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Abstract
This paper reviews the basic ideas underlying two new multi-block techniques, the SO-PLS and the PO-PLS regression methods. A discussion is given about how the two methods are related to each other and to standard regression and analysis of variance (ANOVA). In particular the relation between SO-PLS and Type I ANOVA is underlined. It is shown how the sums of squares can be split according to blocks introduced and also how two-way ANOVA applied to cross-validated residuals, can be utilised for testing significance of the blocks. Different ways of interpreting the results for both methods are considered and illustrated by examples. Relations to other proposed methods and ideas are discussed.   
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1. Introduction
Exploring relationships between several large data sets is important in many areas of modern science. Some typical examples can found be in process modelling (Jørgensen et al. 2004; 2007), in consumer science (Næs et al. 2010) and when relating data in the so-called 
–omics area (Smilde et al. 2005b; Hassani et al. 2010). In some cases one is interested in understanding the relation between the data sets without any particular ordering of them while in other cases one is interested in studying blocks of data with a predictive direction, here called multi-block regression (MBR). Note that the latter is closely related to the area of so-called data fusion (Odman et al. 2010; Haware et al. 2011). 
Using regular least squares (LS) regression is often impossible in MBR since the independent variables are frequently highly collinear. In addition, one is also typically interested in exploring relations among the variables within each of the blocks, which is not possible using the LS principle. The multi-block partial least squares (MB-PLS) regression method (Westerhuis et al. 1998) is an example of an MBR method which both solves the collinearity problem and provides additional plotting tools for better understanding of the different blocks and their contributions to the full model. In this paper we will focus on two alternative MBR methodologies which have some additional properties that are highly relevant in practical applications. The two methods are the SO-PLS (sequential and orthogonalised partial least squares) regression method and the PO-PLS (parallel and orthogonalised partial least squares) regression method. We refer to Jørgensen et al. (2007) and Næs et al. (2011b) for a description of the former and Måge et al. (2008, 2012) for a description of the latter.

One of the main advantages of these methods as compared to MB-PLS regression is that they are invariant to the relative weighting of the blocks, which is an important feature if the data blocks have very different measurement units. Another advantage is that they handle situations with different underlying dimensionality (rank) of the blocks, which for instance means that they are suitable also for situations where one of the blocks is a design matrix while the other ones are highly multivariate and collinear. A third advantage is that they can be used for explicitly identifying spaces of additional and common variability of the input blocks. 
The present paper will give an overview of the SO-PLS and PO-PLS methods with focus on the underlying ideas and the relationships between them. New features of the methods will also be presented and discussed. One of the main points here is to explore the relationships between SO-PLS and PO-PLS on one side and classical regression analysis and analysis of variance (ANOVA) on the other. An important aspect of this is to show how interactions between the blocks can be defined and incorporated in a similar way as done traditionally in polynomial regression and ANOVA. A third important aspect here is to discuss some new ways in which the results can be interpreted.  The methodology presented will be illustrated by an example from near infrared (NIR) and Raman spectroscopy calibrations of chemical constituents in food samples. 
2. Methodology
In the present paper we will concentrate on finding relations between one output data block Y (dimension N by K) and two or several input data blocks, 
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, having the same number of rows (N). We will here start with a presentation of the basic methodology using only two input blocks, 
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, but later on discuss how this can be generalised to several blocks. Special focus will be on situations where the number of variables is large and there is a need for other methods than standard LS regression. This will, however, fit in as a special case since PLS regression with the maximum number of components is identical to LS if it exists. For an overview of PLS regression and some of its useful numerical and statistical properties for prediction and interpretation we refer to Martens and Næs (1989). In all cases, the matrices are centred prior to analysis, which is common practice when using partial least squares (PLS) regression.
In the following we will describe the two mentioned methods separately. The first method considered, SO-PLS, is developed for modelling and measuring and analysing the additional or incremental contributions of new data blocks while the PO-PLS method is developed for splitting the information in the blocks into so-called common and unique components or subspaces. 

