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 26 

ABSTRACT 27 

 28 

The aim of this study was to develop robust chemometric models for the routine 29 

determination of dietary constituents of quinoa (Chenopodium quinoa Willd.) using Near-30 

Infrared Transmission (NIT) spectroscopy. Spectra of quinoa grains of 77 cultivars were 31 

acquired while dietary constituents were determined by reference methods. Spectra were 32 

subjected to multiplicative scatter correction (MSC) or extended multiplicative signal 33 

correction (EMSC), and were (or not) treated by Savitzky-Golay (SG) filters. Latent variables 34 

were extracted by partial least squares regression (PLSR) or canonical powered partial least 35 

squares (CPPLS) algorithms, and the accuracy and predictability of all modelling strategies 36 

were compared. Smoothing the spectra improved the accuracy of the models for fat (root 37 

mean square error of cross-validation, RMSECV: 0.319 – 0.327%), ashes (RMSECV: 0.224 – 38 

0.230%), and particularly for protein (RMSECV: 0.518 – 0.564%) and carbohydrates 39 

(RMSECV: 0.542 – 0.559%), while enhancing the prediction performance, particularly, for 40 

fat (root mean square error of prediction, RMSEP: 0.248 – 0.335%) and ashes (RMSEP: 41 

0.137 – 0.191%). Although the highest predictability was achieved for ashes (SG-filtered 42 

EMSC/PLSR: bootstrapped 90% confidence interval for RMSEP: [0.376 – 0.512]) and 43 

carbohydrates (SG-filtered MSC/CPPLS: 90% CI RMSEP: [0.651 – 0.901]), precision was 44 

acceptable for protein (SG-filtered MSC/CPPLS: 90% CI RMSEP: [0.650 – 0.852]), fat (SG-45 

filtered EMSC/CPPLS: 90% CI RMSEP: [0.478 – 0.654]) and  moisture (non-filtered 46 

EMSC/PLSR: 90% CI RMSEP: [0.658 – 0.833]).  47 

 48 

Keywords: Canonical, partial least squares, chemometrics, scatter correction, Savitzy-Golay 49 
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 50 

 51 

 52 

1. Introduction 53 

 54 

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal originating from the surroundings of 55 

the Titicaca Lake (Peru and Bolivia), which has been cultivated for centuries in the Andean 56 

countries. Quinoa is known as a pseudo-cereal because its seeds are used as cereal grains; 57 

although its nutritional quality is superior to that of the common cereals (Vega-Gálvez et al., 58 

2010; Jancurová, Minarovicová, & Dandar, 2009).  59 

 60 

Near infrared transmission (NIT) spectroscopy can presently provide rapid and accurate 61 

analysis of starch, moisture, protein, and oil contents in whole kernel cereals (Büchman, 62 

Josefsson & Cowe, 2001; Miralbés, 2004; and Pojić, Mastilović, Pestorić, & Radusin, 2008). 63 

However, when analysing intact samples by diffuse reflectance or transmittance spectroscopy, 64 

uncontrolled variations in light scattering are often a dominating artifact that complicates 65 

subsequent chemometric modelling (Panero, Panero, Panero, & Silva, 2013). This undesired 66 

scattering variation is due to uncontrolled physical variations of the samples, such as particle 67 

size and shape, sample packing, surface and orientation of the particles (Cantor, Hoag, 68 

Ellison, Khan, & Lyon, 2011). In order to minimise the multiplicative interference of scatter 69 

and particle size for the construction of robust models, NIT spectra are subjected to 70 

processing techniques for signal correction (i.e., multiplicative scatter correction and 71 

extended multiplicative signal correction) and noise removal (i.e., Savitzky-Golay 72 

derivatives). 73 

 74 
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Processed spectroscopy data matrices are then related with physicochemical data using 75 

multivariate calibration methods (Ferreira, Pallone, & Poppi, 2015). Partial least squares 76 

regression (PLSR) is currently considered as one of the most robust multivariate regression 77 

techniques as it is associated with prediction errors that are lower than those of the principal 78 

component analysis (Wold, Martens, & Wold 1983; Moghimi, Aghkhani, Sazgarnia, & 79 

