Influence of consumers' cognitive style on results from projective mapping

Paula Varela ${ }^{1 *}$, Lucía Antúnez² ${ }^{2}$, Ingunn Berget ${ }^{1}$; Denize Oliveira ${ }^{3}$, Kasper

 Christensen ${ }^{1}$; Leticia Vidal ${ }^{2}$, Tormod Naes ${ }^{1,4}$, Gastón Ares ${ }^{2}$${ }^{1}$ Nofima AS, P.O. Box 210, 1431 Ås, Norway
${ }^{2}$ Sensometrics \& Consumer Science, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República. By Pass de Rutas 8 y 101 s/n. CP 91000. Pando, Canelones, Uruguay.
${ }^{3} \mathrm{CNPq} /$ Embrapa Agroindústria de Alimentos, Avenida das Américas, 29501, CEP 23.020-470, Rio de Janeiro - RJ, Brazil.
${ }^{4}$ University of Copenhagen, Faculty of Life Sciences, Department of Food Science, Rolighedsvej 30, 1958 Fredriksberg Copenhagen, Denmark

* Corresponding author: Paula Varela [Telephone: +47 45426026, Fax: +4764943314, E-mail: paula.varela.tomasco@nofima.no; pvarelatomasco@gmail.com]

Abstract

Projective mapping (PM), one of the most holistic product profiling methods in approach, is increasingly being used to uncover consumers' perception of products and packages. Assessors rely on a process of synthesis for evaluating product information, which would determine the relative importance of the perceived characteristics they use for mapping them. Individual differences are expected, as participants are not instructed on the characteristics to consider for evaluating the degree of difference among samples, generating different perceptual spaces. Individual differences in cognitive style can affect synthesis processes and thus their perception of similarities and differences among samples. In this study, the influence of the cognitive style in the results of PM was explored. Two consumer studies were performed, one aimed at describing intrinsic sensory characteristics of chocolate flavored milk and the other one looking into extrinsic (package only) of blueberry yogurts. Consumers completed the wholistic-analytic module of the extended Verbal Imagery Cognitive Styles Test \& Extended Cognitive Style Analysis-Wholistic Analytic Test, to characterize their cognitive style. Differences between wholistic and analytic consumers in how they evaluated samples using projective mapping were found in both studies. Analytics separated the samples more in the PM perceptual space than wholistic consumers, showing more discriminating abilities. This may come from a deeper analysis of the samples, both from intrinsic and extrinsic point of views. From a sensory perspective (intrinsic), analytic consumers relied on more sensory characteristics, while wholistic mainly discriminated samples according to sweetness and bitterness/chocolate flavour. In the extrinsic study however, even if analytic consumers discriminated more between packs, they described the products using similar words in the descriptive step.

One important recommendation coming from this study is the need to consider higher dimensions in the interpretation of projective mapping tasks, as the first dimensions could underestimate the complexity of the perceptual space; currently, most

applications of PM consider two dimensions only, which may not uncover the perception of specific groups of consumers.

Keywords: Projective Mapping, product description, cognitive style, wholistic, analytic

1. Introduction

Holistic methodologies are increasingly used for uncovering consumers' perception of food products (Valentin, Chollet, Lelievre, \& Abdi, 2012; Varela \& Ares, 2012). These methodologies are based on the evaluation of global similarities and differences among samples, providing a synthetic representation of the products (Ares \& Varela, 2014).

Among consumer-based descriptive methods, projective mapping can be considered as one of the most holistic in approach (Dehlholm, Brockhoff, Meinert, Aaslyng, \& Bredie, 2012b). In projective mapping assessors are asked to position samples on a bi-dimensional space according to their global similarities and differences (Risvik, McEvan, Colwill, Rogers, \& Lyon, 1994). This methodology allows assessors to evaluate similarities and differences among samples by considering more than one characteristic at the same time (bi-dimensional) and without the use of words, although a descriptive step can be added later on. Projective mapping has been applied to identify similarities and differences among products, as well as the sensory characteristics responsible for perceived similarity in a wide range of product categories (Albert, Varela, Salvador, Hough, \& Fiszman, 2011; Bárcenas, Pérez-Elortondo, \& Albisu, 2004; Hopfer \& Heymann, 2013; Nestrud \& Lawless, 2008; Pagés, 2005; Risvik et al., 1994; Vidal, Cadena, Antúnez, Giménez, Varela \& Ares, 2014).