2.1 The SO-PLS method
The model for the original SO-PLS method (Jørgensen et al. 2004; 2007) is the standard linear model, i.e.
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with Y having either one or several columns. 
The first step of the SO-PLS method is to fit the matrix Y to
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 by PLS regression. The
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 and the original Y matrix is fitted to the orthogonalised 
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 , again using PLS regression. Note that the deflated Y can also be used in the regression without changing the results. The PLS scores 
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 are then finally used as independent variables in a LS regression with Y representing the dependent variables. As can be seen, the SO-PLS method is simply a sequential use of PLS regression in combination with orthogonalisation with focus on the additional contribution of a new block. The number of components to incorporate in each of the two PLS regression models is determined by standard empirical validation methods as will be discussed below.  
Note that since 
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 is also centred, which means that PLS can be used in the second step without a new centring.
After fitting, the predictive model can be written as 
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where the 
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are the weight matrices needed to compute the PLS scores (Martens and Næs 1989) and the 
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’s are the regression coefficients for the scores. The PLS loadings for the two models can be obtained by projecting 
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. The B’s are the regression coefficients for the two matrices in the units defined by the orthogonalisation process. For a transformation back to original units we refer to Section 3.1.
Note that the orthogonalisation determines an order of the blocks in the regression analysis. Since, however, each step is designed to describe as much as possible of the variation that is not already modelled, the differences between the orders from a prediction point of view will generally be moderate. This has not yet been proven mathematically, but is confirmed empirically. In some cases, for instance when a design matrix is involved (Jørgensen et al. 2004), the order is quite obvious. When in doubt or when no order is preferred to another, one can try both and use this as an additional interpretation tool. Note that if the blocks are already orthogonal (as in some designed experiments), orthogonalisation does not make a change and SO-PLS with the maximum number of components will give the same regression coefficients as standard LS regression based on the concatenated input matrix.   
Since the estimation is based on fitting each block separately, the SO-PLS method is non-iterative, it is invariant to the relative scale of the blocks and it can explicitly handle different dimensionality (rank) of the blocks. This latter aspect means that the method is particularly suitable for combining for instance design variables and highly multi-collinear spectral data as discussed in e.g. Jørgensen et al. (2007). 

Note that the SO-PLS method can be used for situations both with and without an experimental relation between the blocks. An example of the former is when 
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, but also possibly by other phenomena. Orthogonalisation can in such cases be considered a way of “filtering out” the part of 
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. An example of a situation with no experimental relation between the input blocks is when
[image: image35.wmf]1

X

represents the design of an experiment in a pilot plant, and 
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 represents measurements of the raw material properties.
2.2. The PO-PLS method
As opposed to SO-PLS regression which focuses on the additional contribution of a block, the main aim of PO-PLS is to estimate common (i.e. overlapping) and unique subspaces across multiple data blocks  without imposing any order (Måge et al. 2008; 2012). In order to achieve this, a combination of PLS regression, orthogonalisation and Generalized Canonical Correlation Analysis (GCA; Carroll 1968) is used.  
The model is the same as above, but now the focus is on splitting the contribution of (
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 that are orthogonal to the common space. As for SO-PLS this will be achieved by estimating component scores representing the three subspaces and using these score matrices as independent blocks in a regression model with Y representing the dependent variables. 
In more detail, the PO-PLS is defined as follows

1. In order to reduce dimensionality and to filter out as much as possible of the noise in the X-data before the use of GCA, the first step of PO-PLS is to do separate PLS regressions for each of the input blocks
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 and use only the relevant scores (defined by cross-validation, see e.g. Martens and Næs, 1989) for the rest of the estimation. Alternatively, one could use a regularised GCA approach in point 2. below (Tenenhaus and Tenenhaus 2011; Dahl and Næs 2006), but this is not pursued here.
2. The GCA is then used to explore the correlation structure between the reduced subspaces for the two blocks. Subspace directions with a sufficiently high canonical correlation are defined as common, and denoted by TC. More precisely, the TC is defined by taking the averages of the linear combinations (GCA scores) of the two blocks 
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 that have a correlation close to 1. If the correlation is exactly equal to 1, the two contributions are identical to each other. In practice, however, there will always be some noise left after the PLS and a lower value than 1 may be accepted for the purpose (see below).

3. Next, the PLS scores of 
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obtained in step 1 are orthogonalised with respect to the common components TC, and the information left is regarded as unique for each block. 
4. The orthogonalised PLS scores from 3. are finally restructured into a set of unique scores, 
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 , by applying new PLS regressions with Y as response and the orthogonalised scores (treated independently) as predictors. 
The final prediction equation can then be written as
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The 
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’s are as above regression coefficients for the scores. 

Contrary to regular PCA and PLS regression, the scores in PO-PLS are scaled to unit variance, and not the loadings. The reason for this is that the common scores may represent several predictor blocks, but explain a different amount of variance in each of them. The variance is therefore most naturally retained in the individual block loadings instead of the scores. Note that this way of organising the data is also necessary for making the average score process in step 2. meaningful. The loadings for block i can be calculated using the simple formulae PCi=XTiTC (common) and PUi=XTi
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(unique). Below we will discuss how to determine the dimensionality of the common space and also the unique subspaces.  

Note that since GCA is used for obtaining the common space and PLS regression is run for each of the two orthogonalised blocks separately, also the PO-PLS is invariant to the relative scaling of the blocks. As can be seen, it also explicitly handles situations with different dimensionality or rank of the blocks. Note that the two orthogonalised 
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 blocks are not orthogonal to each other and therefore a full LS regression is needed to obtain equation (3) 
For two blocks of variables, one can say that there is an exact or near collinearity between the blocks if there exist matrices 
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. As can be seen, this is closely related to the common space concept for PO-PLS. The common space definition above is thus an operationalization of the concept of collinearity between blocks.

