 without wavelength selection and 4 components with wavelength

selection. For this response the extra orthogonality criterion has very little effect on both RMSECV

and RMSEP. For the iodine response we also see that wavelength selection has a large negative

effect on the models using 2nd derivative regularization. The bad results here are partly explained

by roughly 5 of the training/test splits giving a very large RMSEP, but even removing these splits

the 2nd derivative models still perform worse than the other models. This shows that incorporating

wavelength selection can also worsen model performance. We also note that although the RMSECV

is reasonably close to the RMSEP for most models, this only holds because we are calculating

average values over many different splits of the data set. On a single split of the data set the

RMSECV is not necessarily a good indicator of model performance.
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Figure 8: Plot of mean EMSC(6) pre-processed spectra and regression coefficients with 1st derivative
smoothing with and without wavelength selection (constant term omitted) for predicting MUFA. See
Table 3.

Orthogonalization Reg.
Optimal λ
(LOOCV)

Min. RMSECV
(LOOCV)

RMSEP
(LOOCV)

RMSEP
(GCV)

N
o

w
av

e.
se

l.

TR (No orth.) L2 7.87 · 106 0.98 1.04 1.07
TR (Degree 6) L2 7.87 · 106 0.98 1.04 1.07
TR (No orth.) D1 3.14 · 1013 1.38 1.42 1.21
TR (Degree 6) D1 1.45 · 1013 1.23 1.26 1.19
TR (No orth.) D2 1.02 · 1018 1.78 1.85 1.68
TR (Degree 6) D2 6.96 · 1017 1.62 1.70 1.45

PLS NA NA 0.97 1.06 NA

W
it

h
w

av
e.

se
l.

TR (No orth.) L2 8.19 · 106 0.97 1.03 1.05
TR (Degree 6) L2 8.00 · 106 0.97 1.02 1.04
TR (No orth.) D1 3.50 · 1013 1.38 1.40 1.14
TR (Degree 6) D1 6.18 · 1011 1.00 1.03 1.02
TR (No orth.) D2 1.12 · 1013 1.18 1.26 1.24
TR (Degree 6) D2 6.83 · 1012 1.09 1.14 1.13

PLS NA NA 0.97 1.05 NA

Table 3: Predicting MUFA from Adipose data with EMSC(6) pre-processing. Above thick line:
Without wavelength selection. Below thick line: With wavelength selection. All numbers are mean
values for 500 randomized splits of the data into training and test sets.
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Orthogonalization Reg.
Optimal λ
(LOOCV)

Min. RMSECV
(LOOCV)

RMSEP
(LOOCV)

RMSEP
(GCV)

N
o

w
av

e.
se

l.

TR (No orth.) L2 8.42 · 107 1.01 1.01 1.00
TR (Degree 6) L2 8.42 · 107 1.01 1.01 1.00
TR (No orth.) D1 2.10 · 1011 1.02 1.04 1.04
TR (Degree 6) D1 2.25 · 1011 1.02 1.04 1.04
TR (No orth.) D2 6.85 · 1014 1.06 1.10 1.12
TR (Degree 6) D2 1.10 · 1015 1.07 1.13 1.14

PLS NA NA 1.02 1.04 NA

W
it

h
w

av
e.

se
l.

TR (No orth.) L2 7.18 · 107 1.00 1.00 0.99
TR (Degree 6) L2 7.08 · 107 1.00 0.99 0.98
TR (No orth.) D1 1.71 · 1011 1.02 1.03 1.02
TR (Degree 6) D1 1.50 · 1011 1.01 1.01 1.00
TR (No orth.) D2 3.26 · 1014 1.86 1.52 1.66
TR (Degree 6) D2 3.71 · 1014 2.04 1.40 1.62

PLS NA NA 1.02 1.05 NA

Table 4: Predicting iodine value from Adipose data with EMSC(6) pre-processing. Above thick line:
Without wavelength selection. Below thick line: With wavelength selection. All numbers are mean
values for 500 randomized splits of the data into training and test sets.
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6 Conclusions

Using the SVD Tikhonov regularization with GCV for model selection can be implemented very

efficiently. The examples considered here demonstrates that the GCV performs very similar to using