Projective mapping data consist of the X and Y coordinates of the samples on each of the assessors' individual maps. Considering that assessors can use different criteria to estimate similarities and differences among samples Generalized Procrustes Analysis (GPA) or Multiple Factor Analysis (MFA) are used to obtain a consensus sample configuration in 2 to 4 dimensions (Dehlholm, 2014). However, representation of the sensory characteristics of samples in a limited number of dimensions may not reflect the cognitive representation of all consumers (Summers \& MacKay, 1976). In this sense, Vidal, Antúnez, Giménez, Varela, Deliza \& Ares (2016) reported that the consensus
representation of samples in the first and second dimensions did not correlate with the configuration of at least one consumer segment.

In a projective mapping task, assessors should form an overall representation of the similarities and differences among samples by relying on a process of synthesis for analyzing and processing sensory information (Jaeger, Wakeling, \& MacFie, 2000). This process of synthesis determines the relative importance of the perceived sensory characteristics for estimating the similarities and differences among samples. For this reason, individual differences in the criteria used by assessors to evaluate samples and complete the task are expected (Naes et al., 2017). These individual differences have been reported by several authors (Kennedy 2010; Dehlholm et al. 2012b; Hopfer \& Heymann, 2013; Nestrud \& Lawless, 2011; Vidal et al., 2016).

One of the most important factors that could largely contribute to heterogeneity in responses to projective mapping tasks is individual differences in preferred ways of processing information (Allport, 1937). Differences in consumers' cognitive structure and decision making can influence the number of characteristics that are involved in sample categorization (Malhotra, Pinson, \& Jain, 2010). Cognitive styles can be defined as characteristic and stable ways in which people process and organize information (Messick, 1984). They determine how people process information, as well as how they use it for solving problems and making decisions (Hayes \& Allinson, 1998). Cognitive styles refer more to a preferred mode of reasoning than to cognitive ability, cognitive complexity or creativity level (Guilford, 1980; Leek, 1997). One of the most studied cognitive styles is wholistic-analytic dimension, which separates people who have tendency to process information at the global level to get a general overview (wholistic), and those who have tendency to process information in detail and separate it in specific characteristics (analytic) (Peterson \& Deary, 2006).

In this context, the aim of the present work was to assess the influence of cognitive style on results from projective mapping by evaluating differences between perceptual maps and sample descriptions from wholistic and analytic consumers.

2. Materials and methods

Two studies were conducted, one involving the evaluation of intrinsic product attributes and the other involving packages. In both studies consumers performed a Projective Mapping test and completed the wholistic-analytic module of the extended Verbal Imagery Cognitive Styles Test \& Extended Cognitive Style Analysis-Wholistic Analytic Test (Extended CSA-WA) (Peterson, Deary, \& Austin, 2003; 2005). The Extended CSA-WA is a higher-level, complex cognitive task comparing how long the participant takes to perform a wholistic task with how long they take to perform an analytic task (Peterson \& Deary, 2006). More concretely, it involves a matching figures task and an embedded figures task. The matching figures task contains 40 pairs of geometrical figures and requires participants to indicate whether they are identical or different, involving a wholistic cognitive strategy. The embedded figures test contains 40 simple geometrical figures embedded in complex figures and requires respondents to indicate if the simple figure is contained within the complex one, involving an analytic cognitive approach. The position of an individual along the wholistic-analytic dimension can be determined by the relative speed of processing matching figures and embedded figures (Davies \& Graff, 2006). Details of the studies are provided in the next sections.

2.1. Study 1 - Evaluation of intrinsic characteristics of chocolate flavoured milk

In this test, consumers performed a projective mapping to describe the sensory characteristics of chocolate flavored milk samples, basing their mapping on the evaluation of the intrinsic product properties only via blind tasting.

