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A R T I C L E I N F O A B S T R A C T

Projective mapping (PM) or napping® has attained much attention in recent literature as a method for fast sen-
sory profiling and measurement of consumer perception. However, little work has been done to understand the
consumer’s individual differences in these experiments. In this work, segmentation criteria based on the Pro-
crustes distance are explored. The Procrustes distance can be applied with hierarchical clustering using the Pro-
clustrees method, which consists of doing hierarchical clustering on the pairwise Procrustes distance between
consumers. An alternative strategy called sequential clusterwise rotations (SCR) is proposed. SCR extracts clusters
by a sequentially partitioning obtained by combining fuzzy clustering techniques and general Procrustes analy-
sis. The methods were tested on simulated and real data and compared with clustering based on MFA results. The
simulations show that the MFA approach was outperformed by the other methods when the underlying classes
were of same size and there are noise configurations present in the data. For the real data, all methods provided
at last one cluster similar to the consensus but differed with respect to the number of clusters identified as well as
the interpretation of the clusters. Differences between the methodologies point out the need for external cluster
validation in such experiments.

1. Introduction

Due to costs of maintaining a trained sensory panel for sensory pro-
filing of food products, alternative methods, also known as rapid meth-
ods, have attained much focus in recent literature (Varela & Ares, 2014).
One of these methods is projective mapping (PM) (Risvik, McEwan,
Colwill, Rogers, & Lyon, 1994), also referred to as Napping® (Pages,
2003, 2005). PM is also similar to the spatial arrangement method
(SpAM, (Goldstone, 1994)). In PM the assessors are asked to arrange a
set of samples on a sheet of paper according to how similar or dissimilar
the samples are.

Because PM can be applied both with trained panels and untrained
consumers, the method is useful for studying consumer perception.
However, consumers may use diverse criteria for their evaluation, par-
ticularly for complex products. As consumers are not trained, neither
given instructions on what to focus on, individual differences may ex-
ist. In such cases the consensus will not always give the complete pic-
ture. Another issue is that similarity can be perceived in different ways
for the different modalities. Also, for problems outside the food and
drink area, some types of samples may appear similar visually, but

have different functionality (Goldstone, 1994). It is therefore important
to study individual variations in projective mapping experiments.

To obtain a consensus, PM data are typically analysed by multiple
factor analysis (MFA, (Escofier & Pagès, 1994)), INDSCAL (Carroll &
Chang, 1970) or Generalized Procrustes Analysis (GPA, (Gower, 1975)).
For PM data GPA is constrained to two components, whereas both MFA
and INDSCAL can provide more components. It has been shown that
when focusing on the two first components, these methods provide sim-
ilar consensus solutions although they are conceptually different (Næs,
Berget, Liland, Ares, & Varela, 2017; Tomic, Berget, & Næs, 2015).
Nevertheless, in studies with complex products, more than two com-
ponents are sometimes necessary to provide a fully adequate consen-
sus solution. More than two components may, however, be conceptu-
ally more demanding since the original data are given in two dimen-
sions (x and y coordinates from each sheet). An alternative is to use
clustering for the PM data to enhance interpretability, as discussed in
(Vidal et al., 2016). In a comprehensive study on several data sets,
each with 80–100 consumers they identified 2–4 segments with differ-
ent descriptions of the samples in all cases. Moreover, they observed
that more segments were needed when more components were needed
in the MFA model. The study by Vidal et al., clearly shows that it may
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not be sufficient to consider the consensus only. Little attention has,
however, been put on how to do the segmentation in projective map-
ping.

In (Vidal et al., 2016) the clustering was based on the consumers’
correlations to the MFA components from a global MFA model using
a hierarchical agglomerative clustering (HAC). Hence, the consumers
were considered similar if they had high contributions to the same MFA
components, this means that similarity between two assessors will de-
pend on the other assessors present in the data.

In this work, we present two alternative methods which do not de-
pend on a global model, both are based on Procrustes rotations (Gower,
1975; Gower & Dijksterhuis, 2007). Procrustes analysis is particularly
suited for this purpose since it removes rotation and scaling effects. The
first alternative, is based on a hierarchical clustering strategy, whereas
the second utilises a sequential approach for identifying clusters. The
hierarchical strategy was developed for outlier detection in traditional
sensory panels, under the name Proclustrees (Dahl & Næs, 2004). In this
method, the Procrustes distance is computed between all pairs of asses-
sors, and then HAC is applied for the segmentation. This method is ex-
pected to be useful for projective mapping as well, although it has not
been explored yet.

The second approach is based on the sequential partitioning strategy
proposed in (Berget, Mevik, Vebo, & Naes, 2005; Dahl & Næs, 2009).
The sequential approach first identifies the most obvious segment, re-
moves this as the first cluster and then repeats this procedure until a
maximum number of clusters is identified. For consumer studies this is
advantageous as the data often have high noise levels and there may
be several assessors without any clear structure in their data. For each
step in the sequence a GPA-like criterion is used for identification of the
good cluster for each sequence. The proposed method is named Sequen-
tially Clusterwise Rotation (SCR).

In this work Proclustrees and SCR are presented as new methods for
segmentation of projective mapping data. The proposed methodology is
compared with the MFA approach previously applied in the literature,
for both for real and simulated data. Results will be summarised, and
finally advantages and disadvantages of the different approaches will be
discussed.

2. Methodology

2.1. Clustering PM data with MFA and hierarchical cluster analysis

Multiple factor analysis (MFA) (Abdi, Williams, & Valentin, 2013;
Escofier & Pagès, 1994) can be used for analysis of several blocks or
tables of data and is frequently used for data from projective mapping
(PM). In MFA, all the coordinates from the consumers are organized into
a wide matrix with N rows and 2×M columns where M consumers test
N products.

Let X⁠k denote the data table for consumer k. Then each X⁠k is centred
and scaled by its first singular value obtaining Z⁠k. The concatenated ma-
trix Z=[Z⁠1 … Z⁠M] is then analysed by PCA according to the model.

(1)
The T represents the scores, P the loadings each with A components,

and E the residuals. Note that A can be larger than two, even though
each matrix Z⁠k only has two columns.

Frequency tables of words used to describe samples can be added as
supplementary tables, to guide interpretation of the consensus (Abdi et
al., 2013). The supplementary variables (word frequencies) can be pro-
jected on to the principal components.

There are different ways of using results from a global model such
as MFA for clustering consumers. Here we will apply the same ap

proach as in (Vidal et al., 2016) where pairwise distances between con-
sumers were computed as the Euclidean distances between so-called
consumer coordinates with A components. The consumer coordinates
show how much contribution the consumers have to the components.
For component a, and consumer k, these can be computed as

(2)

i.e. the sum of squared loadings for the variables in table k. For general
applications of MFA, the number of variables per block (J⁠K) may vary,
but for projective mapping J⁠k =2 for all k (k=1,…, M). The distance
between consumer k and l, for A components are computed as the Eu-
clidean distance between the vectors y⁠k =[y⁠k1 … y⁠kA] and y⁠l =[y⁠l1 …
y⁠lA].