Sarmad, 2010). Recently, a generalisation of PLSR has been proposed that incorporates 80 

discrete and continuous responses, additional measurements, and individual weighting of 81 

observations. The technique is known as Canonical Powered Partial Least Squares (CPPLS) 82 

because the optimal latent variables are found by combining PLS methodology and canonical 83 

correlation analysis  (Indahl, Liland, & Næs, 2009; Mevik, Wehrens, & Liland, 2015). Thus, 84 

the objective of this study was three-fold: (i) to assess the feasibility of accurately quantifying 85 

dietary constituents of quinoa (moisture, protein, fat, ashes and carbohydrates) whole grains 86 

by NIT spectroscopy; (ii) to compare the robustness and prediction capability of the PLSR 87 

and CPPLS multivariate models after scatter correction of the spectra; and (iii) to assess to 88 

what extent smoothing filters applied to scatter-corrected spectra can further improve the 89 

performance of the PLSR and CPPLS algorithms. 90 

 91 

2. Methodology 92 

 93 

2.1 Samples and proximate composition analysis 94 

 95 

The samples utilised in this study were quinoa (Chenopodium quinoa Willd.) whole grains of 96 

orange, beige, black and yellow colour, corresponding to 77 different cultivars. They were all 97 

harvested in Peru at the National Agricultural University La Molina (Lima) and the Regional 98 

Development Centre – Highland (Junin), between 2010 and 2012. Moisture, protein, fat and 99 
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ashes contents were determined in triplicate using the reference methods 925.10, 920.87 100 

(conversion factor of 6.25), 923.05 and 923.03, respectively, as described by the Association 101 

of Official Agricultural Chemists (AOAC, 2000). Total carbohydrate content was calculated 102 

by difference as: 100 - (weight in grams [protein + fat + water + ashes] in 100 g of quinoa). 103 

Proteins, fat, ashes and carbohydrate contents were then converted into dry basis (db). 104 

 105 

2.2 Near-infrared transmission (NIT) spectra acquisition 106 

 107 

NIT spectra were acquired by placing the whole grains directly in an Infratec 1241 grain 108 

analyser (Module Foss Tecator, Denmark), using 60-mm quartz cuvettes, and scanning the 109 

region 850-1048 nm (wavenumber range of 11765 – 9524 cm-1). The spectra were recorded at 110 

scanning step intervals of 2 nm to give 100 data points per sample. A total of 10 frequency 111 

scans were performed per sample, and carefully assessed for consistency. Raw spectral data 112 

(i.e., a vector of 100 data points per sample) were linked to the chemical analyses data on a 113 

spreadsheet. To correct for the non-linearity in the measure of transmittance (T), T was 114 

transformed into absorbance (A) by taking the base 10 logarithm of the reciprocal of the 115 

transmittance values (A = log 1/T).  116 

  117 

2.3 NIT spectral pre-processing  118 

 119 

To minimise the multiplicative effects of light scattering, spectra were subjected to 120 

multiplicative scatter correction (MSC) or extended multiplicative signal correction (EMSC). 121 

MSC is a transformation method used to compensate for additive and multiplicative effects in 122 

spectral data (Maleki, Mouazen, Ramon, & De Baerdemaeker, 2007). Both EMSC and MSC 123 

attemtp to separate physical light scattering effects from chemical (vibrational) light 124 
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absorbance, yet EMSC is a modification of the standard MSC which adds polynomials to the 125 

correction model in addition to the constant baseline effect and reference scaling of MSC 126 

(Martens & Stark, 1991; Panero et al., 2013). The basic EMSC with polynomials of degree 2 127 

was applied. For each of the dietary constituents analysed, PLSR and CPPLS multivariate 128 

models were then fitted to the MSC- or EMSC- pre-processed spectra; thereby producing four 129 

treatments (MSC/PLSR, EMSC/PLSR, MSC/CPPLS and EMSC/CPPLS) which were 130 

compared in terms of predictability. 131 

 132 

In addition, Savitzky-Golay (SG) derivative filters (Savitzky and Golay, 1964) were applied 133 

after correcting spectra for scattering (MSC or EMSC) to assess whether the predictive 134 

performance of the PLSR and CPPLS models could be further enhanced. SG smoothing 135 

performs a piece-wise polynomial fitting with specified polynomial degree (p), window 136 

length (w), and derivative order (m) to the spectrum. Thus, SG filters produced by all possible 137 

combinations of m={1, 2}, p={2, 3, 4} and w={3, 5, 7, 9, 11} were applied to each of the 138 