2.1.1. Participants

The study was carried out with 92 consumers, recruited from the consumer database of the Sensometrics \& consumer science research group (Universidad de la República, Montevideo, Uruguay) based on their consumption of chocolate milk and their
availability and interest to participate. Participants ranged in age from 18 to 34 (average 22.8 years old) and were 80% female. They signed an informed consent form and received a small gift for their participation. The high proportion of women participants in the study is not expected to have an influence in the results, as gender have not been shown to have a significant influence on cognitive styles (Riding et al., 1995; Peterson et al., 2005).

2.1.2. Samples

Eight samples of chocolate flavored milk samples were formulated following a fractional factorial design $\left(2^{4-1}\right)$ with the following variables: alkaline cocoa powder (2.5 vs. 1.5%), sugar (9.0 vs. 4.5%), vanilla (0.05 vs. 0%) and milk fat (3.2 vs. 1.6%). Sample formulation, presented in Table 1, was determined by pilot testing with trained assessors in order to have samples with perceivable differences in their sensory characteristics. Carrageenan (Ticaloid® 780 Stabilizer — Texture Innovation Center, TIC GUMS, Philadelphia, USA) at a concentration of 0.08% was used as thickener.

Samples were prepared using a Thermomix TM 31 (Vorwerk Mexico S. de R.L. de C.V., Mexico D.F. Mexico). The solid ingredients were mixed with the milk, previously heated to $70^{\circ} \mathrm{C}$ for 3 min . The dispersion was mixed for 1 min under gentle agitation (100 rpm), heated to $70^{\circ} \mathrm{C}$ for 4 min and cooled to $20^{\circ} \mathrm{C}$. Then, samples were placed in glass containers, closed, and maintained under refrigeration temperatures $\left(4^{\circ} \mathrm{C} \pm 1^{\circ} \mathrm{C}\right)$. They were removed from the refrigerator as needed immediately prior to sensory evaluation, and dispensed into plastic serving cups. Samples were coded using three-digit blinding codes.

Insert Table 1 around here
2.1.3. Data collection

The study took place in standard sensory booths, under white lighting, controlled temperature $\left(22-24^{\circ} \mathrm{C}\right)$ and airflow conditions. Data collection was carried out using Compusense Cloud (Compusense Inc., Guelph, Canada) in laptops. Consumers were asked to evaluate the samples and to place them on a rectangle presented on the screen, according to their similarities and differences, in a way that two samples perceived as similar should be located close together on the sheet, whereas samples perceived as very different had to be placed far from each other. They were asked to complete the task using their own criteria and they were told that there were no right or wrong answers. After locating samples, consumers were asked to provide a description of the sensory characteristics of each of the samples. Then, consumers had to try samples again and to rate their overall liking using a 9-point hedonic scale. After the projective mapping task participants completed the wholistic-analytic module of the extended Verbal Imagery Cognitive Styles Test \& Extended Cognitive Style Analysis-Wholistic Analytic Test (E-CSA-WA) (Peterson et al., 2003; 2005).

2.2. Study 2 - Evaluation of extrinsic characteristics of blueberry yogurts

In this test, consumers performed a projective mapping to describe the packs of yogurt samples, basing their mapping on the evaluation of the extrinsic product properties only (on-pack information) with no tasting.

2.2.1. Participants

One hundred consumers were recruited from Nofima's consumers' database, based on their frequency of consumption of yoghurt (once a week or more), and their availability and interest to participate. They were aged between 16 and 61 years old (36 years on average), half men and half women. They received a financial incentive for the participation.

2.2.2. Samples

Twelve commercial blueberry yogurts in individual servings were used in the study, bought in local supermarkets. Samples were selected to get a wide range of products in terms of type of product, brand, nutritional characteristics, and nutritional and health claims on the packages. Samples represented the main characteristics of the blueberry yoghurts available in individual servings the Norwegian market, covering a wide range of product extrinsic factors (Table 2). Sample selection was done for covering a wide range of parameters without being unbalanced towards one type. The idea was to have many different and somehow "interacting" parameters, so consumers really needed to engage in looking at the packs to do their maps (full fat, low fat, no sugar, with sugar, with added ingredients, for special diets: soy based, lactose free, etc). As an example "greek type" yogurt was included: one sample with fat, low sugar and fiber added (P1), a second greek yoghurt low in fat but with sugar added and a layer of fruit (P10), and a third greek yoghurt with both low fat and sugar and added muesli (P11).