Clustering can then be performed by hierarchical clustering (HAC)
on the distance matrix computed from the consumer coordinates y⁠1, y⁠2,
…, y⁠M… Here we apply the ward linkage as in (Vidal et al., 2016), how-
ever, other linkage methods can be applied as well. In the following this
approach will be referred to as MFA-HAC.

The MFA based approach is simple, since when the consumer coor-
dinates (Eq. (2)) are computed, the cluster analysis can be performed in
any statistical software using standard methods. Potential problems are,
however, the dependency on the number of components, as well as on
the global model because the consensus may be misleading if there are
outliers in the data, or when groups of consumers base their mapping on
very different characteristics of the products. In addition, hierarchical
methods are known to be prone to noise and outliers, and some stud-
ies indicate that partitions methods are better than hierarchical methods
(Wajrock, Antille, Rytz, Pineau, & Hager, 2008).

2.2. Proclustrees

A simple way of implementing the Procrustes distance for segmen-
tation of PM data is the Proclustrees method proposed in (Dahl & Næs,
2004). This was originally proposed for outlier detection in descriptive
analysis (DA), but is potentially useful for projective mapping as well.
The method is based on establishing the Procrustes distance between
all pairs of individuals, and then running a hierarchical clustering on
the distance matrix. Hence the clustering strategy is the same as for
MFA-HAC, whereas the criterion for similarity is different and only based
on raw individual data.

The Procrustes distance between two assessors k and l is given by

(3)

where denotes matrix X after centring and scaling so that
, is the Frobenius norm, p is an isotropic scaling factor and R a rota-
tion/reflection matrix that minimises the distance between the two con-
figurations. More details are given in (Dahl & Næs, 2004). When is
computed for all pairs of k and l, HAC is applied as for any other dis-
tance matrix. In the present paper we have applied the ward linkage.
Again, this is only one of several options. The group structure can be
studied by inspection of the dendrogram, and the consensus for each
cluster can be computed after they are identified using MFA, INDSCAL
or GPA. In the following, the acronym PT will be used for the Proclus-
trees method. MFA was applied for computing cluster consensus.

A clear advantage of the Proclustrees method is that is does not rely
on any additional parameters, hence it is easy to use. Potential draw-
backs related to hierarchical methods is the same as for MFA-HAC de-
scribed above.
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2.3. Sequential partitioning by clusterwise rotations (SCR)

2.3.1. The sequential strategy with fuzzy clustering and the noise cluster
modification

The sequential approach was introduced in (Berget et al., 2005), and
was also discussed in (Dahl & Næs, 2009). The basic idea, is to extract
and shave off one cluster at a time, then repeat this procedure for the
remaining data to find the next cluster. The division into cluster and
“noise” is done until a maximum number of clusters are identified, or
until there are too few observations left in the data. Typically, a part of
the data will remain as a final “rest” cluster, comprising consumers that
do not form a cluster.

The partition of data into “good” and “noise” cluster is achieved
by using the fuzzy C means (FCM) algorithm (Bezdek, 1981) with the
noise cluster modification (Dave, 1991). The criterion to be optimised
for each round of the sequential procedure is

(4)

here u⁠k and d⁠k are membership and distance from consumer k to the
“good” cluster. The membership values are between zero and one, and
must sum to one for each consumer (object) to be clustered. Typically
the distance is defined as the Euclidean distance between x⁠k and the
cluster centre v, but specialised distances can be applied in order to find
clusters of special properties (Berget et al., 2005).

The δ is the distance to the noise cluster and is the same for all obser-
vations. The parameter m (m>1) controls the fuzziness of the cluster-
ing, which is the degree of sharing objects between clusters. Larger m’s
provides more fuzzy membership values. Here, we will use m=2. The
sum in Eq. (4) is taken over M consumers.

The effect of adding the noise cluster, is that all consumers with a
poor fit to the good cluster will have their highest membership in the
noise cluster. The value of δ is critical when applying noise clustering.
With too small values, all objects fall into the noise cluster, whereas
with too large values, no objects fall into the noise cluster. There are
some recommendations on setting the δ in (Dave, 1991, 1993; Dave &
Krishnapuram, 1997) but in practice trial and error is needed for setting
this parameter.

The criterion in Eq. (4) is minimized by iterating between computing
cluster centres (v) for given membership values, and then update dis-
tances and the membership values (Eq. (5)). The centre of the cluster is
the weighted mean using memberships as weights.

(5)

2.3.2. Incorporation of the Procrustes distance in FCM
To accommodate the sequential strategy to PM data, a modified FCM

algorithm using a GPA like criterion was developed. The new methodol-
ogy is named sequential clusterwise rotations, shortened SCR.

Instead of using the ordinary Euclidean distance in the clustering cri-
terion, we suggest to use the Procrustes distance between consumer k
and the “good” cluster, i.e.

(6)

here G is the consensus for the “good” cluster and is computed as a
weighted average of all configurations, with the membership values as
weights, according to Eq. (7). As before p⁠k is an isotropic scaling fac-
tor and R⁠k a rotation/reflection matrix which minimises the distance be

tween the X⁠k and G (see Eq. (3))

(7)

As for the Proclustrees method above, all configurations are scaled
to be of the same size such that applies for all k after scaling
of X to . This type of scaling is referred to as configuration scaling, and
is recommended for GPA (Gower & Dijksterhuis, 2007). In this paper we
will apply p⁠k = 1 for all k, so that there is no scaling except for the con-
figuration scaling done prior to the analyses.

The algorithm for minimisation of the criterion in Eq. (4) with the
Procrustes distance (Eq. (6)), is summarised by step A to D below

A. Initialisation:
a. Centre and scale data such that applies for all k
b. Initialise membership values randomly for the M consumers

B. Optimise rotations for given membership values and G
c. Compute G for given membership values using Eq. (7)
d. For k=1:M rotate to fit with G
e. Iterate 2a and b until G converges

C. Optimise membership values for given G
f. Compute the distances for each consumer (Eq. (6))
g. Compute memberships (Eq. (5))

D. Compute J (Eq. (4)), and iterate steps B-C until the difference in J
between two consecutive iterations is smaller than a given threshold,
for instance 1e-6

2.3.3. Sequential clusterwise rotations - SCR
The steps A–D are first applied on the complete data set, then con-

sumers with membership values larger than 0.5 to the good cluster are
shaved off as the first cluster, and the procedure is then applied for
the remaining consumers. A second cluster is shaved off, and the pro-
cedure is repeated, until the desired number of clusters is identified, or
the number of consumers left is too small for further partitioning.