MSC and EMSC scatter-corrected spectra. 139 

 140 

2.4 Chemometric multivariate data analysis 141 

 142 

The extraction of information from quinoa grain’s pre-processed spectra to estimate moisture, 143 

protein, fat, ashes and carbohydrates contents was performed by the PLSR and CPPLS 144 

chemometric algorithms. For the CPPLS models estimating moisture content, the additional 145 

variables were protein, fat, ashes and quinoa cultivar. For the estimation of protein by CPPLS, 146 

the additional variables were moisture, fat, ashes and cultivar; whereas for the estimation of 147 

fat, the additional variables were moisture, protein and ashes. The additional variables for 148 

ashes content CPPLS models were moisture, fat and quinoa cultivar, while those for 149 
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carbohydrates content were moisture, ashes and fat. Selection of the additional variables for 150 

each dietary constituent’s CPPLS model was carried out by trial and error. 151 

 152 

As a first step, the full data set was divided into a subset for calibration (~80% data, 62 153 

samples) and the remaining ~20% (15 samples) for prediction or validation, by means of 154 

random split stratified by cultivar. PLSR and CPPLS were fitted separately to MSC and 155 

EMSC scatter-corrected spectra with and without SG filters. The performance of the different 156 

models (a model is defined as a combination of a pre-processing filter and a chemometric 157 

multivariate algorithm) was determined by cross-validation as an internal calibration method 158 

using the calibration data set. In our case, the leave-one-out (LOO) method was used. Briefly, 159 

in the LOO method, each sample is removed one at a time from the calibration set, a new 160 

calibration performed and a prediction  score calculated for the sample removed. This 161 

procedure is repeated until every sample has been left out once. The performance of the 162 

model was assessed by the root mean square error of cross-validation (RMSECV), which is 163 

deemed as the best single estimate of the prediction capability of the model (González-164 

Martín, Moncada, Fischer, & Escuredo 2014; Mevik & Wehrens, 2007). Then, the optimal 165 

number of components of a model was selected at the first RMSECV local minimum, rather 166 

than the absolute minimum (to avoid overfitting).  For such a number of components, the root 167 

mean square error of calibration (RMSEC) was computed. In addition, the coefficients of 168 

correlation between reference values and values fitted by cross-validation (RCV) and the 169 

calibration model (RC) were computed.  170 

 171 

Following completion of the calibration, models were validated using the prediction data set. 172 

Model performance was evaluated by obtaining the root mean square error of prediction 173 

(RMSEP) and the coefficient of correlation (RP) between reference values and those predicted 174 
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by the model. For each of the four treatments (i.e., MSC/PLSR, EMSC/PLSR, MSC/CPPLS 175 

and EMSC/CPPLS), the SG filters leading to the highest accuracy were identified. To assess 176 

the best model(s) for each dietary constituent, the model had to present not only a low RMSE 177 

but also a high R. The entire NIT spectra analysis was conducted using the “pls” (Mevik et 178 

al., 2015), “emsc” (Liland, 2016) and the “prospectr” (Stevens & Ramirez-López, 2013) 179 

packages implemented in the R software version 3.2.5 (R Core Team, 2016).  180 

 181 

3. Results and Discussion 182 

 183 

3.1 Proximate composition analysis of quinoa 184 

 185 

The values reported in this study for fat (5.35 – 7.78% db) and ashes (2.51 – 4.11% db; Table 186 

1) were comparable to those reported by Repo-Carrasco-Valencia, Hellström, Pihlava, & 187 

Mattila (2010) for six ecotypes of similar Peruvian quinoa (fat: 4.36-7.59% db, and ashes: 188 