2.3 Comparing PO-PLS with SO-PLS

The space spanned by the common space from PO-PLS and the unique part of 
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 represents a low-dimensional decomposition of 
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itself. Note that this is generally not the same as the 
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decomposition obtained by SO-PLS since the two are obtained in different ways.  Since 
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is obtained as orthogonal to the PLS components of 
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 space in PO-PLS is obtained as orthogonal to the common space only (and not orthogonal to the unique 
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 space), these two spaces are also generally different from each other. This means that all subspaces extracted by the two methods are different from each other although there may be similarities for certain types of data. Note that the same consideration can be made for the opposite order of the blocks. 

The decision about which method to choose will thus in practice depend on what aspects of the data set one is primarily interested in. If the focus is on understanding common variability, which is typical in spectroscopy when more than one instrument is available, the natural choice is the PO-PLS method. When focus is on additional information, the natural choice is SO-PLS. The latter aspect is highly relevant when one is interested in for instance what can be gained by introducing an additional measurement principle.  It can also be highly relevant in industrial process modelling when focus is on investigating for instance how much raw material variation adds to the process settings in describing the end product quality. But of course, as always, one should also look at the prediction ability of the two methods when deciding which one to use. 
3. Properties of the SO-PLS and PO-PLS methods

3.1. Back-fitting to original units
Since 
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in model (2) is not the same as the original 
[image: image68.wmf]2

X

 matrix, it may sometimes be more natural to back-transform the model to original units before interpretation. For SO-PLS with two blocks, the process goes as follows: 
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Note that the
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 in equation (2). For PO-PLS, back-fitting to original units is only possible if the correlation coefficients for common components are equal to one. If they are slightly lower, which will be the case in most applications, the common space is not exactly a subspace of either 
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3.2. Validation

As for regular regression, validation serves two purposes; determining the number of components to use for prediction and assessing the quality of the predictor obtained, usually measured by the root mean square error of prediction (RMSEP). In this paper we will only consider cross-validation, but other options such as prediction testing or bootstrapping can also be used. It is important to note that orthogonalisation can be seen as a linear prediction process, which holds equally well for regression fitting as for cross-validation.

For the SO-PLS, one has essentially two options for selecting the optimal number of components, as described in Næs et al. (2011b): the global and the incremental estimation of components. The global approach is based on simultaneously determining the number of components in
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 based on the prediction ability of the joint predictor. One typically sets an upper limit for the number of components in each block and then searches through all possible combinations (with a restriction on the correlations between the GCA components for the blocks). In some cases one may see that different choices of components will give similar prediction results. This indicates that there is redundancy between the blocks, and one has a choice of where to put the overlapping information. 
The incremental option is based on first determining the number of components in 
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[image: image80.wmf]1

X

fixed. The prediction ability of the final model can then be determined by cross-validation or prediction testing the normal way using the number of components already selected. The incremental approach fits better to the philosophy of additional fitting of data blocks in SO-PLS, but the global approach will generally give better cross-validation results.   
For PO-PLS, one usually uses an incremental approach. To determine the number of common components in PO-PLS, three different aspects should be considered; the canonical correlation coefficient itself, the amount of explained variance of each X-block, and the amount of explained variance of Y. A valid common component should have a correlation coefficient close to one, and at the same time explain significant amounts of variance in the X and Y data blocks. The actual limit for the correlation coefficients depends on the noise level in the data.  In our experience, the correlation should usually be above 0.90 or 0.95 at least for the type of spectroscopic data considered here. 
Note that the process of finding the optimal number of components searches through many possibilities. If the model is to be used for prediction, it is therefore a good practice to test the prediction ability of the method using an independent data set.
3.3. Interpretations
For multi-block regression both prediction ability and interpretation of the contributions of the different blocks are important. Concerning interpretation, one is interested both in interpreting the variability within each block and how this variability relates to Y and the other blocks. This information can for SO-PLS and PO-PLS be obtained in various ways, as discussed in Jørgensen et al. (2007), Måge et al. (2008; 2012) and in Næs et al. (2011b). 

One method that was proposed in Jørgensen et al. (2008) is to interpret the individual PLS models directly. For SO-PLS, this is typically done by projecting the block matrices, here 
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, onto the corresponding PLS components as also described above. The scores and loadings can then be interpreted in scatter plots the usual way (Martens and Næs, 1989). The PO-PLS models can be interpreted in the same manner, obtaining loadings by projecting both X1 and X2 onto the common and unique scores. The common components will thus have loadings from both blocks, which can be used to interpret the features in the two blocks that are related to the common space. 
An alternative method for interpreting SO-PLS solutions was suggested in Næs et al. (2011b). This is based on the so-called principal components of prediction method (PCP, Langsrud and Næs, 2003) after back-fitting to original units of the input blocks (see above). The PCP method was originally developed as an alternative to standard interpretation of PLS models and is based on post-interpretation of an already fitted PLS model. The first step is to use PCA on the predicted Y-values, 
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, which means that the method is only useful for multivariate Y. The scores of this PCA are by definition linear combinations of 
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 blocks themselves. The coefficients are essentially regression coefficients of the PCA scores of 
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) (with a perfect fit, by definition). As a result, the PCP method provides scores and loadings from the PCA of 
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and X-loadings obtained by regression.  
A third possibility for interpretation of SO-PLS, which is inspired by the ASCA method (Jansen et al. 2005; Smilde et al. 2005a), is to calculate both the contributions 
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 and then use a PCA for each of them.  This is identical to the original ASCA if the two input blocks are orthogonal to each other. A variant of this that will be illustrated here is to project the 
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adds to the prediction ability. A similar approach can be used for PO-PLS. 
3.4. Type I and Type III sums of squares
The general idea behind the SO-PLS has much in common with the idea underlying the calculation of Type I SS’s in ANOVA and regression, i.e. to first fit a variable and sequentially evaluate the additional contributions of the next variable introduced to the model. 
If we denote the total sums of squares by 
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and
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the following relation holds by orthogonality 
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As usual the
[image: image108.wmf]E