Insert Table 2 around here

2.2.3. Data collection

Participants were instructed in the use of the projective mapping technique with a descriptive step and in the experimental procedure to evaluate the different aspects or characteristics of the yogurt packs. The method was explained to the participants through an example employing birds of different colours, shapes and types, without any mention to food. After the briefing, the participants received the eleven yoghurt packs and performed the projective mapping test with the use of a computerized data collection software (Eye Question). They were asked to complete the task using their own criteria and they were told that there were no right or wrong answers. After locating samples, consumers were asked to provide a description of the characteristics of each sample. Data were collected as the X and Y coordinates of the samples on each consumer's
individual map. After finishing the task, participants completed the wholistic-analytic module of the Extended CSA-WA.

2.3. Data analysis

The strategy for data analysis was identical in the two studies and is described below.

2.3.1. Cognitive styles

The cognitive style of each consumer was determined based on his/her relative speed in the matching figures and embedded figures task (Davies \& Graff, 2006). The coefficient between the median response time for the matching figures tasks (involving wholistic processing) and the median response time for the embedded figures task (involving analytic processing) was calculated. Consumers were divided in three groups of similar size based on the distribution of their median response times.

2.3.2. Projective mapping data

The X and Y coordinates of the samples on the individual consumer maps were determined by measuring their position on the bi-dimensional space used for sample evaluation, considering the left bottom corner as the origin of the coordinate system. The data from each consumer group were analysed separately using Multiple Factor Analysis (MFA), considering the coordinates from each consumer as a separate group of variables (Pagès, 2005). Confidence ellipses were constructed using partial bootstrapping (Dehlholm, Brockhoff, \& Bredie, 2012). Confidence ellipses are represented around sample coordinates to represent the uncertainty of the data in the multivariate space. In the present work, the area of the bi-dimensional space where samples could be located for a 95\% confidence level.

The words provided by consumers in the description phase of the projective mapping task were qualitatively analysed. Words with similar meaning were grouped into
categories, and their frequency was determined by counting the number of consumers who used them for describing each of the samples. The frequency table was considered as a group of supplementary variables in MFA (Pagès, 2005).

Similarity between the sample configurations of the three consumer groups with different cognitive style was evaluated using the RV coefficient (Robert \& Escoufier, 1976). The RV coefficient measures the similarity between two factorial configurations, taking the value of 0 if both configurations are uncorrelated, and the value of 1 if they are homothetic. The RV depends on the relative position of the points in the configuration, being independent of rotation and translation (Robert \& Escoufier, 1976; Vidal et al., 2014).

All data analyses were performed in R software (R Core Team, 2015). FactoMineR package was used for performing Multiple Factor Analysis (Lê, Josse, \& Husson, 2008)

3. Results

3.1. Study 1 - Evaluation of intrinsic characteristics of chocolate flavoured milk

The median W/A response time ranged between 0.88 and 2.34 s (Figure 1a). Based on this measure of cognitive style, consumers were divided into three groups of similar size: 31 wholistic consumers (median W/A response time between 0.88 and 1.24 s), 30 intermediate consumers (median W/A response time between 1.26 and 1.47 s), and 31 analytic consumers (median W/A response time between 1.48 and 2.34 s).

Insert Figure 1 around here

Figure 2 shows sample configurations in the first four dimensions of the MFA for each of the three consumer groups. Sample configurations showed moderate to high agreement in both the first and second dimensions ($\mathrm{RV}=0.85-0.90$) but low agreement in the third and fourth dimensions ($\mathrm{RV}=0.27-0.52$).

As shown in Figures 2a-c, the first dimension of the MFA was positively related to sweetness for the three consumer groups, whereas the second dimension sorted samples according to their chocolate flavour. This suggests that sweetness and chocolate were the main characteristics responsible for differences among samples regardless of the cognitive style. The main difference between the three consumer groups was related to the groups' ability to discriminate among samples. Sample configurations in the first two dimensions from analytic consumers provided the best discrimination of samples according to their sugar and cocoa concentration (Figure 2c), whereas the other two consumer groups partially discriminated among samples with different cocoa concentration. Wholistic consumers clearly separated sample 6 from the rest of the samples, and sample 5 from sample 3 according to their chocolate concentration (Figure 2a). Meanwhile, consumers with intermediate behaviour only discriminated samples according to their chocolate flavour when they contained high sugar concentration (Figure 2b).