2.57-3.44% db). However, they found considerably higher protein content (12.55-16.08% db) 189 

and lower carbohydrates content (67.13-77.02% db) than those found in this report (8.33 – 190 

11.38% db; and 78.48 – 82.89% db, respectively). Analysing quinoa samples from Peru, 191 

Bolivia and Brazil, Ferreira et al. (2015) encountered substantially higher fat (6.19 – 15.52% 192 

db) and ashes (3.07 – 9.15% db) contents than those of our study. The variation in ashes are 193 

influenced by the dependence of the mineral content on type of soil and fertiliser application. 194 

Moisture is the compound most variable among published studies (from 8.26-11.51% in 195 

Repo-Carrasco-Valencia et al. (2010) up to 25.66 – 33.16% in Ferreira et al. (2015)) because 196 

it depends upon drying and storage of seeds. The standard deviations suggest that sufficient 197 

variation in the dietary compounds existed among the quinoa cultivars to develop 198 

chemometric models.  199 
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 200 

3.2 Pre-processing methods for signal correction and smoothing of quinoa’s NIT spectra 201 

 202 

The first step of signal pre-treatment is crucial as redundant information should be removed 203 

from the spectra. With corrected spectra, the repeatability and reproducibility of the 204 

chemometric multivariate model can be increased (Stevens & Ramirez-Lopez, 2013). In the 205 

first instance, the transmittance spectra of the quinoa grains without any processing pointed to 206 

the occurrence of multiplicative scaling effects (Figure 1, top left), which were still present 207 

when spectra were transformed into absorbance (Figure 1, top right). Such transformation is 208 

needed to move signal processing to a domain where Beer-Lambert’s law applies and additive 209 

effects of compounds are linear. Light scattering, one of the main causes of multiplicative 210 

scale effects (i.e., scale differences) in spectral data, was corrected by both methods, MSC 211 

(Figure 1, bottom left) and EMSC (Figure 1, bottom right), although the application of EMSC 212 

yielded a better signal correction. Whereas MSC was developed to remove both scaling 213 

effects (a multiplicative factor) and baseline shift effects (an additive factor), EMSC was 214 

designed to allow the separation of multiplicative physical effects (path length, light 215 

scattering, etc.) from additive chemical effects (absorbance of analytes and interferants) and 216 

additive physical effects (temperature shifts, baseline variations, etc.) (Panero et al., 2013). 217 

Hence, additive effects, chemical and/or physical, must have been also present in the raw 218 

spectra.  219 

 220 

In general, when SG first (SG1) and second (SG2) derivative filters were applied to either the 221 

MSC- or the EMSC-corrected spectra, the peaks below and above the baseline were 222 

emphasised. It was not unexpected that EMSC+SG pre-processing (Figure 2, bottom) 223 

produced cleaner signals than MSC+SG pre-processing (Figure 2, top), as EMSC yielded a 224 
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better correction for light scattering and additive effects than MSC. However, whether the 225 

application of SG1 or SG2 pre-processing smoothing filter produces better signals should be 226 

determined by the resulting predictive capacity of the chemometric models.  227 

 228 

3.3 Comparisons between scatter correction methods and multivariate algorithms 229 

 230 

For moisture, protein and ashes contents, regardless of the chemometric algorithm used (i.e., 231 

PLSR or CPPLS), the application of EMSC to the spectra produced lower errors (i.e., 232 

RMSECV) by up to ~4.8% in the case of protein, than those produced by MSC treatments 233 

(Table 2). Comparing EMSC and MSC performance, Panero et al. (2013) similarly found 234 

lower RMSEC and RMSEP values when applying the former scatter correction method on 235 

marzipan spectra for NIR determination of moisture. Correspondingly, for moisture, protein 236 

and ashes contents, correcting the signal scatter by EMSC led to higher RCV values (range of 237 

0.572 – 0.769) than those produced by the simpler MSC (0.564 – 0.742; Table 2).  238 