Since the “best” clusters are identified first, it is natural to relax the
criterion for being in the “good” cluster for each segment that is shaved
off. We therefore in each step, increased the value of δ according to
the rule δ⁠new = sδ⁠old, where s>1 is a fixed constant. To avoid extracting
small, not meaningful clusters, we added the criterion that the size of
a cluster needs to exceed a given number n, depending on the number
of consumers in the study. If the number of consumers assigned to the
good cluster is smaller than n, no cluster is shaved off, and the δ is in-
creased in the same way as above to secure that a larger cluster can be
identified in the next loop of the sequence. For both real and simulated
data sets below, we applied n=20. In the simulations, clustering was
performed for δ ranging from 0.3 to 0.6 with s=1.05.

For the real cases, the procedure proposed in the Appendix was ap-
plied to set δ. In summary, δ was first varied over a wide range, with
fixed s to identify the interval in which one or more clusters could be
identified. Secondly, more values of δ within this range were tested, also
varying the s. The final parameter values were then selected by using
the cluster validation criteria described in Section 3.4. For the yoghurt
data more than one cluster was obtained for δ in the range 0.4–0.8, and
the final clustering was performed with δ=0.6. For the wine data, more
than one cluster were identified in the range 0.6–0.9, and the final clus-
tering was performed with δ=0.75. For both cases s=1.01.

2.4. Validation and comparison of results

2.4.1. Intracluster variation, the similarity index (SI)
Good clusters should have low intraclass variability, intracluster

variation was therefore used to select parameters for SCR. More specif
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ically the similarity index (SI) proposed in (Tomic et al., 2015) was ap-
plied to measure the deviation between the individual configurations
(X⁠k) and the cluster consensus (G⁠c) according to

(8)

where is the Frobenius norm. SI⁠kc measures the squared deviation be-
tween the configuration of consumer k and the consensus of cluster c,
scaled by the size of the consensus configurations which makes the SI
for different clusters comparable. The average SI for the cluster is taken
as the mean of all assessors allocated to cluster c and is therefore a mea-
sure of the intracluster variation.

2.4.2. Similarity between clusters, the SMI index
The consensus of the identified clusters should be different, other-

wise the partition is not very meaningful. The similarity between con-
sensus configurations can be measured by for instance the RV coefficient
and the similarity of matrix index (SMI) recently proposed (Indahl et al.,
submitted) and applied in (Næs et al., 2017).

The SMI was proposed as an alternative to the RV coefficient for
measuring similarity in data structures since it does not depend on
the eigenvalues structure. The SMI can be considered a multivariate
R-square, and is equal to the squared correlation in the one-dimensional
case. In this paper we focus on SMI because it also offers a significance
test for when two configurations are different. The test is based on boot-
strapping (Indahl et al., submitted).

To measure the similarity between two consensuses G⁠1 and G⁠2, the
SMI is based on singular vectors of the two blocks, represented by U⁠1
and U⁠2, with variance equal to one for all columns. The U⁠1 is then re-
gressed onto U⁠2. For the same number of columns in U⁠1 and U⁠2, the SMI
is defined as

(9a)
where TSS is the total sum of squares defined as

(9b)

and RSS is the residual sum of squares after fitting U⁠1 to U⁠2. Different
regression methods can be applied for this fitting, but here we will only
consider least squares regression. For further details on the SMI we refer
to (Indahl et al., submitted).

2.4.3. Comparison of methods
The three approaches for clustering PM data are compared by sim-

ulated and real data. The three different methods differ with respect to
the data input, clustering criterion, clustering strategy and the outcome
of the clustering routing as summarized in Table 3. SCR provides a con-
sensus for the clusters as a part of the algorithm, whereas for the other
methods the cluster consensus must be computed for each cluster after
the partitioning of the data. In this work we have chosen to use MFA
for this. The consensus obtained from SCR is based on GPA and com-
prises only two components, we therefore apply MFA on these clusters
as well when comparing methods. The methods are compared by com-
puting SMI (Similarity of Matrix Index) between consensus configura-
tions. In addition, SI (similarity index) is used for optimization of para-
meters in SCR.

3. Case studies

3.1. Simulations

Simulations will always be a simplification of the real world but
can provide useful insight into data analytical techniques. In projective

mapping, the number of samples, the difference between the samples,
and the variability within and between classes will obviously have great
impact on an automated cluster analysis. In this work, simulations were
done to investigate how class composition, i.e. number of consumers for
each of the underlying classes affects the clustering results. In addition,
four different schemes for intra class variation were tested.

More specifically we consider a situation with M=100 consumers to
do PM on N=9 samples. The consumers belong to one of three classes
A, B and C, and the number of consumers in each class is denoted M⁠c
(c=1, 2, 3). The two first classes use different criteria for the PM task,
and therefore have different consensuses. The third class (class C), rep-
resents consumers that do not share consensus with any other group.
This latter group comprises consumers which either have problems de-
tecting differences, or have problems in expressing what the differences
are, and therefore organise the samples more or less randomly and,
hence, represent noise.

The simulations were done by first generating the consensus for class
A and B denoted X⁠1 and X⁠2 respectively, then consumers in each class
were generated by adding normally distributed noise to the true class
configurations. The consensus for each class (X⁠1 and X⁠2) can be gener-
ated in many ways. We have here chosen to use the same variability for
all samples and have not imposed any pattern on the samples with re-
spect to similarities/dissimilarities between them. This means that our
results do not depend on any such assumptions. To secure some spread
of the nine artificial samples, however, each of them were randomly as-
signed to one of the four quadrants of the simulated sheet (600×400).
Coordinates for each sample were then generated from the uniform dis-
tribution within the quadrant it was assigned to. This set up give mini-
mal assumptions about similarities/differences between samples and the
true configuration for each class.

The vector x⁠ic gives the true x-y coordinates for sample i in class c,
whereas y⁠ick denote the position of sample i for consumer k in class c
(i=1, 2, N, c=1, 2, k=1,…, Mc) and is generated according to the
model

(10)
with

(11)

The v⁠c determines the variability within each class and is set to low
(L=1000) or high (H=2000) for class A and B according to a 2×2
design. The label HH will be applied when both classes have high vari-
ability, whereas if both classes have low variability simulations will be
labelled LL. HL and LH will denote simulations were classes have dif-
ferent variability such that HL is when A has high variability and B low
variability, whereas LH is the other way around (see Table 1). Note that
S⁠0 was constructed in such a way that the variability in the first direc-
tion is higher than in the second, as the sheets normally used for PM has
a wide format (A3 sheets). The third class C, with noise configurations,
was generated from the uniform distribution within the complete range
of the virtual sheet, i.e. y⁠i3k∼U([−300, 300], [−200, 200]).

Artificial PM data were generated with different numbers of con-
sumers in class A, B and C, but always with 100 consumers in total, and
for different variability within class A and B as described above. One
hundred simulations were run for each of the combinations in Table 1.
Cases with N⁠1 =N⁠2 will be referred to as balanced data (B), whereas
cases with N⁠1 >N⁠2 are referred to as imbalanced data (I). For balanced
data HL and LH is in principle the same, and only HL is used.

We believe that the described simulations mimic a large range of
different situations for projective mapping experiments. An example of
simulation number 2 with HH in Table 1 is shown in Fig. 1.

