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Abstract 

There is a growing market for packaged slices of dry-cured ham. The heterogeneity of the 

composition of slices between packages is an important drawback when aiming to offer 

consumers a product with a known and constant composition which fits individual consumer 

expectations. The aim of this work was to test the feasibility of NIR interactance imaging for 

on-line analysis of water, fat and salt and their spatial distribution in dry-cured ham slices. 

PLSR models for predicting water, fat and salt contents with NIR spectra were developed 

with a calibration set of samples (n = 82). The models were validated with an external 

validation set (n = 42). The predictive models were accurate enough for screening purposes. 

The errors of prediction were 1.34%, 1.36% and 0.71% for water, fat and salt, respectively. 

The spatial distribution of these components within the slice was also obtained. 
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Highlights: 

Composition of dry-cured ham is predicted with NIR interactance hyperspectral imaging. 

Average spectra of packed slices of ham are used to build PLS prediction models. 

Water, fat and salt predictions are accurate enough for on-line screening purposes. 

Informative images of water, fat and salt distribution in ham slices are obtained. 
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1. Introduction 

Dry-cured ham is a traditional meat product widely consumed in the Mediterranean area and 

has traditionally been commercialized as whole pieces. However, in recent years there has 

been an increase in the commercialization of vacuum-packed dry-cured ham slices. This 

product is characterized by having a highly heterogeneous composition which is caused by 

many factors. Fat content in ham is affected by gender, genetic origin and feeding regime 

(Blasco et al., 1994; Gou, Guerrero, & Arnau, 1995; Lebret, 2008). Salt content depends on 

the salt uptake and its distribution within the ham. Salt uptake has been proved to depend on 

some raw ham characteristics such as the size and shape of raw hams, meat pH and fat content 

(Costa-Corredor, Muñoz, Arnau, & Gou, 2010; Guerrero, Gou, Alonso, & Arnau, 1996) as 

well as on salting conditions and pre-salting treatments (Santos-Garcés, Muñoz, Gou, Sala, & 

Fulladosa, 2012; Garcia-Gil et al., 2011). Water content in dry-cured ham is controlled 

through the weight loss of the hams during drying. However, weight loss of the entire ham is 

related to the average water content and this relationship varies with the presence of other 

variable components (fat and salt). 

Major efforts have been made to produce dry-cured hams with homogeneous composition by 

sorting the raw hams into homogeneous groups and then optimising the drying processes for 

each group. Nevertheless, there is still large within group variation. Another important source 

of variation in packed slices is that the slices can consist of different muscles, which differ in 

their water, fat and salt contents (Arnau, Guerrero, Casademont, & Gou, 1995; Boadas, Gou, 

Valero, & Arnau, 2001). A better control of salting and drying processes could reduce the 

heterogeneity in salt and water contents, but it would have no effect on the fat distribution. 

There is a variation in consumer preferences of ham in terms of saltiness, intramuscular fat 

and dryness (Resano, Sanjuán, Cilla, Roncalés, & Albisu, 2010; Hersleth, Lengard, Verbeke, 

Guerrero & Næs, 2011). The inclusion of this compositional information on the packages of 

sliced dry-cured ham would give consumers the possibility to choose the product according to 

their preferences. To obtain this information is therefore an important challenge for the 

industry. To achieve this objective, rapid and non-destructive on-line measurements of 

composition are needed. 

Near-infrared (NIR) spectroscopy is a fast, non-destructive analytical technique which allows 

simultaneous assessment of numerous meat quality properties (Prieto, Roehe, Lavín, Batten, 

& Andrés, 2009). The NIR spectrum is characterized by overtones and combinations of the 



fundamental molecular vibrations of molecules containing C-H, N-H and O-H groups (water, 

fat, protein, etc.). Salt does not absorb radiation in the NIR region, but it affects the molecular 

vibrations of the O-H groups and can therefore be estimated from the spectra (Ellekjaer, 

Hildrum, Naes, & Isaksson, 1993). Huang, Yu, Xu, and Ying (2008) reviewed the use of NIR 

spectroscopy for the on-line analysis of foods and beverages. Up to now, NIR technology has 

been dominated by reflectance instruments measuring one or more locations on the surface of 

the sample. On-line applications for meat products have traditionally been restricted to ground 

meat (Hildrum, Nilsen, Westard, & Wahlgren, 2004; Shackelford, Wheeler, & Koohmaraie, 

2004). More recently NIR has also been applied to intact meat products. It has been used for 

estimating water and salt content at the surface of fermented sausages during the drying 

process (Collell, Gou, Arnau, Muñoz, & Comaposada, 2012), water and fat content of sliced 

sausages (Gaitán-Jurado, Ortiz-Somovilla, España-España, Pérez-Aparicio, & De Pedro-Sanz, 

2008), and water and salt content at the surface of dry-cured ham during the resting and 

drying processes (Collell, Gou, Arnau, & Comaposada, 2011).  