Considering that the models fitted to EMSC-processed spectra consistently led to fewer 239 

optimal components (3 – 7) than those fitted to MSC-processed spectra (4 – 8), it can be 240 

stated that EMSC, with their resulting lower cross-validation errors and higher cross-241 

validation correlation coefficients, had a tendency to produce more robust models than MSC 242 

for the NIT determination of moisture, protein and ashes. Nevertheless, in the cases of fat and 243 

carbohydrates, irrespective of the algorithm used for model calibration, the behaviour was the 244 

opposite; this is, MSC-treated spectra yielded more robust chemometric models – as implied 245 

by their lower RMSECV and higher RCV – than the EMSC-treated spectra did, although with 246 

at most one more component (Table 2). For fat and carbohydrates, EMSC may have overfitted 247 

the baseline such that chemical information was discarded along with the scatter correction. 248 

 249 
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The multivariate regression methods also affected the accuracy of prediction for the models. 250 

In the analyses of all dietary components, the CPPLS algorithm led invariably to a selection 251 

of fewer optimal components (3-5) than PLSR (6-8). This was an anticipated outcome since 252 

CPPLS was developed as a compression method for the extraction of more predictive 253 

information in the first few components than ordinary PLSR (Indahl et al., 2009). For this 254 

reason, within each dietary constituent, the models with the combination CPPLS/EMSC 255 

yielded the lowest optimal number of components (3-4) while the combination PLSR/MSC 256 

yielded the highest optimal number of components (7-8). For instance, for the protein 257 

constituent, the 8 optimal latent variables in the combination PLSR/MSC was brought down 258 

to 3 in the combination CPPLS/EMSC. In all dietary constituents – except fat – there was a 259 

clear effect of the multivariate regression on the RMSEC and RMSEP values, being the 260 

CPPLS algorithm associated to higher errors (Table 2). 261 

 262 

With the exception of carbohydrates, when the quinoa grains’ spectra were MSC scatter-263 

corrected, the use of the PLSR or CPPLS algorithm produced very similar cross-validation 264 

errors (RMSECV) for the estimation of moisture (0.575; 0.579%), protein (0.614; 0.613%), 265 

fat (0.326; 0.325%) and ashes (0.231; 0.233%). However, the effect of the regression 266 

algorithm on RMSECV values became more noticeable when spectra were pre-processed by 267 

EMSC for the chemometric models determining moisture (RMSECV: 0.566; 0.578%) and 268 

carbohydrates (0.620; 0.638%). When applied to EMSC-treated spectra, the PLSR algorithm 269 

produced more accurate models – lower RMSECV in all dietary contituents – than those 270 

produced by CPPLS. Even for moisture, protein and ashes, the PLSR/EMSC treatment 271 

yielded the highest RCV and RC values among the four treatments. This may arise from the 272 

higher optimal number of components consistently picked by the PLSR algorithm (Table 2).  273 

 274 



12 
 

Earlier, Ferreira et al. (2015) proposed a series of chemometric models to estimate the 275 

proximate composition of quinoa from Fourier transform near-infrared (FTIR) spectra. In 276 

order to contrast the accuracy of our models with their FTIR models, the coefficient of 277 

variation (CV=RMSECV/mean) was calculated as a common metric for comparison since it is 278 

a dimensionless number less sensitive to difference in means. The chemometric models 279 

presented in this study were more accurate than those obtained in Ferreira et al. (2005), as 280 

indicated by the considerably lower CV of our models for moisture (5.3 – 5.5% as opposed to 281 

5.9%), protein (5.8 – 6.2% as opposed to 14.9%), fat (4.9 – 5.2% as opposed to 11.7%), 282 

carbohydrates (0.73 – 0.79% as opposed to 7.0%) and ashes (7.0 – 7.4% as opposed to 283 

15.5%). Similarly, the external validation CV (RMSEP/mean) obtained from our models for 284 

protein (5.5 – 6.4%) and fat (5.6 – 4.1%) were far lower than those reported by González-285 

Martín et al. (2013) (10.4% and 8.3%, respectively). Nonetheless, when contrasting the 286 

estimates of correlation between the reference and the spectral methods, the RCV (0.56 – 0.77) 287 

and RC (0.51 – 0.83; Table 2) found in our models were, as a whole, lower than those reported 288 

by both González-Martín et al. (2013) (RCV: 0.89 – 0.96) and Ferreira et al. (2015) (RC: 0.86 – 289 

