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Distribution based trunation for variable seletion in subspaemethods for multivariate regressionAbstratAnalysis of data ontaining a vast number of features, but only a limited number of informative ones,requires methods that an separate true signal from noise variables. One lass of methods attemptingthis are the sparse partial least squares methods for regression (sparse PLS). This paper aims atimproving the theoretial foundation, speed and robustness of suh methods. A general justi�ationof trunation of PLS loading weights is ahieved through distribution theory and the entral limittheorem. We also introdue a quik plug-in based trunation proedure based on a novel appliationof theory intended for analysis of variane for experiments without repliates. The result is a versatileand intuitive method that performs omponent-wise variable seletion very e�iently and in a less adho manner than existing methods. Predition performane is on par with existing methods, whilerobustness is ensured through a better theoretial foundation.1 IntrodutionOne of the major hallenges in reent and oming data analysis is the ever inreasing number of variablesreorded for eah sample. The data matries beome wider and wider. Beause of instrumental noise,biologial noise and other unontrollable variations in the reorded signal, variables that should have nosignal for a given sample, or be equal aross samples, almost never show a zero signal in the �nal entreddata set. And di�erenes between two signals that should be zero are seldom zero in pratie. Sinepreditive multivariate methods like partial least squares regression (PLSR) [1℄ in their basi forms takeinto aount all variables, the sheer number of non-zero noise variables will often over-shadow the truesignal.Various forms of variable seletion approahes have been proposed in the ontext of regression. Variableseletion an also play a role in �nding important variables in explorative studies, with the purpose ofstabilizing the regression modelling and improving its preditive ability and interpretability. Sometimes theaim is to �nd whih variables in�uene a ertain proess ausually, or at least onvey the most interestinginformation, e.g. metabolites, genes, wavenumbers, or moleular weights. Depending on the aim of thestudy di�erent seletion strategies may be favourable and the fous on how many variables to retain maybe di�erent.Based on ideas of omponent-wise variable seletion, sparseness and normally distributed noise we proposeto use distribution based trunation to identify all unimportant model parameters that are (or appear tobe) non-zero due to random errors, and fore these towards zero. In the present PLSR ontext, this meansto zero out small, apparently random elements in all the loading weight vetors. The intension is therebyto drastially redue the problem of non-zero noise ontributions. In the following setions we will look atsome related methods intended for the same purpose and motivate a simple, intuitive and �exible strategyfor trunation of non-informative variables. Appliations to real and simulated data and omparison withother methods will also be presented.
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2 BakgroundA basi assumption in statistis is the entral limit theorem (CLT). The CLT was �rst presented byAbraham de Moivre in 1733 and has been formalised and interpreted under varying onditions and degreesof stritness ever sine. A simple interpretation is that as the number of observations sampled from arandom proess inreases, the distribution of the mean (and the sum) will approah a normal distribution.More interesting in this ontext is that many types of random noise are seen as approximately normallydistributed, and linear ombinations of suh will tend even more towards the normal distribution. Inthis paper we propose to use the CLT to distinguish between variables with expeted non-zero loadingweights from the noisy variables with loading weights with a zero-expetation. We refer to the newmodelling priniple as Trunation-PLS in the following, and the resulting methods Trunation-PLSR andTrunation-PLS-DA are desribed in detail in Setion 3.Many approahes have been invented that attempt to �nd the interesting information in a loud of variables� the needle in the haystak. One of the oldest and most varied lass of methods for this purpose is variableseletion. A large proportion of these methods work univariately, evaluating single variables for inlusionor exlusion. When the number of variables are ounted in tens or hundreds of thousands, this strategy willbe prone to spurious orrelations, hampered by multiple testing problems and vulnerable to low sensitivityor high false disovery rate. Moreover, it an lead to serious misinterpretation: Assume e.g. that theregressor set ontains both an "upstream", ausally important variable observed with muh noise and a"downstream" onsequential but unimportant variable observed with little noise, and that the two arestrongly interorrelated. Traditional stepwise variable seletion methods will then eliminate the ausallyimportant variable to redue the ollinearity.Subspae-based regression methods suh as PCR and PLSR attain an impliit variable seletion - notby eliminating individual variables, but by eliminating subspae dimensions- i.e. linear ombinations ofvariables. However, if the number of noisy regressor- or regressand-variables is very high ompared tothe number of observations, this basi bilinear approah is not good enough: The ombined ovariationontributions of the noisy variables prevent the bilinear regression methods from �nding a useful initialsubspae. Therefore, various variable seletion strageties have been developed also for PLSR to improvepredition and to simplify interpretation, but without eliminating interesting variables just to redueollinearity.One approah is to redue small