4
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Table 1
Overview of simulation studies. N⁠1, N⁠2 and N⁠3 are the number of assessors in class A, B
and C. For each combination of N⁠1, N⁠2 and N⁠3 three or four different combinations of vari-
ations in class A and B are run. The four different variability schemes that are tested are
HH, HL, LH and LL where H and L denote high and low levels of variability, and the first
and second letter correspond to class A and B respectively. For simulations where the num-
ber of members is the same for class A and B (balanced data) only HL is run as HL and LH
give the same set up. The v in Eq. (10) is 1000 and 2000 for L and H respectively. Case
1–4 are balanced data (i.e. N⁠1 =N⁠2) whereas in 5–11 there are more members of class A
than B. For all cases there are 100 consumers in total.

Simulation ID N1 N2 N3 Balance Variability

1 35 35 30 B HH, HL, LL
2 40 40 20 B HH, HL, LL
3 45 45 10 B HH, HL, LL
4 50 50 0 B HH, HL, LL
5 40 30 30 I HH, HL, LH, LL
6 50 20 30 I HH, HL, LH, LL
7 60 10 30 I HH, HL, LH, LL
8 60 20 20 I HH, HL, LH, LL
9 70 10 20 I HH, HL, LH, LL
10 70 20 10 I HH, HL, LH, LL
11 80 10 10 I HH, HL, LH, LL

3.2. Case 1: projective mapping on yoghurt packages

The data applied here were also used in (Næs et al., 2017; Varela,
Antúnez, et al., 2017). One hundred consumers performed a projective
mapping task to describe packages of yoghurt and yoghurt-like prod-
ucts with blueberry, in Norway. The mapping was based on the evalu

ation of the extrinsic product properties only with no tasting. The cri-
teria for selecting consumers were that they were frequent users of yo-
ghurt (once a week or more).

Twelve commercial blueberry yogurt packages, bought in local su-
permarkets, were used in the study. Samples were selected to get a
wide range of products in terms of type of product, brand, nutritional
characteristics, package size (single, two-pack and four pack) and nutri-
tional and health claims on the packages. The samples represented the
main characteristics of the blueberry yoghurts and yoghurt-like products
available in the Norwegian market. The different products are labelled
P1-P12 and are described in Table 2.

After an initial instruction and explanation of the projective mapping
technique, the participants received the twelve yoghurt packs and per-
formed the projective mapping test with the use of a computerized data
collection software (EyeQuestion, Logic8 BV, Netherlands). They were
also asked to provide descriptive words for samples or groups of sam-
ples (for more details, see (Varela, Antúnez, et al., 2017).

3.3. Case 2: projective mapping on wine with and affective approach

Projective mapping based on choice or preference was performed
with 144 consumers in Chile on eight Sauvignon Blanc commercial
wines (2014 harvest). The wines are labelled V1, V1-D1, V1-D2, V2,
R1, R1-D1, R1-D2 and R2. Here the V indicates a varietal type (reg-
ular bottling), R reserve type (reserve bottling), and the suffixes D1
and D2 indicate that the wine was enriched with natural wine aro-
mas in two different concentrations. Enrichment came from an aromatic
condensate recovered from alcoholic fermentation of Sauvignon Blanc
wines. The projective mapping was based on choice, which means that

Fig. 1. Example of a simulated data set. a) Data and true configuration for class A, b) data and true configuration class b c) MFA of consensus for A, B and C.

5
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Table 2
Description of the yoghurt packages. Note that P1/P11, P4/P8 and P5/P9 represents similar yoghurt types but differ with respect to topping and/or the packaging (wrapped multi package
or single pack).

Label Yoghurt type FatInfo SugarInfo Other info Topping wrapped Comments on pack

P1 Greek yoghurt 2% fat Low sugar source of fibre, 14 g protein, 90Kcal
P2 Yoghurt wholefat w/sugar Lactose free X
P3 cultured milk fat free sugar free 16g protein, original Icelandic cultures
P4 Yoghurt fat free sugar free X rich in protein and fibre
P5 Bifidus culture 2.8% fat w/sugar Probiotic (actiregularis) X
P6 Soy fermented product 2% fat w/sugar Lactose free X “with yoghurt cultures”, “natural lactose free”
P7 Yoghurt wholefat w/sugar “Extra blueberry”
P8 Yoghurt fat free sugar free X “fruit yoghurt with fibre”
P9 Bifidus culture 2.8% fat w/sugar Probiotic (actiregularis) X
P10 Greek yoghurt fat free w/sugar “a layer of blueberry pieces”
P11 Greek yoghurt 2% fat Low sugar X 14g protein, 90Kcal, source of fibre”
P12 Curd wholefat w/sugar

Table 3
Overview of differences between the discussed methods for clustering PM data.

Method
Input to clustering
algorithm

Clustering criterion
(distance) Clustering strategy Parameters involved Output

MFA and hierarchical agglomerative
clustering MFA-HAC

Coordinates from global
MFA model

Euclidean distance Hierarchical Linkage (wards
method)
Number of MFA
components
Number of clusters

Cluster labels

Proclustrees (PT) Raw data Procrustes distance Hierarchical Linkage (wards
method)
Number of clusters

Cluster labels

Sequential clusterwise rotations (SCR) Raw data Procrustes distance Sequential
partitioning

n (minimum size of
cluster)δ
(distance to noise
cluster)s
(increment of δ)
Number of clusters

Cluster labels/Membership
values
Consensus per cluster

instructions to the consumers differ from the “classic” PM and they are
asked to base their categorization on their preferences. Samples that
share similar characteristics with respect to choice or preference, should
be placed close to each other, while different samples should be placed
further apart from each other with regards to each consumers prefer-
ence. More details of the affective approach are given in (Varela, Berget,
et al., 2017). Consumers were also asked to give words to describe sam-
ples/groups from the PM. For more details on the experimental set up,
we refer to (Lezaeta, Bordeu, Næs, & Varela, 2017).

3.4. Data analyses

For each data set (simulated and real) a global MFA was conducted,
clustering was performed with Hierarchical clustering on consumer co-
ordinates from MFA (MFA-HAC), Proclustrees (PT) and sequential clus-
terwise rotations (SCR). Data analyses and simulations were done in
Matlab. For the hierarchical methods, functions within the stats toolbox
were applied, whereas for PT and SCR in-house programs were used.
Matlab code can be provided by the authors on request. Computation of
SMI values and significance testing of SMI were done within R and the
package MatrixCorrelation (Indahl et al., submitted).

3.4.1. Computing classification performance
For the simulated data the true underlying classes are known, hence

error rates can be computed. Only members from class A and B were
used for computing error rates. To compute the error rates, each clus-
ter must be matched to one of the underlying classes (A or B). This
was done by computing the SMI (Eq. (9)) between the cluster consensus
and the true configurations. If a cluster had the highest SMI to for in

stance class A, it was assigned as class A. If both clusters had the high-
est similarity to the same class, the cluster with the largest number of
members was assigned to this class, and the simulation was registered
as an “overlap”. The average error rate was computed for each simula-
tion, and then averaged over all simulations within each set up in Table
1, and for simulations without overlap only. To measure the ability to
estimate the underlying consensuses, the SMI values between the cluster
consensuses and the underlying classes were computed.