When measuring NIR in refleactance, the energy can penetrate several millimetres into the 

sample, but the measured signal will mainly represent the surface. Therefore, the usefulness 

of NIR reflectance instruments to estimate the average composition of a product depends on 

the homogeneity of the sample, or on how representative the sample surface is compared to 

the rest of the sample. NIR interactance instruments measure the light that is transmitted into 

the sample and then backscattered to the surface. Depending on the instrument set-up and on 

the sample, the penetration depth can be 10-15 mm, obtaining more representative 

measurements of the sample. Segtnan, Høy, Lundby, Narum, & Wold (2009) demonstrated 

that non-contact near infrared interactance hyperspectral imaging could be used for in-line fat 

distribution analysis in salmon fillets, which, as in dry-cured ham slices, have a heterogeneous 

distribution of fat both across the surface and in depth. Wold et al. (2006) used the same 

technology for on-line analysis of water content in salted and dried cod fish, which has a 

heterogeneous distribution of water. The method has also been reported to work well for on-

line fat determination in batches of beef and pork trimmings (Wold, O'Farrell, Høy, & 

Tschudi, 2011; O’Farrel, Wold, Høy, Tschudi, & Schulerud, 2010). 

The aim of this study was to test the feasibility of NIR interactance hyperspectral imaging for 

on-line analysis of water, fat and salt and their spatial distribution in dry-cured ham slices. 

 



2. Materials and methods 

2.1 Samples 

Thirty seven dry-cured hams were purchased from six dry-cured ham producers that use raw 

hams with different characteristics as well as different salting/drying processes, to assure a 

wide range of fat, salt and water contents. The dry-cured hams were boned, pressed to fit into 

a parallelepiped shape (approximately 15 × 20 × 30 cm3) and stored vacuum packed for three 

weeks. Thereafter, they were unpacked and a 2.5 cm thick slice perpendicular to the distal 

direction was sampled from all the hams. An additional slice was obtained from 13 hams out 

of the 37, and different regions of interest (ROIs) consisting of only one muscle 

(Semimembranosus, Biceps femoris or Semitendinosus muscles) were sampled. These ROIs 

were expected to be more homogeneous and to cover a wider range of composition in 

comparison to the whole slices. All samples were vacuum packed in bags (50 µm 

polyamide/100 µm polyethylene multilayer; water vapour permeability: 1.5 g / m2 / 24 h; 

Sacoliva, S.L., Castellar del Vallès, Spain). 

 

2.2 NIR analysis 

Vacuum packed samples were scanned using a commercial on-line hyperspectral NIR 

imaging scanner, QMonitor (TOMRA Sorting Solutions, Asker, Norway), which combines 

non-contact NIR interactance measurements and spectral imaging (Wold et al., 2006). This 

scanner is made for industrial measurements over conveyor belts in the food industry and can 

handle belt speeds up to typically 1 m/s. The scanner was placed above a conveyor belt and 

the illuminating field was focused on the belt along a line perpendicular to the direction of 

movement (Figure 1). The light source consisted of 12 Reflecto halogen lamps of 50 W (BLV 

Licht- und Vakuumtechnik GmbH, Steinhöring, Germany). The light was transmitted into the 

sample and then back-scattered to the surface and then captured by the hyperspectral camera. 

The penetration depth of this system ranges from 15 mm to 20 mm, previously determined in 

dried salted cod (Wold et al., 2006). In the relatively dark and pigmented ham meat, the 

penetration is most likely closer to 15 mm than 20 mm. The field of spectral collection was 

parallel to the illuminating field about 2 cm further down. The backscattered light was 

focused on the CCD detector using a cylindrical lens. To minimise the collection of light 

reflected directly from the sample surface, a metal plate shield blocked the light between the 



field of illumination and the field of detection. In the case of vacuum packed ham, it means 

that the signal contribution from the polyethylene film was minimised. 

The scanner collected spectral images of 15 wavelengths/channels between 760 nm and 1040 

nm with a spectral resolution of 20 nm. In this study, 12 wavelengths (from 820 to 1040 nm) 

were used. The output is an image of the sample of approximately 15 pixels in the direction 

perpendicular to belt movement × 400 pixels in the direction of belt movement. Each pixel 

consisted of a 12-wavelength spectrum. The system is calibrated by using a barium sulphate 

trough with a curved base. It is held under the separating wall, allowing light to pass from the 

field of illumination to the field of view. 