SS

is the residual sums of squares. In equations (5) and (6) the regression coefficients B1* and B2* are the regression coefficients defined in equation (2). As can be seen this is identical to the formula that is used for standard Type I ANOVA. Since PLS regression with the maximum number of components is identical to LS, the SO-PLS method is therefore a direct generalisation of standard Type I LS fitting of blocks of variables to a response matrix.
The Type III SS idea of considering the additional contribution of a variable (or a block of variables) when all others are present in the model, can also easily be accommodated within the framework presented here. For the SO-PLS this corresponds to switching the order of the blocks and to consider the effect of the latter block for both orders. For the PO-PLS, only the type III SS can be computed due to lack of orthogonality. For the 
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 block the Type III sum of squares is thus obtained by simply comparing the SS’s based on fitting the full model and only the two terms TC and 
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3.5 Statistical testing - ANOVA
Since degrees of freedom (DF’s) is a much more complex concept for PLS regression than for LS regression, testing the importance of the different blocks in SO-PLS and PO-PLS is not an obvious task. In the following we will, however, propose to use the CV-ANOVA (cross-validated ANOVA) method based on comparing prediction abilities of two or several predictors for this purpose (Indahl and Næs 1998; Cederkvist et al. 2005). The CV-ANOVA is based on computing the squared predicted residuals (or the absolute residual values) for all objects and methods to be compared using cross-validation and then comparing their averages over objects using 2-way ANOVA. One of the “ways” in the ANOVA table thus represents the different methods tested and the other “way” corresponds to the objects to be predicted. In the Type I SO-PLS case, the different “prediction methods” to be compared correspond to the models with no input block (i.e predictions based on averages only), the model with only 
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 in it and the model with both matrices 
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 in it. For the Type III PO-PLS, the “prediction methods” to be compared are the prediction methods based on the full model and the different sub-models keeping one of the blocks out. The CV-ANOVA tests will in both cases be statistical tests of the importance of bringing in new blocks of data. In the CV-ANOVA table one can, in addition to p-values, also present the RMSEPs (or the SS’s) after each of the blocks in order to highlight the size of the additional contributions of the blocks. 
Note that the CV-ANOVA is different from regular ANOVA testing in the sense that it does not compare the SS’s with the 
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. Instead it uses the residuals from the actual model as the “errors”. This distinction is comparable to the distinction between standard forward variable selection and forward selection using Type I ANOVA methods.  In the former, the actual effects are considered using the corresponding residuals as the errors, while in regular Type I ANOVA effects are tested against the error obtained when all systematic effects are in the model.  
3.6. Extension to several blocks
The above procedures were discussed for two blocks of input data
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and 
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, but both methods can quite easily be extended to any number of blocks. For SO-PLS, one simply repeats the same procedure, using orthogonalisation and simple PLS regression for each new block. The orthogonalisation in this case is done with respect to all the blocks that have already been fitted. Again the order of the blocks fitted must be determined and the same comments as given above apply. 

For PO-PLS, however, the complexity increases when more blocks are added. If more than two blocks are present there are common components at several levels; components can be common for all blocks together, or just for a subset of blocks. This represents a combinatorial problem, but in principle there is nothing unique which cannot be handled in the same way and context as with two blocks. The problem is that more decisions have to be made about the number of components and about in which order to incorporate the matrices. For an application with three input blocks we refer to Måge et al. (2012). 
3.7. Incorporating interactions in SO-PLS regression