3.4.2. Optimising clustering parameters for simulation studies
Determining the number of clusters is a problematic aspect of cluster

analysis and this task usually requires investigation of dendrogram for
hierarchical methods, or different validation parameters for partitioning
methods (Halkidi, Batistakis, & Vazirgiannis, 2001; Jain, 2010). In sim-
ulation studies this is not feasible, and the number of clusters and other
necessary parameters must be decided beforehand. Clustering was done
with two clusters for each of the methods, however, for SCR, this means
two clusters plus the rest cluster.

For MFA-HAC classification was performed with 2–4 components.
The minimum size of clusters in SCR was set as n=20, meaning that
if the good cluster in one round comprised less than 20 consumers, no
cluster was shaved off, but the δ was increased as described in Section
3.3. SCR was performed with δ⁠0 ranging between 0.3 and 0.6, and the
incremental value was s=1.01. SCR was run with 25 random initiali-
sations of membership values for each sequence, and the solution with
the smallest value of the criterion function was selected. The results in-
dicated some sensitivity to the initialisation, but stable results were ob-
tained with 25 initialisations. Further research will be needed to inves
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tigate differences in sensitivity in early and later stages of the sequential
procedure.

3.4.3. Clustering parameters in real data sets
For the real data sets, the number of clusters was selected by inspect-

ing the dendrogram for the hierarchical methods. A detailed description
of the procedure to optimise δ in SCR for each of the cases is described
in the Appendix (see also Section 3.3). SCR was run with 50 random ini-
tialisations.

4. Results

4.1. Simulations

4.1.1. Overview of the simulations
Fig. 1 shows an example for one of the simulated data sets. This

example corresponds to HH of row number 2 in Table 1. In Fig. 1a
and b the data and the true underlying consensus for class A and B are
shown, whereas in Fig. 1c the differences between the three classes are
illustrated by representing the consensus of each class in an MFA plot.
Clearly, interpretation of the global consensus may represent a problem.

Across all simulations, the SMI between the true configurations for
the two underlying classes varied from 0.02 to 0.48 with a mean of 0.23.
This means that the classes were quite different from each other, and
probably represent more distinct classes than can be expected for real
data.

When doing MFA on the complete datasets, the variance explained
by two components ranged from around 50% to 90%, the amount of
variation explained by two components was higher when one class (A)
was large compared to the other class (B), and when there were few
noise configurations in the data. Also, less variation is explained by two
components with for instance HH than LL, with LH and HL in between.
For the MFA of class A and B separately, more than 90% of the vari-
ability could be explained by two components. For comparison, the ex-
plained variance by two components for the two real data sets, were
37% (wine) and 45% (yoghurt).

Based on Fig. 1, the explained variation for global MFA and the sum-
mary statistics for similarity between the classes, we consider that the
simulated data represent the type of problem where cluster analysis will
contribute to a better understanding of consumer perception.

The discussed methods were compared with respect to classifica-
tion performance. Results are first presented for MFA-HAC with one to
four components, then for SCR using δ in the range 0.3–0.6 and finally
all tree methods are compared. With Proclustrees (PT), no parameters

need to be optimised, therefore results for PT will be summarised in the
comparison of the three different clustering methods.

For all methods the classification performance differed for balanced
(equal size of class A and B) and imbalanced data (class A larger than
class B). Performance with respect to classification differed more for the
balanced data, therefore results for the balanced data will be in focus.

4.1.2. MFA-HAC for simulated data
For the simulation study, MFA-HAC was applied with one to four

components from the global MFA model.
Results with MFA-HAC for balanced data (row 1–4 in Table 1) are

summarised in Fig. 2, which shows average error rates for all simula-
tions and for simulations without overlap (3a) as well as the percentage
of simulations with overlap (3b) for classification using 2–4 MFA com-
ponents. The classification ability decreases as the number of noise con-
figurations goes up, both when considering the average error over sim-
ulations, and the amount of simulations with overlap. The classification
performance did not vary much between LL, HL and HH, although the
influence of the number of noise configurations was more evident for
HH and HL than LL (results not shown). The classification performance
is best with three components.

For the unbalanced data (class A more prevalent than class B) error
rates as well as the proportion of overlap were considerably smaller, and
the MFA-HAC could be considered as successful in classifying the data
correctly with both two and three components, unless for the nearly bal-
anced case with N⁠1 =40, N⁠2 =30 and N⁠3 =30 (results not shown).

Note that Fig. 2 represents results for the average of the simulations,
hence it is important to keep in mind that the classification performance
varies a lot from perfect to not better than random classification within
the same set up in Table 1.

4.1.3. Optimising SCR, setting δ
In the simulation studies, SCR was performed with δ=[0.3, 0.4, 0.5,

0.6]. With balanced data the δ influenced the results considerably, giv-
ing more overlap and errors for higher values. For unbalanced data the
δ did not have that much influence, except for simulation type 5 (Table
1). For all cases the minimum error rate was obtained with δ=0.3.
For balanced data, only small differences were detected for 0.3 and 0.4,
whereas for the unbalanced data also δ=0.5 worked well. Hence, the
methodology does not depend on selecting exactly the best δ. As for
MFA-HAC overlapping clusters were observed, but the frequency was
much lower, and for δ=0.3 and 0.4, the frequency was below 0.05 for
all simulations.

Fig. 2. Classification performance of MFA-HAC method for the simulations with balanced data and variability HH. a) Average error rates with 2–4 components in the MFA for all sim-
ulations and for simulations without overlap. The legend indicates the number of components applied for clustering, and if the average is computed for all simulations (-all) or only
simulations without overlap (-not overlap). b) The percentage of simulations which have overlapping clusters with 2, 3 and 4 components.
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4.1.4. Comparison of methods
Fig. 3 compares average error rates for simulations with balanced

data and variability HH. Results from Proclustrees, SCR with δ=0.3
(SCR-0.3) and MFA-HAC three components (MFA-HAC-3) are shown.
Error rates are computed as averages over all simulations, and as av-
erages over simulations without overlap. As can be seen Proclustrees
and SCR-0.3 work very well for all cases (error rates<2%), whereas
MFA-HAC-3 have higher error rates (average is above 5% for all four
situations). Moreover, the percentage of simulations which have overlap
increases with the number of noise configurations present in the data.
All methods worked well for unbalanced data (results not shown), un-
less for the nearly balanced case with much noise (N⁠1 =40, N⁠2 =30,
N⁠3 =30), which had results similar to those for balanced cases. Similar
patterns were observed for the other variability settings.