0.91). The lower correlation coefficients encountered in this study may have been a 290 

manifestation of our effort to avoid overfitting by consistently selecting the number of latent 291 

variables that minimise RMSECV. Moreover, by definition, the coefficient of determination 292 

tends to decrease when the range of the dependent variable is lower. The ranges of protein 293 

(8.33 – 11.4% db), fat (5.35 – 7.78%), carbohydrates (78.5 – 82.9%) and ashes (2.51 – 294 

4.11%) essayed from our quinoa samples were narrow in comparison to those from the quinoa 295 

samples surveyed in Ferreira et al. (2015) (protein: 11.4 – 36%, fat: 6.19 – 15.52%, 296 

carbohydrates: 43.6 – 76.4% and ashes: 3.07 – 9.15%).  297 

 298 

3.4 Influence of SG derivative filters on robustness of chemometric models 299 
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 300 

Table 3 compiles the SG combinations (m, p, w) leading to the highest predictability within 301 

each of the four treatments (i.e., MSC/PLSR, EMSC/PLSR, MSC/CPPLS and 302 

EMSC/CPPLS). Although for protein, the same SG filter type (m=1, p=2, w=9) produced the 303 

best model’s accuracy in the four treatments, this did not necessarily hold for the other dietary 304 

constituents (Table 3). 305 

 306 

Regardless of the signal correction method and the multivariate algorithm used, SG filtering 307 

of quinoa’s spectra improved the accuracy of the chemometric models, yet to different 308 

degrees: the reduction in RMSECV and RMSEC in the models for moisture (reduction by 1.3 309 

– 2.6% and 8 – 14%, respectively), fat (1.5 – 5.3% and 0.4 – 1.1%) and ashes (2.1 – 2.2% and 310 

2.1 – 10.6%) were all slight in comparison to the considerable reduction in those statistics in 311 

the models for protein (8.0 – 11.9% and 20.5 – 28.5%) and carbohydrates (8.9 – 12.4% and 312 

24.2 – 35.0%). Similarly, SG-filtering improved the correlation statistics of calibration: as 313 

before, the increase in RCV and RC values was slight in the models for moisture (increase by 314 

2.6 – 5.2% and 0 – 6.4%, respectively), fat (1.4 – 5.0% and 0 – 0.5%) and ashes (0 – 1.8% 315 

and 1.1 – 7.1%), whereas the improvement was substantial in the models for protein (13.9 – 316 

17.3% and 15.6 – 42.2%) and carbohydrates (8.0 – 14.5% and 10.8 – 33%) (percentual 317 

differences not shown but calculated from Table 2 and 3). 318 

 319 

The improved RMSECV, RMSEC, RCV and RC statistics from the models with SG filters for 320 

protein and carbohydrates, may be associated to the fact that, for protein and carbohydrates, 321 

filtering the spectra led to a higher number of optimal components in the MSC/PLSR (from 8 322 

to 12, and 7 to 12, respectively), EMSC/PLSR (6 to 10, and 7 to 10), MSC/CPPLS (4 to 8, 323 

and 4 to 10) and EMSC/CPPLS (3 to 6, and 3 to 8) models. Due to the higher number of 324 
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components extracted from the SG spectra, the fitting capacity of the protein and 325 

carbohydrates models was improved; although the CPPLS algorithm performed better than 326 

the PLSR algorithm in the prediction of the test data – as suggested by the differences in 327 

RMSEP and RP. Filtering the spectra with SG largely enhanced the predictive capacity of the 328 

models for fat (RMSEP decreased by 1.0 – 20.4%, and RP increased by 1.8 – 24.7%) and 329 

ashes (RMSEP decreased by 0.0 – 30.8%, and RP increased by 0.0 – 32.3%), while, as 330 

mentioned before, filtering enhanced the prediction performance of the models for protein 331 

(RMSEP decreased by 15.8%, and RP increased by 19.8%),  and carbohydrates (RMSEP 332 

decreased by 24.8%, and RP increased by 30.6%) only when CPPLS was used. In the 333 

particular case of moisture, only the treatment MSC/CPPLS produced better preditions when 334 

spectra were SG-filtered (RMSEP decreased by 10.4%, and RP increased by 14.1%). 335 