Næs et al. (2011a) proposed to incorporate interactions in SO-PLS by adding an extra matrix to model (1) consisting of element-wise products of linear combinations of 
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. This means that each column of 
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 where the C matrices represent linear combinations of the two input blocks. If we denote this column-wise multiplication by *, the model (1) can then be extended to 
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The last matrix 
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 is then considered an extra input block 
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 and the standard SO-PLS procedure with three input blocks can be used. This means that the interaction term is fitted by PLS after having been orthogonalised with respect to both 
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. The interactions matrix should be centred before it is used in the modelling. Note again the similarity with the Type I philosophy of incorporating main effects (i.e. 
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 and 
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) before interactions. 
A particularly interesting aspect of this way of defining block interactions is that it preserves the invariance with respect to the relative weighting of the blocks. Another important aspect is that it comprises several of the most interesting possibilities. First of all it comprises direct multiplication of the original variables and direct multiplication of subsets of the variables after some type of variable selection. Secondly, it covers multiplication of principal components of 
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 with principal components of 
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. This latter aspect is particularly important when the number of variables is very high. It may also in such cases be more natural to think of interactions as something which relates to the underlying dimensions as determined by PCA rather than between the manifest variables themselves. Another important aspect is that it is a direct generalisation of what is done in standard polynomial regression and ANOVA (or ANCOVA) methodology for incorporating interactions. In other words, the above interaction proposal can be considered a direct generalisation of standard linear model methodology to situations with large and highly collinear blocks of data. Interpretation of the interactions can be done as in Næs et al. (2011a) using line plots of the regression coefficients for the interactions or by simply plotting scores and loadings as proposed above. The significance of the interactions can be tested by the CV-ANOVA method.  
Non-linear effects are also possible to incorporate in the SO-PLS method. The simplest way of doing this is to incorporate for instance squares of the individual variables as new variables in the blocks. Note that this is essentially identical to what is done by Berglund and Wold (1996) for incorporating quadratic effects in regular PLS regression. It is also an extension of standard polynomial regression methodology. Another possibility, which is also a generalisation of polynomial regression, is to add an extra block of for instance quadratic terms, i.e. adding extra blocks 
[image: image131.wmf]2

1

X

 and 
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 based on quadratic terms. The advantage of this is that one can explicitly assess the importance of adding non-linearities using the ANOVA type of tests above. Non-linear blocks can be incorporated before or after the interactions.
4. Illustration of the methodology

4.1 The data set and problem considered
The data set originates from a spectroscopic study where the main aim was to investigate the potential of using different spectroscopy techniques to quantify the fat composition in food products like meat and fish (Afseth et al. 2005). To achieve this, an emulsion model system was created to mimic real foods. The current data set consists of 69 emulsions where the contents of whey proteins, water and fats are varied according to a mixture design. In addition, the fat composition in these samples is varied by including mixtures of 5 different vegetable and marine oils according to another mixture design. Thus, the 69 samples in the data set exhibit variation both related to the main ingredients (i.e. proteins, water, and fats) and the fatty acid composition. The samples were analysed using two different spectroscopic techniques, namely near-infrared (NIR) spectroscopy (Esteve and Charles, 2010)) and Raman spectroscopy (Da and Agrawal, 2011)).
The example highlights a generic challenge in quantitative spectroscopy not frequently discussed: what is the optimal way to present or calculate variables for predictions? The nature of the spectroscopic technique in question should ideally guide this choice. For Raman spectroscopy, a technique with high abilities to provide detailed chemical information from minor components in foods, it is natural to present the variables relative to the total amount of these minor components in the sample, like fat content in the present example. For NIR, on the other hand, predictive ability is often restricted to major components, like fat, water, protein and water contents. Thus, describing major components relative to the total content of the sample seems like a natural choice. But, when describing minor components relative to total sample contents, one runs a considerable risk of unwanted inter-correlations between the minor and major components in the sample, thus potentially reducing robustness and usefulness of the obtained calibration. 
According to these general points, fatty acid information could in this study be expressed in two different ways: 1) fatty acid in percentage of total sample weight, and 2) fatty acid in percentage of total fat content. In this study, one specific fatty acid feature, namely the contents of polyunsaturated fatty acids (PUFA), is expressed both in percentage of total sample weight (Y1 - PUFA%emul) and in percentage of total fat content (Y2 - %PUFA). The hypothesis is that the calibration results for the two spectroscopic methods would be highly dependent on which of these is used. For NIR the first alternative is expected to be the better one while for Raman the second approach is expected to be superior.

The number of variables in the NIR spectrum used was equal to 301 (1400 nm – 2000 nm) and the number of variables in the Raman spectrum used was equal to 1096 (675 cm-1- 1770 cm-1). This means that using LS regression is impossible in this case. According to experience and underlying theory, the main information in the spectra is usually to be found in the first relatively few principal components of the spectra. For both types of spectroscopy, linear PLS regression is the standard methodology used for calibration. 
4.2. Pre-treatment of data
Although both responses describe % PUFA, they are not directly comparable since the basis for calculating percentages are different (wrt. total sample weight versus wrt. fat content). The Y1 varies between 0.3% and 11.6%, while Y2 varies between 2.2% and 61.6%. The responses are therefore divided by their own standard deviation before analysis. After model fitting, the prediction results are transformed back to original units. The correlation between the two variables is equal to 0.73. The 
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 data are not standardised, which is the common practise in spectroscopy for interpretation purposes. The spectroscopic data were, however, pre-processed in standard ways; MSC (Geladi et al. 1985) was used for the NIR data and baseline correction and subsequent SNV (Barnes et al. 1989) were used for the Raman data. 
The scores from the two PLS models obtained for 
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 were investigated for outliers. No tendency of outlying samples was detected and therefore all 69 samples were used. Further interpretation of these models will not be attempted here.
4.3. Results from the SO-PLS method
The two data blocks were fitted in both orders according to the SO-PLS procedure described above. The prediction results were almost identical for the two orders. In this paper we will therefore concentrate on the results using NIR as 
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 and Raman as 
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. The prediction results are presented in Figure 1 using the so-called Måge plot (Næs et al. 2011b). In this case the RMSEP is based on the sum of the MSEP’s of the two responses after back-transformation of the responses to original units. It should be mentioned that other possibilities could have been used, either using the average before back-transformation or looking at the two responses separately. For the purpose of illustrating the methodology we confine ourselves to one solution here. 