Because the overlap between the identified clusters was a much
larger problem for MFA-HAC than the other methods, it is of interest
to investigate potential causes for this problem. A deeper investigation
of the simulated data showed that simulations with overlap were char-
acterised by lower Frobenius norms of both basic configurations, which
means that the configurations did not span a large area in the virtual

Fig. 3. Error rates for simulations with balanced data and variability HH for Proclustrees,
SCR with δ=0.3 and MFA-HAC with 3 components. Error rates are computed as averages
of simulations without overlap (italics in legend), for all simulations (normal letters).

sheet. Consequently, the within class variation (determined by v in Eq.
(10)) was large compared to the variability between the samples. We
therefore see as a possible explanation that MFA-HAC failed in situa-
tions where the underlying classes did not have a very clear consensus
in the first place.

In addition to the classification ability, it is of interest to consider
how well the true consensus is estimated by the identified clusters. Fig.
4 shows the number of simulations where the true underlying consensus
is well estimated with SMI between the cluster consensus and the true
configuration exceeding 0.9. In part a) results for the balanced cases are
presented. Only counts for class A are shown, since for the balanced
cases similar results were observed for both classes. As can be seen the
MFA based approach estimates the true consensus less accurate than the
other methods, whereas Proclustrees and SCR have similar performance.
Moreover, for MFA the number of simulations with “good” values of SMI
goes down when the number of noise configuration increases. In part b)
results for both classes for the two cases with N⁠1 =60 are shown. The
dominating class (class A) is well estimated by all methods. The smaller
class (class B) is, however, well estimated only by SCR.

4.1.5. Conclusions simulation studies
The current simulation studies show that all methods can work well

in many cases. Compared to the other methods investigated, MFA-HAC
had poor classification ability for simulations where the two underly-
ing classes were of similar size, MFA-HAC was also more sensitive to
the number of noise configurations than the other methods. Proclustrees
and SCR gave good classification in all cases, although the latter de-
pended on selecting appropriate values of δ. SCR was better than the
other methods with respect to the estimation of the consensus for the
small class in simulations with unbalanced data.

4.2. Case 1: Yoghurt data

The two first components of the MFA solution for the yoghurt data
are displayed in Fig. 5. The twelve samples have been grouped into
three groups using HAC with ward linkage. Two of the groups represent
two different types of packages (wrapped packages and products with
topping/muesli), and the third group comprises the remaining products.
The third component (not shown) separates P7 (dessert type) in one di-
rection and Greek-style yoghurts in the other direction. The fourth com-
ponent is related to the fat content (not shown). The first four compo-
nents explain 68% of the variation in the data and indicate a high de-
gree of individual variation. Detailed results on samples perception and
interpretation can be found in (Varela, Antúnez, et al., 2017).

Fig. 4. Number of simulations (out of 100) with SMI between cluster consensus and the true underlying consensus of the class exceeds 0.9. a) Counts for class A for balanced cases with
variability HH. b) For imbalanced cases with (60-20-20) and (60-10-30) members of class A, B and C respectively. Counts for both class A and B are shown.
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Fig. 5. MFA Consensus Yoghurt. Samples are grouped by HAC and named by common
feature of packs in the same group.

4.2.1. Hierarchical methods
With MFA-HAC the solution depends on the number of components

applied. When cutting the dendrogram at 70% of the maximum linkage
of the tree, MFA-HAC provides three clusters when using 2–3 compo-
nents and 4 clusters with 5 components. It is therefore natural to focus
on three clusters. Fig. 6 shows the dendrograms from MFA-HAC with 2
components (6a) as well as for the Proclustrees method (6b). Hierarchi-
cal clustering based on consumer coordinates (MFA-HAC) or Procrustes
distances (Proclustrees) provide different results. This is not unexpected
and shows the need for studying different criteria for clustering with
projective mapping data. Clusters obtained with two components and
MFA comprise 28 (C1), 26 (C2) and 46 (C3) members. Clusters obtained
with Proclustrees have 47 (C1) and 53 (C2) members.

4.2.2. Optimising SCR
A detailed description of setting δ for the yoghurt data is given in

the Appendix. Up to five clusters could be identified for δ in the range
0.4–0.8, but since only the two first had SI considerably lower than
the overall average, clustering was limited to two clusters plus the rest
cluster. As a compromise between obtaining a dense first cluster, and
a second cluster which had a different consensus than the first, the fi-
nal δ was set to 0.6. The final clustering with δ=0.6 and s=1.05, pro-
vided two clusters SCR-C1 (n=42) and SCR-C2 (n=26) reminding con

sumers were allocated to the rest cluster labelled SCR-C3 (n=33). The
first cluster (SCR-C1) had high similarity with the global consensus for
all δ.

4.2.3. Comparison of methods
SMI and RV coefficients between the consensus for all pairs of clus-

ters, and between clusters and the global solution were computed to
compare segments within and across methods. The SMI values are re-
ported in Table 4. Consensuses that are significantly different (p<0.05)
are marked with bold in Table 4.

Table 4 shows that MFA-HAC with two to four components, each
identified one cluster resembling the global consensus. This was C1, C2
and C2 for two, three and four components respectively. Table 4 also
shows that each cluster identified with two components had SMI ≥0.8
and were not significantly different to one of the clusters obtained with
three components. When applying four components, however, one clus-
ter is significantly different from all other clusters identified with the
other methods. Because it is natural to focus on the major characteris-
tics, results with two components are considered further.

For the two clusters obtained with the Procrustes method, C1 has the
highest similarity to the overall consensus, but neither C1 nor C2 were
significantly different from the overall consensus (Table 4), although
they are significantly different from each other when considering the
SMI test.

With SCR and the selected δ (0.6), the first cluster had high simi-
larity to the overall consensus, whereas the consensus of second clus-
ter was significantly different from this. The rest cluster was not signif-
icantly different from the first cluster, nor the overall consensus. This
reflects that with a higher value of δ, a partitioning with a larger first
cluster could have been obtained without changing the consensus con-
siderably, however, the intracluster variation would have been larger.

As can be noted, at least one of the clusters obtained for all meth-
ods resembled the overall MFA consensus by being not significantly dif-
ferent from the overall consensus. Hence MFA-HAC-2-C1, PT-C1 and
SCR-C1 all provide estimates of the overall consensus. MFA-HAC-2-C2
does not have high resemblance to any of the other clusters, whereas
there is some similarity between MFA-HAC-2-C3 and PT-C2 and be-
tween SCR-C2 and PT-C2 (Table 4).

As can be expected the clusters with similar consensus were over-
lapping. The number of consumers common to the main cluster, i.e.
the cluster with the highest similarity to the overall consensus, were
21 (MFA-HAC-2 and Proclustrees), 26 (MFA-HAC-2 and SCR) and 32
(Proclustrees and SCR). Altogether 20 consumers were allocated to the
main cluster with MFA-HAC-2, Proclustrees and SCR. When considering
MFA-HAC with two to four components the number of consumers allo-
cated to the main cluster were 20 (two and three components), 21 (two
and four components) and 37 (three and four components). For the re-
maining clusters, less stability was observed.