parameters towards zero by a general shrinking/expansion of the PLSloading weight elements aording to a hosen exponent (Powered PLS[2, 3℄). Another approah is toindue sparseness in the data by foring ontributions lose to zero to be true zeros. Examples of suhmethods are the least absolute shrinkage and seletion operator (LASSO) [4℄ and its spin-o� the elasti net[5℄, both induing onstraints on the L1 norm of the regression vetor β. The latter method also appliesridging by penalizing the L2 norm of β. For PLSR sparseness was introdued by Martens & Næs (1989,p. 160), who suggested the use of rough statistial signi�ane testing of the elements in eah individualloading weight vetor, followed by a re-orthogonalization. A similar approah was implemented in terms ofthe soft-threshold-PLS [6℄ (ST-PLS) and sparse PLS [7℄ (sPLS). These methods apply a shrinkage towardszero to the PLS loading weights so that many ontributions beome zero. The amount of shrinkage anbe hosen to remove a ertain proportion of the variables or it an be hosen by some other riterion. Inaddition to giving a multivariate approah to variable seletion, these methods an also selet di�erentvariables in eah PLS omponent that is produed. As these two methods, ST-PLS and sPLS, are very3



similar in the single response ase, we hoose to ompare our method to ST-PLS, as the R-implementationof this method �ts models muh faster than the sPLS version. We propose to ombine the sparseness ideaswith the distributional quality of noise in data, e.g. in PLS loading weights, to sort between noise andsignal and thereby weighting down or ompletely trunating what is lassi�ed as noise.In addition to several of the mentioned sparse methods we will inlude variable seletion by the VariableIn�uene on Projetion [8℄ (VIP) and Seletivity Ratio plot [9℄ (SR) methods for omparison. These PLSbased methods use di�erent riteria for assessing the importane of variables in regression and lassi�ation.We will not go into details about how variables are seleted by these methods in this paper, but inludethem as referene standards.The distribution based trunation approah to variable seletion adds to an already long list of methodsfor variable seletion. As desribed in this artile the seletion of variables in this approah is motivatedfrom a well established priniple in lassial statistis. Furthermore, there is only one tuning parameterwhih needs to be set for variable seletion, whih makes the method simple and easy to implement.The statistial foundation and the non-omplexity of the new method makes it appealing and easy tounderstand. However, the preditive performane of predition methods is typially very dependent onthe properties of the data, and there is no uniformly best method for predition and variable seletion.Therefore, it is important to expand the statistial toolbox, but at the same time it is important to buildan understanding of when the various methods work best. In order to do this we ompare the preditiveperformane of the various methods and attempt to interprete the results in light of the multivariateproperties of the data.3 MethodsDistribution assumptionsIn the following the Trunation-PLS is based on loading weights from PLS regression, though the oneptis appliable also to regular regression oe�ients. Further, the approah ould similarly be applied toselet Y variables, or to PLS sores in order to eliminate non-informative samples, but these aspets arenot overed in this paper. When reording output from some kind of spetrosopi/-metri instrumentwe expet that the absene of a signal results in white (non-informative) noise, while the presene of asignal will produe a systemati deviation from randomness. The same applies to other types of data, e.g.miro arrays, but the distribution of the noise varies. When reating vetors of loading weights in PLS, weompute the �rst eigenvetor of the matrix produt X′
{a−1} ·Y{a−1} (for omponent number a). If a givenX-variable is unorrelated with the response variable(s) (for possibly de�ated matries) the loading weightfor this variable will be a sum over n equally distributed random variables, and by the CLT it will thereforerepresent random normal noise, at least approximately. For X-variables orrelated to the response variablethe theoretial distributions of eah loading weight will also be asymptotially normal distributed, but withnon-zero mean. However, as the orrelation inreases the distributions will be inreasingly skewed. Asthe true orrelation between an X-variable and the response approahes 1, the limiting distribution of theorresponding loading weight will be a hi-square distribution with non-zero expetation. In Figure 1 (left)the theoretial distributions of three non-normalized loading weights (sample size n=20) are illustrated;a entred normal distribution for an unorrelated X-variable, and two skewed distributions for two X-variables with orrelation -0.6 and 0.6 with the response, respetively. In this �gure the distributions have4



been weighted to re�et a situation where 70% of the variables are distributed aording to the entralnoise distribution and 30% are orrelated with the response with either the -0.6 or the 0.6 orrelation.In a real data appliation the loading weights of the informative X-variables will follow di�erent skeweddistributions. The sample distribution of the weights will therefore represent a mix of several theoretialdistributions and not just three as used in Figure 1 (left). An example of a sample distribution of loadingweights is given in Figure 1 (right). The main objetive in Trunation-PLS is to �nd lower and upperut-o�s between whih it is assumed that the majority of the loading weights represent noise variables.Hene, the problem boils down to �nding an estimate of the entral normal distribution of loading weights(or at least seleted perentiles) in order to distinguish this from the skewed distributions.