[image: image139]
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Figure 1. Måge plot. The plot to the right represents a magnified view of the bottom area. The RMSEP is obtained as the square root of the average of the mean squares of the two responses after back-transformation to original units. The symbols given in the plot (for instance _6_5) indicate the number of components in the first and second block respectively. 
For obtaining a better view of the best possibilities, a magnification is made for the lower section of the curve. Since the prediction ability is here quite stable as a function of the total number or components, searching for the absolute minimum is a reasonable strategy. As can be seen, using 5 and 7 components in the two blocks gives the best results, but several other options give very similar results. It should, however be mentioned that some users of this type of spectroscopy may prefer to stop component selection at a lower number of components in order to get a more stable model in the long run (Næs et al., 2002), but such an approach is not pursued here.
The explained variances based on cross-validation for this optimal number of components after fitting of 
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 and after fitting of both
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 and 
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 are shown in Figure 2. This Figure shows that the NIR block explains more than 80% of the variance of Y1, but only 50% of the Y2. When the Raman block is added, however, one can see that both explained variances reach a very high level (about 98%). This shows that NIR is as expected better at predicting Y1 than Y2 and that Raman spectroscopy is needed in order to predict Y2 well. As can be seen, Raman also improves the prediction of Y1. The CV-ANOVA table based on absolute values of the prediction residuals for this analysis is given in Table 1. 


[image: image144]
Figure 2. Prediction ability of the SO-PLS method. Explained variance (based on cross-validation) for the two response values after the first and after the second block (5, 7 PLS components respectively).

It is clear from this table that both steps of adding spectral variables improve prediction ability significantly. The table also presents the RMSEPs after each block and thus indicates the size (in a similar way as Figure 2) of the incremental improvements of adding extra measurements. For the other order of the spectroscopic methods, it is clear that Raman is better than NIR spectroscopy used alone, but also in this case, using both spectroscopic methods improves the prediction ability. 
The principal components of the predicted Y-values (after back-transformation to original units) are presented in Figure 3. As can be seen, the first axis is primarily an Y2 axis with some contribution of Y1, while the second axis is totally dominated by Y1. This is to be expected by the very different units of the two Y variables. The scores plot is very similar to the design of the experiment (not shown) which also is to be expected because of the very high prediction ability. 

Table 1. CV-ANOVA table (Type I) for both response variables (based on absolute values of the cross-validated residuals) using the SO-PLS method. The RMSEP values represent the prediction ability before and after each step when adding the data blocks.   
	Source
	Y1
	Y2