The spatial resolution will vary with the speed of the conveyor belt. In this study the belt 

speed was about 0.4 m/s, resulting in a pixel size of 10 mm perpendicular to the belt 

movement direction and 0.5 mm in the belt movement direction. The concept of image 

resolution in this context is, however, slightly misleading, since the light collected in one 

defined measurement spot (pixel) has travelled from a much larger volume of the sample. 

The individual intensity spectra (int) were subjected to log-transformation to obtain the 

absorption spectra (abs=log (1/int)). The absorption spectra were then normalised by standard 

normal variate (SNV) transformation to minimise spectral variations due to light scattering 

and height variations in the slices (Barnes, Dhanoa, & Lister, 1989). 

The scanning was performed in an experimental pilot plant under conditions similar to 

industrial. The samples were run at random to suppress the influence of systematic, non-

relevant spectral variation. The two faces of each slice and ROIs were scanned.  The average 

spectrum from each face of each slice and ROI was calculated.  

 

2.3 Reference analysis 

After scanning, samples were minced and subjected to chemical analysis in triplicate. Water 

content was analysed by drying at 103 ± 2 ºC until reaching a constant weight (AOAC, 1990); 

the average standard deviation of triplicates was 0.21%. The total fat content was performed 

according to the AOAC (2006) method, using the Foss Soxcap 2047 system (hydrolysis step) 

in combination with soxtec extraction 2055 system (Foss Analytical, Denmark); the average 

standard deviation of triplicates was 0.79%. Chloride content was analysed according to ISO 

1841-2 (1996) using a potentiometric titrator 785 DMP Titrino (Metrohm, Herisau, 



Switzerland) and results were expressed as percentage of NaCl; the average standard 

deviation of triplicates was 0.03%.  

 

2.4 Calibration and validation 

The 37 hams were split into two sets, calibration (24 hams) and validation (13 hams). To 

ensure similar variation in composition in the calibration and validation sets, a stratified 

sampling method was performed. Three levels for salt and two levels for fat were considered 

to classify hams according to the combination of these levels. For those hams where different 

ROIS were used, the average composition of the ROIS was calculated. The water content was 

not considered because it was expected more variation for water between ROIS than between 

hams. Then hams were randomly sampled within each class, 2/3 of samples for the calibration 

set and 1/3 for the validation set. The calibration data set contained 82 average spectra (the 

spectra of two faces from 24 slices and 17 ROIs), whereas the validation data set contained 42 

average spectra (the spectra of two faces from 13 slices and 8 ROIs).  

Partial least squares regression (PLSR) was used for to develop calibration models between 

NIR data and reference values. The Q²cum index from XLSTAT package (Addinsoft, Paris, 

France) was used to determine the number of PLS factors to use in the models. This index 

measures the global contribution of the h first PLS factors to the predictive quality of the 

model and is calculated as follows:  

 

The index involves the PRESS statistic (which requires a cross-validation), and the Sum of 

Squares of Errors (SSE) for a model with one less factor. The most stable model with low 

prediction error gives the maximum Q²cum. 

Multivariate correlation coefficient (R2), the root mean square error of the model fitting 

(RMSE) and the residual predictive deviation (RPD) statistic were used to evaluate the 

models. RPD is the ratio between the standard deviation of the reference values and the error 

of the model. PLSR analyses were performed with XLSTAT. 

The developed PLSR models for each component (water, fat and salt) were then applied to 

spectra of the validation data set and the root mean square error of prediction (RMSEP) and 

the RPD were calculated.  



The models were also used to predict the composition in each pixel of the multi-spectral 

images to visualise the distribution of these components within the slice. 

 

3. Results and discussion 

3.1 Reference measurements 

Table 1 shows the minimum, maximum, average and standard deviation of water, fat and salt 

contents in the calibration and validation data sets. The two sets had quite similar 

characteristics, as was intended in the splitting process of the data set. There was a wide range 

in concentrations of salt, water and fat contents which gave a good basis for modelling.  