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Figure 1: Left: Simulated theoretial distributions of loading weights from X variables with no orrelationto the response (red urve, 70% entred around 0), and orrelation of -0.6 and 0.6, respetively (blueurves, 15% eah, entred around -12 and 12, respetively). Right: Histogram of normalized loadingweights (milk protein data) illustrates the distributional harater of the noninformative loading weights.The red vertial lines indiate the ut-o�s between inliers and outliers.To onform to the lassial CLT the observations would need to be independent, but this is not always truein pratie. However, CLT theory also exist for observations having weak dependene, and we will onlyonsider the variables where we do not expet any information to be present, supporting independene ofthese variables.AlgorithmThe idea presented in Setion 2 lays the ground for a wide range of possible implementations for lassifyingdata as noise or signal based on their distribution. In priniple, the trunation may be applied to severaldi�erent model parameter types - to objet sores in Y or X, to Y-loading weights and to X-loading weights.In this paper we fous on the trunation of the X-loading weights, alled w in the nomenlature of [10℄.The main approah will be to make a on�dene interval around the median value of a sorted vetor, e.g.PLS loading weights, and trunate or down-weight everything that falls inside the interval, see Algorithm1. The width of the on�dene interval will be estimated using theory from Lenth [11℄. A seond approahwill be to make use of a qq-plot, lassifying variables lose to the straight line going through a hosen pairof quantiles as inliers. Alternatively one ould adapt a normal or Student t distribution to the same vetorby diret �tting to the seleted distribution, but this an be a time onsuming and unstable proedure.The variations have in ommon that outliers are onsidered true information, while observations withina ertain range of the distribution are lassi�ed as noise. In the histogram of loading weights in Figure1 (right) the estimated ut-o�s between inliers and outliers are indiated. The general distribution basedtrunation algorithm is as follows: 5



Algorithm 1 General distribution based trunation for a given omponent
• Input andidate loading weight vetor w to be trunated.
• Sort w ⇒ ws.
• Either� ompute a on�dene interval around the median of ws, or� �t a line through quantiles around the median of ws.
• Classify outliers as real, informative ontributions and inliers as noise.
• Trunate inliers.In pratie the distribution based trunation an be plugged into the NIPALS [12℄ algorithm or kernel basedalgorithms as a omponent-wise proessing of the andidate PLS loading weights to impose sparseness onthe variables, or even trunate the sores to impose sparseness on the objets. In this paper we limitthe appliations to the single response ase, but the proedures are equally relevant in multi-responseproblems, as well as other multivariate methods like LPLS, PCA, ICA and CCA. Trunation of loadingweights will be relevant for most appliations as it is more likely that some variables do not ontributeto a omponent than that a set of objets do not ontribute. When trunating only loading weights, thefollowing omputation of sores ensures that loading weights and sores re�et the same information. Ifsores are trunated, this will not be re�eted in the information of the loading weights, meaning that are-omputation of loading weights and sores may be neessary based on the trunation generated fromthe sores, or loading weights have to be disregarded when analysing the resulting model. As suggested byMartens & Næs, one ould also re-orthogonalize the vetors of loading weights if orthogonality is onsideredimportant. Re-orthogonalization may introdue shadowing e�et from previous omponent suh that somezero loading weights beome non-zero. For the data sets we are using in this paper the hanges in regressionoe�ients are very small with or without re-orthogonalization, and the preditions are equal sine thenon-orthogonalized and orthogonalized loading weights span the same preditor spae.Instead of applying hard thresholding, where inliers are set to zero and outliers are kept as they are, itould be valuable to shrink aording to the probability of being an inlier or outlier. Suh a soft shrinkageould be 1 − P (xj = inlier), but estimating this probability would require estimates of the distributionsof the outliers. Instead we apply a umulative distribution funtion on the observed variables and resaleso that the median is given weight 0 and the largest outlier is given weight 1. As this strategy givesrather poor distintion between inliers and outliers we introdue a parameterized version of these weightsto produe weights that are loser to a hard ut-o� as illustrated in Figure 2.