 336 

3.5 Validated chemometric models for quinoa’s dietary constituents 337 

 338 

Taking the four treatments together (Table 3), the models estimating ashes and carbohydrates 339 

presented generally the highest predictive capacity, as deduced from the ranges of RCV (0.744 340 

– 0.761; and 0.750 – 0.767, respectively) and RP (0.847 – 0.925; and 0.728 – 0.807, 341 

respectively). However, the models for protein (RCV: 0.651 – 0.717; RP: 0.625 – 0.760) and 342 

fat (RCV: 0.716 – 0.732 ; RP: 0.565 – 0.804) were of slightly lower predictive performance, 343 

while the models for moisture (RCV: 0.504 – 0.611; RP: 0.441 – 0.539) were of fair 344 

predictability.  345 

 346 

Considering that a good model should bear low values of RMSECV and RMSEP, and high 347 

values of RCV and RP, the final model for each quinoa’s constituent was selected among those 348 

presented in Table 2 and 3. For the moisture response, little-to-no gain in prediction 349 
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performance was attained by SG-filtering the spectra with the many combinations tested. 350 

Thus, for this variable, the best model was achieved using a non-filtered spectra treated by 351 

MSC and extracting 8 PLSR components, which rendered a prediction CV (RMSEP/mean) of 352 

5.60% and an RP of 0.596 (other statistics for this model pointed out in bold in Table 2). For 353 

the other dietary constituents, better performance was achieved using SG-filtered spectra of 354 

window size 9 and first derivative, except for the fat variable which used second derivative. 355 

For the NIT determination of ashes, the PLSR algorithm also produced the best model when 356 

fitted to EMSC-treated spectra. The 5 optimal latent variables extracted yielded on the test 357 

data a CV of 4.38% and RP of 0.925. For the protein, fat and carbohydrates variables, the 358 

CPPLS multivariate algorithm performed better: whilst the best predictability of protein 359 

(CV=5.35% and RP=0.760) was achieved by extracting 8 components from MSC-treated 360 

spectra, the best model for carbohydrates was produced by extracting 10 components from 361 

MSC-treated spectra (CV=0.80% and RP=0.807). With a CV=3.79% and RP=0.804, fat could 362 

be estimated by a CPPLS model produced from a EMSC-treated spectra with only 3 latent 363 

variables.  364 

 365 

Finally, in order to further characterise the prediction performance of each of the final 366 

models, uncertainty about the correlation coefficient of prediction (RP) was built by 367 

bootstrapping. At each of the 1000 iterations, a new 80% calibration/20% validation data 368 

partition was randomly obtained, the chosen model was fitted to the calibration data with the 369 

pre-determined number of components, and RP was extracted from the test data. The 370 

histograms of RP built for each of the final models (Figure 3, left) show that the NIT model 371 

for estimating ashes had the lowest uncertainty (i.e., narrow spread) about RP, and therefore 372 

was the most robust chemometric model. The wider spread of the RP histogram for moisture 373 

corroborated that, among the five dietary constituents studied, the model for moisture 374 
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presented the lowest precision. The degree of fitting and predictability of the final models can 375 

be appreciated from the scatter plots between the reference values and those fitted (Figure 3, 376 

middle) and predicted (Figure 3, right) from the NIT calibration models. The best agreement 377 

between observed and predicted values was observed for ashes and carbohydrates; although, 378 

as a whole, the degree of dispersion in the predictions is acceptable, bearing in mind that 379 

chemical analyses also have associated errors.  380 

 381 

4. Conclusions 382 

 383 

Regardless of the multivariate algorithm used, light scattering correction of quinoa grains’ 384 

NIT spectra by EMSC consistently led to proximate composition models of better cross-385 

validation statistics – except for fat and carbohydrates – than those produced by MSC-treated 386 

spectra. Both EMSC, as opposed to MSC; and CPPLS, as opposed to PLSR, led to fewer 387 

optimal components. When spectra were treated by different types of SG filters, the optimal 388 

latent variables reduced correspondingly in each of the four treatments (i.e., MSC/PLSR, 389 