LOOCV for selecting the regularization parameter in TR. As the GCV statistic can be calculated

very efficiently we recommend using GCV for selecting the regularization parameter in TR. For

data where multiplicative effects are present, these effects should be corrected prior to model

building as the Tikhonov Regularization framework cannot correct for them directly. This can be

done for example using (E)MSC or SNV. With Tikhonov regularization we can also easily impose

extra criteria on our regression coefficients. Here domain knowledge is important, as for example

knowing which wavenumbers of spectra contain useful chemical information can be incorporated

into the model to give better predictions. Smooth regression coefficients can be obtained by using

derivative regularization and can in some cases improve the predictive power of the models. We

have shown that using derivative regularization can impose structure on the regression coefficients

that are not supported by the data, so that some form of wavelength selection can be useful for

derivative regularization. The addition of polynomial corrections as an extra criterion to the TR

problem is not necessary for L2 regularization if the correction is made for the training set, but for

derivative regularization a polynomial criterion in the TR problem is in general necessary to obtain

regression coefficients orthogonal to unwanted polynomial trends. For the examples included in

this paper, the models created using TR were comparable to the models created using PLS. As

the model generation in TR is done quickly one can quickly generate optimal models from several

model families and afterwards make a decision about which model to use.
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8 Appendix - Prototype MATLAB code

1 function [b, lambda, gcv, bcoefs, U, s, V] = TregGCV(X,y,lambdas, dtype, otype, fminbndMax)

2 % dtype− Degree of derivative regularization, dtype=0 gives L2 regularization

3 % otype− polynomial trend to correct for in TR problem

4

5 if nargin < 6

6 fminbndMax = 1e20;

7 end

8

9 function gcv = gcvValue(lambda)

10 D = bsxfun(@plus,s2,lambda);

11 b = V * bsxfun(@rdivide, (U'*[y;zeros(otype+1,1)]).*s, D);

12 H = (U.ˆ2) * bsxfun(@rdivide, s2, D) + 1/n; H = H(1:n,:);

13 gcv = sum(bsxfun(@rdivide,bsxfun(@minus, y, X(1:n,:)*b),(1−repmat(mean(H,1),n,1))).ˆ2)';

14 end

15

16 [n,p] = size(X); mX = mean(X); my = mean(y);

17 X = X−ones(n,1)*mX; y = y−my;

18 mu = 1e24;

19

20 if otype >= 0, P = Plegendre(otype, p); X = [X; sqrt(mu)*P']; end

21 if dtype > 0, L = diff([speye(p);sparse(dtype,p)],dtype); X = X/L; end % Standardizing if using derivative regularization

22

23 [U, S, V] = svd(X,'econ'); s = diag(S); s2 = s.ˆ2;

24 D = bsxfun(@plus,s2,lambdas); % Factor in the bcoefs & H calculations below

25 bcoefs = V*bsxfun(@rdivide,(U'*[y;zeros(otype+1,1)]).*s,D);

26 H = (U.ˆ2)*bsxfun(@rdivide,s2,D)+1/n; H = H(1:n,:); % Matrix of leverage−values (one column per lambda−value)

27 % The following three lines calculates the GCV statistic for lambda values given as input and find the lambda with minimum GCV statistic

28 gcv = sum(bsxfun(@rdivide,bsxfun(@minus, y, X(1:n,:)*bcoefs),(1−repmat(mean(H,1),n,1))).ˆ2)';

29 [∼,id] = min(gcv);

30 lambda = lambdas(id);

31 % The line below uses fminbnd to numerically find an optimal lambda value

32 [lambda, gcv] = fminbnd(@(x) gcvValue(x),0,fminbndMax);

33

34 if dtype > 0, bcoefs = L\bcoefs; end % Transform regression coeffs to match original X−data.

35 if dtype > 0, b = L\b; end

36

37 b = [my−mX*b; b]; % Regression coeffs with constant term of minimum GCV−model.

38 bcoefs = [my−mX*bcoefs; bcoefs]; % GCV−optimal regression coefficients

39

40 end

41

42 function [Q, R] = Plegendre(d,l)

43 % The function generates vectors representing the polynomial trends we correct for in the TR problem

44 % Generate 'd' 'l'−dimensional orthonormal vectors corresponding to the

45 % Legendre−polynomials up to degree 'd':

46 P = ones(l,d+1);

47 x = (−1:2/(l−1):1)';

48 for k = 1:d

49 P(:,k+1) = x.ˆk;

50 end

51 [Q,R] = qr(P,0);

52

53 end
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