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Figure 2: Transformation of saled weights for gradually steeper transition between inliers and outliers.For this example the weight orresponding to the ut-o� between inliers and outliers is set to 0.7.3.1 Cut-o� determinationIn order to �nd ut-o�s between inliers and outliers an estimate of the entral normal distribution ofinliers is needed. Sine the distribution is entered in zero the distribution will be fully haraterized byan estimate of its variane. In order to distinguish the entral noise distribution from the non-entraldistributions of the informative outliers, a mixture model approah ould be adopted. For instane, [13℄presented a mixture model approah for sample size determination with false disovery rate ontrol forhigh-throughput data problems, and a similar approah ould be adopted here. However, estimating a setof entral and non-entral distributions involves iterative proedures (like the EM-algorithm) whih wouldseriously slow down the �tting proess of the PLS regression model. Further, only the variane of theentral noise distribution is needed, not the properties of the non-entral distributions.A similar problem arises in the analysis of saturated ANOVA models for 2k-designs without repliates.Then all degrees of freedom are onsumed in the estimation of the e�ets and no onventional error varianeestimate an be omputed. Still, all e�et estimates have the same variane, but a set of non-importante�ets have zero-expetation. From these a variane estimate for signi�ane testing an be found by themethod presented by Lenth [11℄. In order to estimate the variane Lenth uses the fat that the standarddeviation of a entral normal distribution is tightly onneted to the median of the absolute value ofthe random variable. Sine the median is rather robust against the in�uene from outliers, this varianeestimate will be only moderately a�eted by the outliers as long as the majority of the e�ets (or loadingweights in our ase) are samples from the entral noise distribution. In the setting of this paper theapproah of Lenth an be desribed as follows:Let w1, w2, ..., wp represent the loading weights omputed from the p X-variables at step a of the PLSalgorithm. Further, de�ne s0 = 1.5 ·median |wk| for k = 1, ...p. It an be shown that s0 is a fairly goodestimate of the standard deviation of the normal distribution of the inliers. In order to make it even morerobust and less biased Lenth reommends to make the �nal estimate, the pseudo standard error (PSE),based on a set of inlying values only:
PSE = 1.5 · median

|wk|<2.5·s0
|wk|.Lenth argues that if the wk are realizations of a N(0, τ2) random variable W , the median of |W | isapproximately 0.675τ , implying that 1.5 × median |W | ≈ 1.01τ . And sine Pr(|W | > 2.5τ) ≈ 0.01, the7



PSE is roughly onsistent for 1.5 times the 0.495th quantile of |W |, whih is 1.5× 0.665τ ≈ τ .The PSE an be ombined with a Student t quantile of d = p/3 degrees of freedom to give a onservativemargin of error (ME) for on�dene intervals: ME = t0.975;d · PSE (95% on�dene). However, in high-throughput data problems the degrees of freedom will usually be large, and perentiles from the standardnormal distribution may be used instead. In the PLS algorithm the ut-o�s are thus de�ned by the limitsof a (1−α)100% on�dene interval around the median loading weight with margins of error as desribedabove: median(w)±ME, for some hosen on�dene level (1− α).If there is a large asymmetry in the number of positive and negative outliers, the skewness in the distributionof w may ause ME to be slightly in�ated ausing a potential loss of informative outliers deteted in thelighter tail. This an be avoided by estimating the margin of error separately for positive and negativeloading weights. This is aomplished by �rst �nding s−0 and PSE− using the absolute values of thenegative weights and then omputing the marginal error ME− for the lower tail. Then the same exeriseis onduted for the positive loading weights �nding s+0 , PSE+ and �nallyME+ for the upper tail. Finally,the ut-o�s are de�ned by ME = min(ME−,ME+). The inreased �exibility an improve the estimationof boundaries between inliers and outliers when there is asymmetry in the distributions. In the rest of thispaper we refer to trunation using Lenth's methods as Lenth.3.2 Outlier detetion by qq-plotsAn alternative to the above strategy is to use a qq-plot (quantile-quantile plot) as basis, extending aninterval around the median value of ws minimising the mean squared error (MSE) to the line goingthrough seleted quantiles (qq-line), e.g. the 25-th and 75-th perentile of the Student t distribution ornormal distribution, see Figure 3. To favour solutions having many inliers the MSE is weighted with theratio between the total number of points and the number of non-informative inliers (ntot

nin
). Alternativelyone an favour solutions with few informative outliers with MSEs that are not signi�antly worse thanthe minimum MSE. Utilizing funtions based on golden setion searh with paraboli interpolation, orsimilar, the MSE minimization an be solved quikly as a linear searh, or a series of suh in ases ofasymmetry. Visualisation of the sorted w vetor plotted against the �nal distribution, e.g. Figure 3, anaid in validating and justifying the �nal trunation.