EMSC/PLSR, MSC/CPPLS, EMSC/CPPLS), except for the models predicting protein and 390 

carbohydrates, in which the behaviour was the opposite. In addition, smoothing the quinoa’s 391 

spectra enhanced the accuracy of the models for fat, ashes, and particularly for protein and 392 

carbohydrates, while improving also the prediction performance, particularly, for fat and 393 

ashes determination. Although the most robust models could be developed for ashes (SG-394 

filtered EMSC/PLSR: 90% confidence interval for RMSEP [0.376 – 0.512] as determined by 395 

bootstrap) and carbohydrates (SG-filtered MSC/CPPLS: 90% CI RMSEP: [0.651 – 0.901]), 396 

the predictability was still acceptable for the other dietary constituents; namely, protein (SG-397 

filtered MSC/CPPLS: 90% CI RMSEP: [0.650 – 0.852]), fat (SG-filtered EMSC/CPPLS: 398 

90% CI RMSEP: [0.478 – 0.654]) and moisture (non-filtered EMSC/PLSR: 90% CI RMSEP: 399 
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[0.658 – 0.833]). Thus, in this study, satisfactory predictions of the dietary constituents of 400 

quinoa grains could be achieved by using NIT technology. The main advantages of the 401 

technique are the rapid determination for routine analysis, the reduced costs and absence of 402 

sample preparation and waste generation. 403 
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 483 

TABLE CAPTIONS 484 

  485 

Table 1. Summary statistics of the major dietary compounds of quinoa samples in % dry 486 

basis, except for moisture (% wet basis) 487 

 488 

Table 2. Accuracy of prediction of NIT chemometric models for quinoa constituents defined 489 

by signal correction type (MSC: multiplicative scatter correction, or EMSC: extended 490 

multiplicative signal correction) and multivariate algorithm (PLSR: partial least squares 491 

regression, or CPPLS: canonical powered partial least squares), as measured by the root mean 492 

square errors of cross-validation (RMSECV), calibration (RMSEC) and prediction (RMSEP), 493 

and the coefficients of correlation between reference values and those estimated by cross-494 
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validation (RCV), calibration (RC) and prediction (RP), all of them computed at the minimum 495 

number of components 496 

 497 

Table 3. Effect of the best Savitzky-Golay smoothing filter (m: derivative order, p: 498 

polynomial order and w:window size) on the accuracy of prediction of NIT chemometric 499 

models for quinoa constituents defined by signal correction type (MSC: multiplicative scatter 500 

correction, or EMSC: extended multiplicative signal correction) and multivariate algorithm 501 

(PLSR: partial least squares regression, or CPPLS: canonical powered partial least squares), 502 

as measured by the root mean square errors of cross-validation (RMSECV), calibration 503 

(RMSEC) and prediction (RMSEP), and the coefficients of correlation between reference 504 

values and those estimated by cross-validation (RCV), calibration (RC) and prediction (RP), all 505 

of them computed at the minimum number of components 506 

 507 

 508 

FIGURE CAPTIONS 509 

 510 

Figure 1. Untransformed or raw near-infrared transmittance spectra of quinoa whole grains 511 

(top left), spectra transformed into absorbance (top right), and absorbance spectra corrected 512 

for scattering applying multiplicative scatter correction (MSC; bottom left) or extended 513 

multiplicative signal correction (EMSC; bottom right) 514 

 515 

Figure 2. Effects of applying Savitzky-Golay first- (SG1; left) and second-derivative (SG2; 516 

right) with polynomial degree 3 and window size 5 to quinoa grains spectra previously 517 

corrected by multiplicative scatter correction (MSC; top) or extended multiplicative signal 518 

correction (EMSC; bottom) 519 
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 520 

Figure 3. Prediction performance of NIT chemometric models for moisture, protein, fat, ashes 521 

and carbohydrates contents in quinoa grains, as evaluated by the uncertainty about the 522 

correlation coefficient of prediction (RP) built by bootstrapping (left), and the scatter plots 523 

between chemical reference values and those fitted to the calibration data set (middle) and 524 

predicted using the validation data set (right) 525 

 526 