Fig. 6. Dendrogram for Yoghurt, a) MFA-HAC with A=2 components b) proclustrees.
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Table 4
Yoghurt data. SMI between consensus of global MFA model, and MFA model per identified cluster for the different methods. Consensuses that are significantly different are in bold
(p<0.05). Grey colour and italic letters indicate SMI to the overall consensus (top row). SMI values between clusters from the same method is also highlighted with grey.

4.2.4. Interpretation of clusters
When considering two dimensions of the different clusters identified,

all methods provided one segment which agrees with the global con-
sensus and has grouped the products into “wrapped”, “with muesli/top-
ping” and “the rest”. With segmentation, however, the sample groups
were more clearly separated than when looking at the complete data set.
Hence segmentation applying any of the discussed methods, can help in-
terpretation for the global solution. Clusters resembling the global con-
sensus (MFA-HAC-C1, SCR-C1, PT-C1) are not discussed further.

The remaining clusters from MFA-HAC with 2 components, Proclus-
trees and SCR that differ from the overall consensus, are shown in Fig.
7. The same type of colour and symbols are used as for the global solu-
tion to highlight differences between segments.

For MFA-HAC-C2 (Fig. 7a), the first component spans products typi-
cally used for dessert/snack (P3, P7 and P12) on one side, with products
with muesli/topping on the other side. Hence this component may be
related to usage of the product. The second component spanned allergy
friendly products, but also P1 and P11 had high scores on this compo-
nent. For MFA-HAC-C3 (Fig. 7b) the first component separated wrapped
and single packages (as for the global solution) and the second compo-
nent spanned fat-reduced and non-fat reduced yogurts with P7 (dessert
type) as the most extreme of the latter.

In the consensus plot of PT-2 (Fig. 7c), the upper left corner contains
lactose-free products (P2, P6), the upper right corner the dessert types
(P3, P7, P12), the low right corner Greek-style yoghurts (P1, P10, P11)
and the lower left corner contains the yoghurts with probiotics (P5, P9),
with fat reduced products in between these groups. These groups repre-
sent differences in functionality, but are also confounded with brands,
as the pairs (P5, P9), (P4, P8) and (P1, P11) are from three different
brands and the products within each of these pairs only differ with re-
spect to packaging (with/without muesli and single/multipack).

Consumers in SCR-C2 (Fig. 7d) seem to have grouped products more
according to product properties than the packages. Products on the
right side are either fat reduced (P3, P4, P8, P10) or have reduced
sugar content (P1, P11) whereas products on the left side all have

sugar and no fat reduction. Hence the first component may be related
to perceived healthiness. On the left side of the plot, the two products
with probiotics (P5, P9) are grouped together in the upper part, whereas
the dessert types (P7, P12) are in the lower part. In between these two
groups we find the allergy friendly products (P2, P6). Moreover, pairs
of product with similar yoghurt but different packaging (multi-, single
or with topping, see Table 2, P1/P11 and P4/P8) are coming closer to-
gether. Consensus for the rest cluster (SCR-C3, not shown) was not sig-
nificantly different from the global MFA consensus, although less dis-
crimination among samples was observed.

4.3. Case 2: wine data

4.3.1. Global MFA of the wine data
Wine is a complex product from a sensory point of view, and this

is reflected by a large amount of individual variation in the PM data.
The two first components of the MFA solution for the wine data are pre-
sented in Fig. 8. Aroma intensity and complexity seem to be related to
the fist factor with enriched samples towards the right of the map, while
the second factor separated varietal (bottom) and reserve wines (top).
HAC with ward linkage has been applied to group the samples; One
group at the right side of the plot, comprises V1 with enrichment (both
doses) as well as R1-D2, the group on the left side comprises V2, R1, R2
and R1-D1. V1 is different from both groups and is in the middle and
bottom part of the plot. R1 was less affected by the enrichment than V1,
as only R1-D2 was perceived as different from R1. This is somehow log-
ical as reserve wines are already complex in aromatic profile, so a low
enrichment might not have such a noticeably effect for a consumer (be-
ing an untrained assessor), while the low enrichment level would have a
more significant effect in a varietal sample (less aromatically complex).
When looking into the third dimension (not shown), R1 with and with-
out enrichment are separated, whereas the fourth component is difficult
to interpret. The first four components explained 63.5% of the data.

4.3.2. Clustering of the wine data
Based on the interpretation of the global MFA, both two and three

components can be applied for clustering using MFA-HAC. When using
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Fig. 7. Consensus configurations for identified clusters a-b) MFA-HAC with two MFA components cluster 2 and 3, c) proclustrees cluster 2, (d) SCR cluster 2 with s=1.01 and δ=0.6.

Fig. 8. The two first MFA components from MFA on the wine data. Samples are grouped
by HAC, and groups are represented by different symbols and colours.

two components, the dendrogram indicates three clusters (Fig. 9a)
whereas with three components, four clusters are indicated (not shown).
The partitions obtained were different, as the adjusted rand index (ARI,
(Hubert & Arabie, 1985)) was 0.4. The dendrogram pro

duced by the Proclustrees method (Fig. 9b) did, however, not indicate
clear segments.

With SCR up to six clusters could be identified for δ in the range
0.6–0.9. A similar procedure as for the yoghurt data (see Appendix) was
applied for further optimisation of δ, but as for the Proclustrees method,
several small segments with different interpretations could be extracted
from the data. The first cluster resembled the overall consensus shown
in Fig. 8. This cluster increased in size as δ increased, consequently
the intracluster variation also increased. A second cluster had relatively
stable consensus until δ=0.7 but was difficult to interpret. Remaining
clusters were small, and their consensus changed considerably between
different values of δ and were therefore not considered as stable. It is
natural that small groups are not stable as adding/removing a few mem-
bers can have large impact on the consensus.

In summary, both MFA-HAC and SCR extracted one cluster with
a consensus similar to the global consensus. The other clusters were
less reliable. It was, however, clear that although the global model in-
dicated that enriched varietal wines may be perceived similar to re-
serve wines, there are clearly groups of consumers which show the abil-
ity to separate such wines. It may therefore be risky to make conclu-
sions based on analysing the complete dataset only. One of the rea-
sons consumers perceived the enrichment very differently, was proba-
bly a large variation in the perception of the original wines. All com-
binations of separation between the two groups of wines (varietal and
reserve), and within groups (V1 versus V2 and R1 versus R2) could be
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Fig. 9. Dendrograms for the wine data a) MFA-HAC with two components (left) and b) proclustrees.

observed, as well as consumers which seem to group these wines ran-
domly.

5. Discussion

Different methods for clustering projective mapping data have been
discussed. Two methods based on the Procrustes distance were com-
pared to a more traditional approach based on MFA. Clustering based on
Procrustes can be done hierarchically, using Proclustrees (Dahl & Næs,
2004) or sequentially using a new methodology named sequentially clus-
terwise rotations (SCR). Methods were compared on simulated and real
data. Below results are summarised and discussed.