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When using a Student-t distribution the number of degrees of freedom needs to be spei�ed. Calulatingexatly how many degrees of freedom that are onsumed by a PLS omponent is not trivial, but a roughestimate is the following leverage-based estimate (pseudo degrees of freedom): ∑
i

t
2

a

max
i

(t2
a
) , where ta isthe a-th PLS-sore vetor and i is the sample number. As the trunation is robust to hanges in numberof degrees of freedom, we do not need the exat degrees of freedom. Note that the number of degreesof freedom onsumed will hange after trunation. In the rest of this paper we refer to trunation usingqq-plots as qq-line.Note that for both the Lenth and the qq-line method the number of variables seleted as informativemay vary from one omponent to another. Furthermore, the same variable may be seleted in severalomponents. Hene, the total number of seleted variables may not be set exatly, but an be to someextent ontrolled by the number of PLS-omponents and the hosen width of the interval around themedian weight.3.3 Referene methodsThe trunation proedures are ompared to ST-PLS, Elasti net, variable seletion by VIP and SR, andPLS without any modi�ations. This is a small subset of representative methods. For more PLS basedvariable seletion methods we reommend the papers of Mehmood et al. [14℄ and Roger et al [15℄. Tomake omparisons fair we optimize eah method separately with regard to lassi�ation/predition. Theperformane of eah method is evaluated on test set data or by ross-validation in terms of lassi�ationerrors for the lassi�ation problems and root mean square error of predition (RMSEP) for the preditionproblems. With the Elasti net the optimization is performed over a reasonable grid of ridging values (0.1to 1, where the value 1 gives the Lasso) and L1 shrinkages (automatially hosen [16℄). The shrinkage ofST-PLS is varied over a relevant range (0.05 to 0.95), and the ut-o� for VIP is varied from 0.8 to 1.2 [17℄.For SR we optimize the ut-o� between 0.05 and 0.5, as the ut-o� suggested by the authors (0.5) seletstoo few variables to obtain good preditions on the data sets tested in this paper. Beause there are somany models, not all parameter ombinations will be reported.There are several sparse PLS regression methods to hose between, but we found that their resultingvariable seletions were quite similar, espeially when optimizing the sparseness parameter with regard topredition. We have seleted ST-PLS [6℄ as a ommon representative, though any of [7, 18, 19℄ would havebeen a good alternative.In addition to the results assoiated with parameters giving the lowest predition errors we will presentmodels that have slightly higher predition errors but give more sparse loading weights and regressionoe�ients (simpli�ed models). For the data sets where repeated ross-validation is used, the simpli�edmodels should have no more than one standard error higher predition error, while for the data sets wheretest set predition is used ommon additions to the error of 0.001 and 0.01 are used (see the Resultssetion).
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4 Examples4.1 Data setsThe distribution based trunation method for variable seletion is ompared to the referene methodson both a set of real data sets and to simulated data. These data sets represent a wide range of high-dimensional data types with di�erent properties, and the results will be disussed in light of these. Inorder to summarize the data properties we use the approah of Helland and Almøy [20℄ and Sæbø et al. [6℄who study the eigenvalue struture of the sample ovariane matrix of the preditors and the ovarianebetween the prinipal omponents and the response. In the following we refer to the latter property as therelevane of a latent omponent, following the notation of Næs and Helland [21℄. We summarize the datastrutures in eigenvalue-ovariane plots. Helland and Almøy [20℄ onlude in their study that predition,using PLSR methods at least, is most di�ult in ases where there are irrelevant omponents having largeeigenvalues, or ontrary, if there are relevant omponents having small eigenvalues. In these ases wetherefore expet that variable seletion methods based on latent omponents will be less favourable.4.1.1 Simulated dataThese are simulated data ontaining two orrelating, informative features and a variable number of unin-formative variables as desribed in [22, 23℄. The total number of variables range from 100 to 20 000, andthe number of observations in eah of two lasses are 100 and 50 for the alibration and validation data,respetively. The simulation study is repliated exatly to be omparable to the papers it has appeared inpreviously.4.1.2 Colon aner dataThese are expression levels of 2000 genes on 62 patients as presented by Alon et al. [24℄. Among thepatients 20 were healthy while 42 had olon aner. As an be seen from Figure 4 there are several largeeigenvalues whih indiate several diretions in the preditor spae of large variane. At the same timethese diretions appear to be relevant for predition by having large ovarianes with the response. Hene,predition using PLS based methods should be relatively easy, but might require a few omponents.4.1.3 Prostate aner dataThese are expression levels of 12 600 genes on 102 patients as presented by Singh et al. [25℄. Amongthe samples 52 were tumor speimens and 50 were normal. From Figure 4 we observe a rapid drop ineigenvalues implying strong dependene between the preditor variables. However, some diretions of smallvariability (small eigenvalues) have some of the largest ovarianes with the response. This is an exampleof a data set where there are relevant omponents with small eigenvalues whih aording to Helland andAlmøy [20℄ is not favourable for PLS predition. We therefore expet that the PLS-based variable seletionmethods will not perform well for this data set.