Sample configurations in the third and fourth dimensions provided different information for the three consumer groups. These dimensions are less reliable than the first two; this was reflected in the size and overlapping of the ellipses, as discussed in depth in Naes et al. (2017). In the case of wholistic and intermediate consumers, higher dimensions did not provide information about differences among samples in additional sensory characteristics. Instead, they were also related to sweetness, chocolate flavour and bitterness and increased sample discrimination according to their sugar and cocoa concentration (Figures 2 a and 2 b). In the case of the analytic consumer group, the bisector of the third and fourth dimension sorted samples formulated with vanilla flavour (2,3,4 and 7) apart from samples formulated without this ingredient (1, 6,5 and 8)
(Figure 2c). However, it is worth stressing that the description of these groups of samples did not stress vanilla flavour. Instead, references to chocolate flavour intensity or other flavours were used in the descriptions: no chocolate flavour in the vanilla added and intense chocolate in the ones without vanilla; sweet and aftertaste in the vanilla added; artificial flavour and disgusting in the samples without vanilla,. This could be the effect of the vanilla on the overall perception, through flavour enhancement or multisensory interactions (sweet-vanilla, for example), even if the consumers did not name the vanilla attribute, they perceived the affects and were able to separate the samples accordingly.

Insert Figure 2 around here

3.2. Study 2 - Evaluation of extrinsic characteristics of yogurts

The median W/A response time ranged between 0.83 and 3.16 s (Figure 1b). Based on this measure of cognitive style, consumers were divided into three groups of similar size: 33 wholistic consumers (median W/A response time between 0.83 and 1.23 s), 33 analytic consumers (median W/A response time between 1.62 and 3.16 s), and 34 intermediate consumers (median W/A response time between 1.32 and 1.59 s).

Sample configurations in the first two dimensions of the MFA were highly similar for the three consumer groups ($\mathrm{RV}=0.91-0.95$). Regardless of cognitive style consumers tended to sort yogurt packages in three main groups (Figure 3a-c). One of the groups was composed of samples P4, P5 and P11, mainly described using words related to cereal, snack and muesli. Samples P2, P6, P8 and P9 composed another group of samples due to their association with the words wrapped and allergy. Wholistic and intermediate consumers included sample P7 in this group, whereas analytic consumers included it with the third group, composed of samples P1, P3, P10 and P12, which were described using words such as small, thick, dessert and greek. Nevertheless, the analytic and intermediate groups reached a better separation of the samples than the wholistic consumers in the first two dimensions of the MFA.

$$
\text { Insert Figure } 3 \text { around here }
$$

4. Discussion and Conclusions

Projective mapping relies on the evaluation of global differences among samples, which requires assessors to create an overall representation of samples based on their characteristics by a process of synthesis (Jaeger et al., 2000). Individual differences in information processing are expected to play a key role in this process and consequently to influence results from projective mapping tasks. In the present study, the influence of wholistic/analytic cognitive style on results from projective mapping with consumers was evaluated.

Across the two studies, analytic consumers showed a better discrimination among samples than wholistic consumers. This matches expectations as analytic consumers are expected to process information in more detail (Peterson \& Deary, 2006). This is based in dual-process theories of reasoning, which assume that there are two different processing routes: System 1, intuitive, rapid, automatic and holistic that allows individuals to take decisions mainly relying in the context, without a detailed analysis; and System 2, a more controlled, conscious, slow and analytic processing style (McElroy \& Seta, 2003; Evans, 2008). There are inter individual differences (Evans, 2008) as well as cultural differences in thinking styles (Nisbett et al., 2001).