5.1. Simulations

The simulation study showed that performance of methods de-
pended much on the class composition and the number of noise con-
figurations in the data. The level of the intraclass variations did not in-
fluence results that much for this study, but for other levels of the in-
traclass variation (v) this could be different. MFA-HAC did not perform
well when the underlying classes where of the same size and with noise
configurations present. The two other methods were able to obtain good
classification in most cases but had problems when noise configurations
comprised 30% of the data. Classification performance was similar for
Proclustrees and SCR, but the latter method was slightly better at esti-
mating the underlying consensus of the classes, particularly for the small
class in the unbalanced cases.

It is reasonable to expect noise configurations in real data, but it is
difficult to know the true extent of this. Simulation results indicate that
when such noise is present, MFA-HAC will not provide a good solution
if the classes with structure are of similar sizes.

5.2. Real data

For both cases, all methods provided one cluster resembling the con-
sensus. This agrees with previous research (Vidal et al., 2016). The re-
maining clusters differed, it is therefore important to do an external val-
idation of the segments.

The wine data differed from the yoghurt data in that the projective
mapping was based on an affective approach, with the tasting of a sen-
sory complex product. This was reflected in the data, which contained
high individual variation, and whereas MFA-HAC indicated a clustering
structure, the other methods did not.

MFA-HAC and Proclustrees utilise the same clustering strategy but
use different criteria for clustering. For both case studies MFA-HAC was
successful in identifying clusters, whereas Proclustrees did not result in
interesting clusters for the wine data. Because the ward linkage tends

to blow up the distances (Kaufman & Rousseeuw, 1990), MFA-HAC was
also tested with other linkage methods, but the resulting dendrograms
still indicated clear groups.

A possible explanation of why MFA indicates a clearer grouping
structure than the other methods for the real data, is that MFA focus on
directions with high variability, whereas Proclustrees sees only pairs of
consumers at a time. This is supported by the fact that more groups are
indicated with MFA-HAC when more components are used.

5.3. Advantages and disadvantages of the different methods

MFA-HAC has already been applied for several data sets (Vidal et al.,
2016). A clear advantage is that it is easy to apply. However, as shown
for the case studies, the results may depend on the chosen number of
components. A possible modification is to apply a weighted distance, in
such a way that the first components contribute more to the distance
than the later components. This will make the procedure less depen-
dent on the number of components selected, but also add complexity.
In contrast to the other methods discussed, MFA-HAC does not cluster
on raw data directly. With this approach the consumers are assumed to
be similar if they have high contribution to the same MFA components.
This means that the distance between a pair of consumers will change if
new consumers are added to the data (or some consumers are removed).
Moreover, MFA-HAC was outperformed by the other methods with re-
spect to classification of simulated data with balanced classes and noise
configurations.

With Proclustrees, the Procrustes distances must be computed prior
to the clustering. This is not available in standard software but can be
easily implemented in for instance R and Matlab. A clear advantage
is that there are no user defined parameters except from the linkage
method. In this work we focused on the ward linkage, but unpublished
results indicate that centroid, complete, average and median linkage
also work. Proclustrees worked well for the simulated data, however,
the method failed to produce interesting clusters for the case studies.

The proposed method SCR is the less user-friendly method as it de-
pends on several parameters that need to be optimised for each dataset.
However, a strategy for selecting the parameters is suggested (see the
Appendix). As SCR is based on a partitioning strategy, the method is
sensitive to initialisations, and therefore needs repeated runs. We found
that 25–50 initialisations were enough to secure stable solutions. Be-
cause an iterative algorithm is conducted at each step, the method is
slower than the two other methods discussed. The speed is not an issue
for PM data sets of normal size but was problematic for the simulation
studies.

Although the δ needs to be optimised for SCR, results from both
case studies indicate that clusters may be stable across a range of δ’s.
This indicates that the method may not be that sensitive to the para

12



UN
CO

RR
EC

TE
D

PR
OO

F

I. Berget et al. Food Quality and Preference xxx (2018) xxx-xxx

meters. The range of δ which provided solutions were 0.4–0.85 for the
yoghurt data, and 0.6–0.9 for the wine data. A different choice for n,
will give other results. Note that selecting the parameters also give in-
sight into the number of clusters that can be identified in the data.

Both MFA-HAC and Proclustrees utilise a hierarchical strategy,
which cannot handle noise configurations in a good manner. In our
opinion, a situation without any noise configurations cannot be ex-
pected for projective mapping studies, but the amount of noise configu-
rations in real data is probably related to the complexity of the products
as well as how different they are. In experiments where there are small
differences, it is reasonable to expect more variation in the data. We
therefore think the sequential partitioning applied in SCR is better than
hierarchical approaches. The sequential approach can, however, be ap-
plied using a PCA based approach as well, as discussed in (Dahl & Næs,
2009).

5.4. Implications

Both case studies as well as previous studies (Vidal et al., 2016),
have shown that there can be considerable individual variation in pro-
jective mapping data. Studying the perception from different groups of
consumers can be helpful for obtaining a better understanding of con-
sumer behaviour. When looking at consensus solutions only, important
information could be missing from groups of consumers that perceive
the products differently (e.g. based on sensitivity differences, differences
in exposure determined by familiarity, etc.) or that simply give differ-
ent weights to different sensory attributes (e.g. some consumers may be
more concerned about flavours, while others could give more impor-
tance to texture when assessing samples), and these differences could be
reflected in their choices or preferences.

6. Conclusions

In this work we have highlighted the use of the Procrustes distance
for segmentation of projective mapping data, either using a hierarchi-
cal strategy with the Proclustrees method, or by sequential partition-
ing with SCR. The methods have been compared to hierarchical cluster-
ing based on an MFA model on the complete data. The three clustering
methods applied differ a lot with respect to the criterion used for seg-
mentation (similarity measure), the clustering strategy (hierarchical or
sequential) and how the data is applied (raw data or results from global
model).

For simulations with one dominating class, all methods could iden-
tify and estimate the consensus of this class. SCR could also estimate the
consensus of the minor class with 20% noise. When underlying classes
were of similar size, MFA-HAC was outperformed by other methods,
and performance deteriorated with increasing number of noise configu-
rations

In both case studies the dendrogram produced with MFA indicated
distinct groups, whereas the dendrogram produced with Proclustrees
did not. Further research is needed to see if the MFA based approach
exaggerate the group tendency, or if Proclustrees is less suitable for
finding groups for real data. SCR provided interesting clusters for both
case studies, and the process of optimising the parameters give addi-
tional insight to the data. The suggested procedure for setting para-
meters worked well, although more research is needed to make this
methodology more user friendly. Differences between the methods in-
vestigated, point out that external validation of identified segments is
important.

A final observation is that although the partitions differed consid-
erably for both real data sets, all methods provided one cluster whose
consensus configuration was similar to the global consensus according
to the SMI test. Hence, all methods can be applied to identify the con-
sumers fitting well with the global consensus.
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