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4.1.4 Fish oil dataThese are Raman spetra from 45 oil samples extrated from farmed salmon (Salmo salar) [26℄. Ramanspetrosopy with a UV laser has been onduted. As a fat indiator the iodine value has been hosenas the response for regression. The spetra are pre-proessed by asymmetri least squares [27℄ (λ = 7,
p = 0.11 [28℄) wrapped in a ustomized baseline orretion [29℄ to redue baseline �exibility under a broadluster of peaks. The spetra have been ut down to 2263 wavlengths to remove artifats at the ends ofthe spetra. These data have a struture resembling the olon data with several diretions in the preditorspae with high variability and high relevane. Predition should be relatively easy using a few omponentsin the PLS model.4.1.5 Milk protein dataThese are matrix-assisted laser desorption/ionization time-of-�ight (MALDI-TOF) spetra from 45 milkmixtures (x 4 spot repliates) of ow, goat and ewe milk [3℄. Another set of 45 mixtures from a tehnialrepliate is used as validation data. Spetral values from 5000 m/z to 20 000 m/z (6179 variables) areused for prediting the perentage of ow milk in the mixtures, i.e. the degree of adulteration. If thetrunation proedure is plugged into anonial PLS (CPLS) [30℄, the perentage of goat and ewe milk anbe used as additional responses to obtain more parsimonious solutions. The eigenvalues for these dataimply strong variable dependene with one or two relevant omponents. Predition should be quite easywith few omponents using PLS regression.
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Prostate cancer data
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Fish oil data
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Figure 4: Summaries of data properties for the real data sets. Eigenvalues of the sample ovariane matrix(saled by the largest) are marked by the height of bars. Covarianes (saled by the largest) betweenprinipal omponents and the response are marked by red dots.4.2 Results4.2.1 Simulated dataFollowing the proposed simulation sheme of [22℄ as was done with PLS and sPLS in [23℄, we obtain theresults shown in Figure 5. Choosing two di�erent widths of the on�dene intervals of Lenth's method we�nd lassi�ation errors almost idential to what was shown using sPLS and greatly improved omparedto the onventional PLS regression. However, the widest Lenth on�dene interval (99.9%) gives almostperfet lassi�ation regardless of number of uninformative variables. These optimisti results are ausedby a simulation proedure that highly favours sparse modelling methods, and so should not be over-interpreted.
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Figure 5: Classi�ation error of two lass simulated data. Two regressor variables are informative for theregressand variable, while the total number of regressor variables are indiated on the �rst axis as p.4.2.2 Colon aner dataFigure 6a shows the average lassi�ation error of patients from 200 random 10-fold ross-validations [31℄.Linear disriminant analysis with empirial priors is used for the lassi�ation. It is evident that oneomponent is not enough to obtain good lassi�ation regardless of the PLS method used. Elasti netperforms approximately at the same level as the one-omponent PLS variants. The ST-PLS and qq-lineTrunation-PLS have the best ombinations of few non-zero variables and low lassi�ation error (bottomleft orner of the �gure). The VIP ans SR methods with two and three PLS omponents have a slightlyworse ombination of sparseness and error, together with Lenth and Weighted Lenth.We also observe that hoosing a model with slightly higher error than the best model an greatly reduethe number of non-zero variables, espeially for Lenth's method. Depending on the aim of the analysis, e.g.variable seletion or stable preditions, the hoie of trunation type and parameter settings may di�er,espeially sine all the presented models using two and three omponents lie within a 1% error margin.The most sparse two omponent models (average number of non-zero variables in parentheses) are ST-PLS (74, simpli�ed model), qq-line (171), Lenth (243) and ST-PLS (294). All of these models have ahigher average preision ompared to the ordinary two omponent PLS solution, and are very lose to thepreision of the three omponent PLS solution.4.2.3 Prostate aner dataFigure 6b shows the average lassi�ation error of patients from 100 random 10-fold ross-validations. Weobserve that the best preditions are found when using 5 omponent PLS models with variable seletionby SR. Following losely is the Elasti net. Both of these methods give very sparse solutions. There isalmost a 2% gap down to the rest of the methods. Here variable seletion by VIP, qq-line (simpli�edmodel), ST-PLS and Lenth give the most sparse solutions while Weighted Lenth gives marginally betterlassi�ation.For this data set it seems that the small variation in the disriminating information favours Elasti netand SR while the sparse PLS methods and VIP obtain proportions orretly lassi�ed similar to only usingPLS with all variables. 13
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(b) Prostate aner miro-array data � lassi�ation usingLDA.Full PLS-DA: 5 omp.: 0.078, 10 omp. 0.0825 (dashedlines).