	
	RMSEP
	p-value
	RMSEP
	p-value

	Mean
	2.79
	
	15.75
	

	Adding X1
	1.37
	<0.0001
	11.10
	0.001

	Adding X2
	0.69
	<0.0001
	2.23
	<0.0001
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Figure 3. PCA of predicted Y-values (based on the SO-PLS method).
The PCP loadings for the two components and for the two input blocks are presented in Figure 4. This plot can then be used for interpreting the two axes in Figure 3, i.e. for interpreting which parts of the NIR and Raman spectra that are important for predicting the two responses. The Raman loadings for the horizontal component axis (solid line) show a signature frequently encountered for polyunsaturated fatty acids. The two major positive bands (at 1263 cm-1 and at 1658 cm-1) are both related to vibrations of unsaturated carbon-carbon chains, whereas the two major negative bands (at 1304 cm-1 and at 1439 cm-1) are related to vibrations of saturated carbon-carbon chains. The corresponding NIR loadings reveal a clear band at 1706 nm, directly linked to vibrations of polyunsaturated carbon-carbon chains (or fatty acids), and a broad band related to water vibrations. Thus, the X-loadings corresponding to the first axis show a logical link towards the signature expected for polyunsaturated fatty acids, and thus Y2 (or %PUFA) (see also Afseth et al. 2005).
For the second component (vertical one in Figure 3) the X-loadings (dotted line) clearly include additional information from other main components (i.e. protein, water and total fat-contents). This should also be expected as the second component mainly explains the variation of Y1, where the content of PUFA is expressed as percentage of total sample weight. The Raman loadings of the second component resemble the signature of a protein Raman spectrum, whereas the NIR loadings reveal features first of all related to fat contents and water (Afseth et al. 2005).    
The projections of the NIR predictions onto the principal components of the predicted Y-values obtained by using both input blocks are presented in Figure 5. The samples are linked with a line in order to highlight the direction of improvement obtained when adding Raman spectroscopy. As can be seen, the additional contribution obtained when incorporating the Raman spectra corresponds mainly to a horizontal shift in the plot. This corresponds well with the fact that this axis is according to Figure 3 most strongly linked to Y2 (see also Figure 2).  The interpretation of this effect corresponds also well with the loadings in Figure 4 as described above.
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Figure 4. The loadings for the two first PCP components based on the SO-PLS solution. The solid line represents the first component and the dotted line the second. The units for the two horizontal spectroscopic axes are wavelength (nm) and Raman shift (cm-1) 
For comparison, the explained variances (from CV) of Y1 and Y2 were 90.1% and 97% when calculated by the MB-PLS, i.e. the concatenated PLS regression (with both blocks scaled to have the same sum of squares). As can be seen, the results are good, but not as good as the corresponding results obtained by the SO-PLS method. It should, however, be mentioned that the SO-PLS searches through more possibilities when selecting the number of components and a more fair comparison would be to compare the methods on an independent data set. 
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Figure 5. Projections of 
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 . The numbers represent the predictions with both input blocks. 
4.4 Results from the PO-PLS method
In order to reduce dimensionality and noise before the canonical correlation analysis, the first step of the PO-PLS modelling is to estimate separate PLS models for each predictor block. In this case this resulted in a 10-component model for 
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 (NIR), explaining 91.5% of the Y- variation (95.9% and 87.1% for the two responses, Y1 and Y2 respectively) and a 5 component model for 
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 (Raman) with an explained variance equal to 92% (87.1% and 96.5% for the two responses). The corresponding cross-validation values for the two responses are 87.1% and 75.7% for NIR and 83.1% and 95.3% for Raman. 
The next step is to define the common space based on the canonical correlation coefficients and explained variances in 
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,
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 and Y. The number of common components is here decided based on Figure 6, where all relevant parameters are plotted together. The first canonical component has correlation coefficient 0.99, and explains a major variation in Y1 and Y2 (black bars), and also a significant amount of variation of both 
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 and 
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 (grey bars). The first component is therefore definitely a valid common component. The second component also has a high correlation coefficient (0.97), but it explains no variation in 
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. This component should therefore not be regarded as common, since it is practically not present in one of the blocks. The third component has correlation coefficient 0.95, and explains significant parts of
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,
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 and Y1 . It is therefore here determined to be a common component. Components 4 and 5 have too low correlation coefficients and variances to be considered as common. The conclusion is therefore that there are two overlapping dimensions between 
[image: image161.wmf]1

X

and
[image: image162.wmf]2

X

, where the first one is very important for both Y-variables, while the last is mostly describing Y1. 
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Figure 6. Candidates for common components. Correlation coefficients (x100) are plotted as dots with a connecting line. Explained variance for the two Y-variables are given by black bars and explained variance for each X-block by grey bars. 

The 
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 blocks are then orthogonalised with respect to the two common scores, and new PLS models are fitted to represent the unique parts of each block. Cross validation indicates that there are 7 unique components in
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 and 3 unique components in
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. With these choices of the number of components (2, 7, 3), the full PO-PLS model explains 98% of the variation in Y and 95% when validated by CV (both obtained by averaging the explained variances over the two responses). As can be seen, this is substantially better than can be obtained by any of the spectroscopic methods used separately.
The ANOVA table (Type III) for the PO-PLS model is given in Table 2. Sums of squares were in all cases calculated for each of the responses separately. The CV-ANOVA was as above based on absolute values of prediction residuals. The results show that the common space is clearly the most important contribution. The unique part of
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 (NIR) contributes significantly to explaining the remaining variation in Y1, and 
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  (Raman) to explaining the remaining variation of Y2 which is to be expected from the above discussion of the properties of the two spectroscopic methods. 
Table 2. CV-ANOVA table (Type III) for the PO-PLS method. 

	
	Y1
	Y2

	
	Type III SS
	p-value
	Type III SS
	p-value

	Model
	66.87
	
	65.95
	

	Common
	56.96
	<1e-005
	51.68
	<1e-005

	Unique X1
	5.14
	<  0.01
	2.08
	<   0.5

	Unique X2
	2.20
	<   0.10
	2.24
	<  0.01

	Residual
	1.13
	
	2.05
	

	Total
	68
	
	68
	


The scores and loadings for the two common components are given in Figure 7. The score plot is coloured (shades ranging from grey and black) according to the value of Y1. As can be seen, there is clearly a diagonal pattern, i.e. the variation in Y1 is caused by both common components. When colouring the scores according to Y2, the pattern is mainly along the first common component (not shown). This means that the common space is related to both the response variables. 
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Figure 7. Scores and loadings for the common components in PO-PLS. The score plot is coloured according to Y1 (light grey – low value, black – high value). The loading plots correspond to the first component (solid) and the second component (dotted).