 

3.2 Spectral features of dry-cured ham samples 

Figure 2 shows the average NIR absorbance spectra from the calibration samples. The spectra 

were rather smooth across the spectral region. The fat and water bands should, theoretically, 

appear around 930 nm and 970 nm respectively (Osborne & Fearn, 1986). The absorbance 

peak at around 970 nm is assigned to the O-H stretch second overtone in water, while the 

absorbance peak at 930 nm, which is too small to discern in the figure, corresponds to the 

third overtone C-H stretch in the methylene group of fat. Some details in the spectra are easier 

to see in the spectra after correction by the standard normal variate (SNV) pre-processing 

method. Although there was a trend toward samples with high fat content to show high values 

in the 900-940 nm band and a trend toward samples with high water contents to show high 

values in the 960-1000 nm, the shown spectra illustrate the complexity of the data. This is 

typical for NIR spectra from this spectral region; the main spectral components are strongly 

overlapped, the salt induces spectral shifts, and light scattering and colour can induce large 

offset variations. The use of multivariate modelling is a prerequisite to extract systematic and 

quantitative information. 

 

3.3 Modelling of water, fat and salt contents in dry-cured ham slices by PLSR 

The results of calibration for water, fat and salt are summarised in Figure 3.Water content was 

estimated with 7 PLS factors, an R2 of 0.956 and RMSE of 1.03%. Fat content was estimated 

with 6 PLS factors, an R2 of 0.921 and RMSE of 1.36%. Salt content was estimated with 8 

PLS factors, an R2 of 0.912 and RMSE of 0.54%. The estimated values with PLSR models 



were unbiased in the whole range of reference values for the three components (water, fat and 

salt). The magnitude of the RMSE values obtained in this study will not permit the exact 

estimation of the composition of the product; however, it is high enough to classify the 

products into defined quality categories. 

Figure 4 shows the regression coefficients of the PLSR models. It is often difficult to interpret 

regression coefficients for models consisting of as many as 6-8 PLS factors. Generally, 

wavelengths with high positive values are positively correlated with the dependent variable 

(water, fat or salt contents), negative values are negatively correlated, and values close to zero 

do not contribute much to explain the chemical variation. For fat there were high positive 

coefficients in the 900-940 nm range, which corresponds well with the absorption peak of C-

H stretch. For water, a positive coefficient peak in the 960 – 1000 nm region was expected. 

However, there was a negative value at 980 nm. This negative value was probably due to the 

large variation in salt that induces a shift in the water peak. This shift has to be compensated 

for in the calibration and typically results in this kind of effect on the regression coefficient. 

These effects make it difficult to interpret the regression coefficients for water since the peaks 

are not fixed according to wavelength. It can be noted that the regression coefficients for salt 

was quite similar to those of water in the water peak region, but with the opposite sign.  

 

3.4 Validation of PLSR models 

The quality of the calibration models was evaluated by RMSEP and the RPD in the validation 

data set (Figure 5). The RPD values were 3.7, 3.6 and 2.5 for water, fat and salt, respectively. 

Conzen (2006) suggested that a good model for quality control should have an RPD > 5, but 

models with lower RPD values could still be used for screening purposes. The RMSEP and 

RPD for fat were 1.36% and 3.6 respectively, which were similar to the RMSE and RPD of 

calibration, indicating that the model was quite robust. Prevolnik et al. (2011) and Gaitán-

Jurado et al. (2008) developed NIR predictive models with 7 PLS factors for fat content in 

minced ham and minced sausages respectively. They achieved lower RMSEP values: 0.43% 

in minced ham and 0.71% in minced sausages, because the samples were more homogeneous. 

However, the RMSEP of a model that used the average of 7 NIR spectra obtained at the 

surface of intact sausage slices  was 1.47% (Gaitán-Jurado et al., 2008), similar to our results. 

The RMSEP for water (1.34%) and salt (0.71%) were about 30% higher than the RMSE of 

calibration, indicating a possible overfitting in the calibration despite the fact that we used 



Q²cum index to select the number of PLS factors. The RMSEP for water in this study was 

lower than the RMSE of cross-validation (RMSECV) obtained by Collell et al. (2011) when 

measuring at the lean surface of whole hams during the processing (2.39% for hams after one 

month of processing and 3.51% for hams at the end of the process). Although they used 

higher spectra resolution and 16 PLS factors, their models had lower predictive ability than 

our NIR imaging system. This may have been in part due to the low penetration of the NIR 

device and the NIR point measurements of the surface used by Collell et al. (2011), which 

could have produced a less representative sampling of the ham. 

In the case of salt prediction, the RMSECV obtained by Collell et al. (2011) when measuring 

at the surface of hams during processing were 0.43% for hams after one month of processing 

(model with 18 PLS factors) and 1.13% for hams at the end of the process (model with 10 

PLS factors). The RMSEC of the latter model was lower than our RMSEP (0.71%) and 

similar to our error of model fitting (RMSE = 0.54%). 