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() Fish oil Raman data � predition of iodine.Full PLSR: 1 omp.: 2.70, 2 omp.: 1.68, 3 omp. 1.74(dashed lines). 0 1000 2000 3000 4000 5000 6000
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(d) Milk protein MALDI-TOF data � predition of adul-teration.Full PLSR: 1 omp.: 0.103, 2 omp.: 0.074, 3 omp.: 0.078(dashed lines).Figure 6: Repeated random 10-fold ross-validated lassi�ation (sub�gures a and b) and test set pre-ditions (sub�gures  and d) using varying numbers of PLS omponents. The symbols indiate di�erentvariable seletion strategies and their numbers of omponents. Blak symbols are assoiated with theparameters giving the highest preision, while red symbols indiate models using fewer variables whileretaining most of their preision.
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4.2.4 Fish oil dataIn Figure 6 we see the results of test set preditions using the same methods as above. Parameters havebeen hosen by ross-validation. The best ombination of predition and sparseness is observed for Lenthand ST-PLS. Preisions of these preditions are muh better than only using PLS. The RMSEP valuesfrom Elasti net are somewhere between the one omponent PLS models and the two/three omponentmodels. As the parameters and simpli�ations are hosen on the ross-validation results, we observe bothredutions and inreases in RMSEP when using simpli�ed models.4.2.5 Milk protein dataIn addition to omparison with the referene methods this data set is inluded both to show how one anobtain parsimonious models by plugging the trunation algorithm into a di�erent NIPALS algorithm, theanonial PLS, and to show how interpretation of spetral data an be made easier by imposing sparseness.The CPLS algorithm di�ers from the regular PLS in the way that additional sample information (like designvariables) may be inluded as extra response variables to stabilize the extration of the latent omponents.This has the typial e�et that the number of omponents is redued ompared to PLS regression. Asmentioned in the desription of the data the perentage of goat and ewe milk was inluded as additionalresponses in the analysis of the ow milk data. In Figure 6d we see the results of test set preditionsusing the same methods as above. Parameters have been hosen by ross-validation. Here Elasti netis the winner onsidering the ombination of predition and sparseness. However, predition-wise theother methods are very lose behind. Among the PLS based methods, Lenth has the best ombination ofpredition and sparseness, having marginally better predition than Elasti net using less than 1/6 of thevariables with the simpli�ed model.Figure 7 shows the predition error of PLS and CPLS regression used separately and ombined with apre-hosen trunation (99.9 % on�dene interval (Lenth's method) with sharp ut-o�). We observe thatfor models using few omponents trunation has no e�et on predition with PLS, but gives a minorimprovement when ombined with CPLS. Also, CPLS has muh lower predition error for one and twoomponent models. Looking only at predition, the best balane between predition error and omplexityis a two omponent CPLS model with trunation.
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5 DisussionThrough this paper we have formalised some aspets of the family of sparse PLS methods. Firstly we havehave justi�ed trunation of loading weights through the entral limit theorem and the distributions ofloading weights with no orrelation to the response. Seondly we have proposed a new trunation foundedon lassial statistial asymptoti priniples. This is introdued through a novel appliation of Lenth'stheory for reating on�dene intervals in saturated ANOVA models for 2k-designs without repliates. Thee�et is that the user only has to hoose a signi�ane level for the on�dene interval, resulting in a lessad ho approah.Trunation in this paper is ahieved using a general and �exible plug-in whih an easily be adjusted andimplemented also in other projetion based methods like PCA [32℄, ICA [33℄, PCR, CPLS and PPLS.PLS regression is an iterative algorithm and omponent wise trunation will inevitably slow down thealgorithm, but Lenth's method is extremely quik, i.e. there is a minimal lag ompared to just runningregular PLSR. The alternative approah based on the qq-line is also quite quik, and appears to giveslightly better results in some situations.With regard to predition performane the trunation PLS is mostly on par with ST-PLS, sometimesa little better, sometimes a little worse. As with all statistial methods, this is highly data dependent.However, there are few parameters to tune and they have statistial interpretations. For the data setsinluded in this paper we see that Elasti net sometimes performs signi�antly better than the sparse PLSmethods, while it trails behind when used on other data sets. This is also the ase for the variable seletionby Seletivity Ratio plots and to some extent the Variable In�uene on Predition method. The Lassowas also tested with the inluded data sets, but being a speial ase of the Elasti net it never performedbetter in pratie. But predition is not the only goal for a statistial method. The trunation methodshave also shown onsistent good results, are based on intuitive theory, are