The common components’ loadings contain information about common features in 
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 and 
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, and should therefore be interpreted together. While the 
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 loadings are smooth with few distinct features in them, the 
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 loadings are much noisier with many sharp peaks, which could be expected due to the nature of the two spectroscopic techniques used.  The
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 and 
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 loadings reveal the same signatures as the first component of SO-PLS PCP-loadings (only with opposite signs), and there is thus a clear and logical link to the expected spectral signatures of polyunsaturated fatty acids. The first common component (solid line) is clearly related to the polyunsaturated fatty acid contents in the samples, and thus Y2. In the same way, the second common component (dotted line) seems to be more related to the main components (i.e. protein, water and total fat) of the samples, in resemblance to the SO-PLS results. The second common PO-PLS component thus reveals a natural link to Y1, where the content of PUFA is expressed as percentage of total sample weight. 
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Figure 8. Regression coefficients for the unique blocks of the PO-PLS model. The unique part of X1 is significant only for Y1, and only the Y1 coefficients are therefore shown in the left plot. Likewise, the unique part of X2 is significant only for Y2, and only Y2 coefficients are shown in the right plot.
Regression coefficients for the unique blocks are given in Figure 8. Only the regression coefficients of the significant block are shown; i.e. only the regression coefficients for 
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when predicting Y1 and the coefficients from 
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 when predicting Y2. Note that the main part of the Y-variation is already modelled by the common components, and the unique contributions only play a smaller role (see Table 2). The regression coefficients do therefore not show very clear, distinct features.  For 
[image: image182.wmf]1

X

 the main spectral features are found as expected around 1700 nm,  where bands related to polyunsaturated carbon-carbon chains are found. For 
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 the corresponding main variation is found around the C=C stretching bands around 1660 cm-1. Both contributions probably adjust for spectral shifts due to different degree of unsaturation in the samples. 
5. Relations to other multi-block methods
The methodology presented here is, in addition to being a generalisation of certain aspects of standard ANOVA, related to a number of alternative methods discussed in the literature. The closest alternative is MB-PLS or concatenated PLS (Westerhuis et al. 1998). The MB-PLS regression is, however, not invariant to scaling of the blocks and it does not approach different dimensionality and incremental contributions explicitly. It focuses, however, on common variability among the blocks, but in a different and less explicit way as proposed here. It is shown in Jørgensen et al. (2004) that the MB-PLS is sometimes less easy to interpret when one of the blocks is a design matrix. 

The SO-PLS also has a relation to the method proposed in Li et al. (2008). In that paper, the focus is on process modelling and the possibility of filtering data prior to process modelling. The filter proposed is a filter which orthogonalises the signal relative to some instrumental variables of no interest, in this way obtaining data which are more relevant for the purpose. The filter proposed is identical to the orthogonalisation step in SO-PLS.

Another important relation is to the ASCA method (Jansen et al. 2005. 2008) and to the closely related ANOVA-PCA of Harrington et al(2005). The ASCA method is developed for designed experiments with multivariate output. The ASCA estimates each of the effects matrices (for each factor, assumed to be orthogonal to each other) separately and then uses a PCA on each. When the design is a fully balanced factorial design, the SO-PLS estimation with maximum number of components in the PLS regressions is identical to ASCA. The orthogonalisation becomes unnecessary (redundant) and the factor estimates are obtained directly with LS regression. The SO-PLS can in this sense be considered a direct generalisation of ASCA to situations where the data blocks do not represent different factors in a designed experiment and when the input variables are highly collinear. Note also that the idea presented above of projecting each of the block predictions onto a PCA analysis of the predicted Y-values stems from analogies with what is done for ASCA. The ANOVA-PCA is very similar to ASCA with the exception that the residuals are added to the effects prior to PCA thus obtaining information also about the uncertainty in the plots. 
The paper by Bougeard et al. (2011) also has some similarities with the approach taken here. It is based on a generalisation of the redundancy analysis to several blocks. The problem with this approach is, however, that it does not handle highly collinear data. For instance, it cannot be used for situations with more variables than samples (as was the case in the example used here) without prior data compression of the data. This method is not invariant to the relative scaling of the blocks.
6. Conclusion

This paper has presented and discussed two different methods for handling multi-block regression analysis. The methods are both based on orthogonalisation and PLS-regression, they are both invariant to the relative weighting of the blocks and handle explicitly different underlying dimensionality of the blocks. The two methods SO-PLS and PO-PLS focus on incremental and joint/unique variability of the blocks respectively and therefore supplement each other for interpretation. Both methods handle highly collinear data and the SO-PLS can also incorporate interactions among the blocks. Validation, interpretation and relations to standard ANOVA are discussed and it was shown that in some sense the SO-PLS regression can be considered a direct generalisation of Type I ANCOVA to situations with high collinearity in some of the blocks.
The spectroscopic example has first of all served as an illustration on how to use the interpretation tools discussed above. From a spectroscopic point of view we have got, using the SO-PLS method, information about the additional information in the Raman spectra needed to predict the response values better. The PO-PLS has clearly demonstrated that the common information in NIR and Raman spectroscopy is linked to both variables in the Y-block.  Another important result is that both the spectroscopies used together give substantially better results for both responses than each of the methods used separately. All the results obtained are very natural from a spectroscopic point of view and correspond to the indicated hypotheses.   
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