Nevertheless, the RPD value for water and salt were 3.7 and 2.5 respectively, which could be 

considered high enough for screening. 

Figure 5 shows the predicted versus measured for water, fat and salt. As in the calibration, the 

predicted values were unbiased in the whole concentration range for the three components 

(water, fat and salt). There were small differences between the predicted values of the two 

surfaces from each sample. Consequently, RMSEP values hardly changed when the average 

of the spectra from the two surfaces of each sample was used for the prediction (RMSEP: 

1.30 %, 1.31 % and 0.68 % for water, fat and salt, respectively). The NIR sampling from one 

side gave a good representation of the whole sample, suggesting that the slices were quite 

homogeneous throughout the sample thickness of 2.5 cm. If a larger variation between the 

two sides of the slices is encountered, then the average of the scans from each side would 

probably give better accuracy than the average of scans from one side.  

 

3.5 Distributional images 

Figures 6(a), 6(b) and 6(c) show the estimated 2D distribution of water, fat and salt in the 

same ham slice respectively. The average estimated values, based on single pixel predictions, 

for water, fat and salt contents in the this sample (43.92%, 11.60% and 7.79% respectively) 

were similar to the measured contents (43.53 %, 12.16% and 7.93% respectively). There was 

not a homogeneous distribution. Although part of the subcutaneous fat is usually removed 



from the hams before deboning and pressing into a parallelepiped shape, part of it remained in 

the ham, as can be seen on the upper and lower left side of the fat image. Intermuscular fat 

can also be discerned in the centre of the image. 

As was expected, the muscular tissue just below the subcutaneous fat dried slowly during 

drying and showed the highest water content. A gradient of water content from the right side 

to the left side in the water image can be seen.  

In the predicted salt image, slightly higher salt content is observed in the central part of the 

ham slice, in concordance with the results showed using computed tomography by Santos-

Garcés et al. (2012). Salt diffuses from external parts to internal parts of the ham during the 

first stages of the drying process and from internal parts to external parts during the last stages 

to achieve the same NaCl/water ratio in the whole ham. However, salt diffuses more rapid 

during the first stages of the drying process than during the last stages (Costa-Corredor, 

Pakowski, Lenczewski, & Gou, 2010), which can explain the higher predicted salt content in 

the internal zones of the ham.  

The heterogeneous distribution of components within the slice confirms the importance of 

correct sampling when probing hams with NIR. Measurements in limited locations can give 

large deviations from the average values. NIR interactance imaging samples the whole 

surface, as well as in depth, and the prediction estimates are therefore less affected by the 

sample heterogeneity than the average of several NIR point measurements. Moreover, the 

image analysis can provide valuable information about the homogeneity of the sample, which 

could be used for process and quality control. For instance, the European quality label of the 

Traditional Speciality Guaranteed (TSG) Jamon Serrano defines, within the product 

specification, that the difference in water content between the internal part and the external 

part of the ham cannot be higher than 12%. Nowadays, a subsample of hams within each 

production batch is randomly selected and a 15 mm thick slice is sampled from each ham. 

This slice is divided into two parts (external and internal part) and chemical analyses are 

performed to check the TSG product specification. 

 

4. Conclusions 

NIR interactance hyperspectral imaging can be used for on-line prediction of the average 

water, fat and salt contents in packaged slices of dry-cured ham with sufficient accuracy for 



screening purposes. It can also provide information about the spatial distribution of water, fat 

and salt within the slice. 
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Figure 1. Principle drawing of on-line NIR non-contact interactance imaging system. 
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Figure 2. Average NIR interactance absorbance spectra from the calibration set of samples 

and the same spectra after correcting by the standard normal variate (SNV) pre-processing 

method. 

 



    

 

Figure 3. Relationship between the predicted and the measured water (a), fat (b) and salt (c) 

contents for the calibration data set (including the prediction of the two faces of each sample). 

The line represents the perfect 1:1 relationship between x and y. 

 



 

Figure 4. Regression coefficients of each wavelength for predictive models for water, fat and 

salt content. 



 

 

 

 

Figure 5. Relationship between the predicted and the measured water (a), fat (b) and salt (c) 

contents for the validation data set (n = 41). The line represents the perfect 1:1 relationship 

between x and y. 
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Figure 6. 2D distribution within one slice of ham for water (a), fat (b) and salt (c) contents. 

Average predicted values are based on single pixel predictions. The bars to the right of each 

image are grey scales indicating per cent concentration at pixel level. The horizontal axis on 

each image indicates scale in cm. The dotted line on the fat image indicates the area of 

subcutaneous fat layer. 

 