quite robust to the hoie ofparameters and are extremely quik.The performane of the various methods may to some extent be explained by the struture of the data.The PLS-based methods perform relatively better when there are many diretions in the preditor spaewith both a high variane (high eigenvalue) and a high relevane. This was the ase for both the olonaner data and the �sh oil data, and here also the PLS-based variable seletion methods performed well,with the new trunation method and ST-PLS slightly ahead of the others. For the prostate data thesemethods performed worse, and this result on�rms the expetations based on the data properties thatPLS methods have trouble making good preditions for this kind of data where there are diretions in thepreditor spae of low variane, but with high relevane. However, an exeption is the SR method basedon the 5 omponent PLS model. This an be explained by the fat that the SR method is adjusted to bemore favourable than ordinary PLS when there are variables with low varianes, but with high orrelationswith the response [9℄. This is exatly what is the ase here aording to Figure 4. Apparently the elastinet has a similar behaviour, whih an be explained by the fat that this method, like the ordinary leastsquares, gives higher weight to variables with high orrelations to the response, as opposed to the moreovariane-foused PLS. The results indiate that in ases where there is a strong orrelation struture inthe data (prostate aner data and milk protein data) the elasti net is a good hoie of method for variableseletion. When hoosing a method for analysis and variable seletion it may therefore be worthwhile tostudy the data properties in terms of eigenvalues and omponent-response ovarianes.17



One side-e�et of applying trunation to vetors of loading weights is that they are no longer orthogonal.In most appliations, small deviations from orthogonality an be disregarded. However, when orthogonalvetors of loading weights is important, a re-orthogonalization step an be inluded after the trunation,foring the urrent vetor of loading weights to be orthogonal to the previous vetors extrated. Thedown-side to this is that shadow e�ets from previous loading weights may appear in the re-orthogonalizedloading weights, ausing zero weights of regressors already used in previous omponents to beome non-zero. For the data sets we have used in this paper, the shadow e�et was so small that they were invisiblein plots, and only appeared a few times in measurable sizes. The total number of non-zero regressionoe�ients should not be a�eted.A note should be made on the di�erent roles of the X loading weights, wa, and the X loadings, pa. Itis important to remember that the loading weights ontain the ovariane information between X{a−1}and Y{a−1} (the �rst eigenvetor of the ovariane matrix if Y is multi response) and give us the weightsthat eah explanatory variable has when reating sores and loadings. The sores, ta, are just linearombinations of the explanatory variables weighted by the loading weights. The loadings, however, arefound by projeting eah explanatory variable of X{a−1} on the sores, ta. Loading weights and loadingsan look quite similar when no trunation has been applied, espeially for spetrosopi data. Withtrunation, however, the loading weights obtain a lot of �zero holes�, while the loadings retain a moreontinuous shape (at least for spetrosopi data). The upshot is that fully trunated variables are notompletely lost, and their role in the system may be interpreted graphially sine their loadings are intat.Depending on the appliation, either loading weights or loadings an be interpreted, having roles similarto the regression oe�ients with and without �zero holes�.In some appliations it may be interesting to apply trunation without ending up with zeros in the resultingregression oe�ients, analogous to fousing on loadings instead of loading weights. This an be justi�ed bythe need to remove noise in the omputation of PLS omponents and at the same time produing ontinuousregression oe�ients. From the early days of PLSR we �nd approximate estimates of regression oe�ientsthat produe the desired e�et. Two alternatives have been proposed. Firstly the approximated regressionoe�ients an simply be estimated by the produt of the X and y loadings: β̂† = Pq′. A more elaboratestrategy is to produe new approximated X sores, y loadings and regression oe�ients by full projetionon the X loadings: T ⋆ = XP (P ′P )−1, q⋆ = y′T ⋆(T ⋆′T ⋆)−1, and �nally: β̂⋆ = Pq⋆′. Both strategies willprodue regression vetors without �zero holes�.Referenes[1℄ Wold, S., Martens, H. & Wold, H. The multivariate alibration problem in hemistry solved by thePLS methods. Leture notes in mathematis 973, 286 � 293 (1983).[2℄ Indahl, U. A twist to partial least squares regression. Journal of Chemometris 19, 32 � 44 (2005).[3℄ Liland, K. H., Mevik, B.-H., Rukke, E.-O., Almøy, T. & Isaksson, T. Quantitative whole spetrumanalysis with MALDI-TOF MS, Part II: Determining the onentration of milk in mixtures. Chemo-metris and Intelligent Laboratory Systems 99, 39 � 48 (2009).[4℄ Tibshirani, R. Regression shrinkage and seletion via the lasso. J. R. Statist. So. B 58, 267 � 288(1996). 18
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