Kim, Dessirier, van Hout, and Lee (2015) reported similar results to the ones described in the present work, when studying the influence of thinking style on affective discrimination. These authors evaluated thinking style using the Cognitive Reflection Test and reported that high reflection thinkers, which are usually more analytic, showed higher affective discrimination than low reflection thinkers, which are more wholistic in the way in which they search for and process information. Similarly, Kinner \& Borgartz (2015) reported that slow thinkers (predominance of system 2 for decision making) have
a higher ability to discriminate between samples than fast thinkers (system 1), in a retrospective analysis of 10 serial monadic consumer tests in central locations.

In Study 1, involving the evaluation of chocolate flavoured milk samples which differed in specific sensory characteristics, analytic consumers seemed to rely on more sensory characteristics than wholistic consumers. In this study, sample configurations of wholistic and intermediate consumers mainly discriminated samples according to their sweetness and bitterness/chocolate flavour, in both the first two and the first four dimension. However, sample configuration of analytic consumers identified three main sources of variation among samples and enabled their discrimination according to their sugar, cacao and vanilla concentration. According to Peterson \& Deary (2006) analytic people tend to process information in detail by separating it in specific characteristics instead of getting an overall picture as wholistic people. Therefore, analytic consumers may have found it easier to form their overall representation of samples in a larger number of sensory characteristics. In addition, results suggest that analytic consumers may have used strategies to represent three dimensions in the bi-dimensional sheet of paper. This is exemplified in Figure 4 using the evaluation sheet of one of the analytical consumers in Study 1. As shown, samples were not positioned on the sheet of paper according to two sensory dimensions; instead samples were grouped in the space according to multiple sensory characteristics, associated with their formulation. Samples were clearly sorted into two groups according to their sugar content. Within each group, the consumer used different strategies to sort samples according to their cacao and vanilla concentration. In the group of samples with 4.5% sugar, two groups were identified according to their cacao concentration. In addition, within each of the groups, the vertical dimension was used to represent increasing vanilla concentrations. Similar strategies have been reported before by Nestrud \& Lawless (2011), who reported that some participants used the "radial dimension" to represent and additional sensory dimension in projective mapping tasks. Similarly, Dehlholm (2014) reported that
projective mapping assessors use categorical projections and double linear projection to represent samples, which could be also used to represent three sensory dimensions.

Insert Figure 4 around here

In Study 2, involving yogurt packages that spanned the whole category of blueberry yogurts in the Norwegian market, results also highlighted an increased discrimination between samples by the analytic consumers, based on extrinsic characteristics only. Previous studies on consumers' perception of food extrinsic factors have highlighted differences on information processing; Ares at al. (2014) studied the influence of rational and intuitive thinking styles on consumer choice in a conjoint task using yogurt labels, concluding that consumers who predominantly relied on analyticalrational thinking engaged on a greater information search. In the same lines, Varela et al. (2014) observed in a projective mapping task on cereal packs (extrinsic information only), that consumers evaluated the packs differently in terms of attentional capture, some consumers reading more thoroughly the information, claims and nutritional info than others, that evaluated the samples in a more rough, faster way. Nevertheless, they observed that even when focusing more in depth in certain pack information, consumers not always used that information to locate or to describe similarities and differences among products. This is in agreement with the results of the present study, analytic consumers discriminated more between packs in the projective mapping task, suggesting they might have engaged in a deeper analysis of the yogurt packs; however, they described the products using similar words in the descriptive step (Figure 2, projection of the terms). A similar conclusion might be drawn for the chocolate flavoured milk study based on intrinsic product cues; the descriptive step did not highlight striking differences among groups in the words used.

Results from the present work reinforce the idea that different consumer groups may have different representation of the overall similarities and differences of samples,
as previously reported by Vidal et al. (2016) and Torri et al. (2013). Therefore, practitioners are encouraged to more frequently explore segmentation when analyzing data from projective mapping tasks. The most common approach so far has been to do segmentation based on the correlations between consumers and the MFA components (Vidal et al, 2016). It may, however, be more natural to consider procrustes based methods as discussed in Berget et al. (2016). A straightforward approach for doing this is the proclustrees method (Dahl \& Næs, 2004) which is hierarchical clustering on the distance matrix obtained by computing the Procrustes distance between all pairs of consumers. Another option is to modify the Fuzzy C means (FCM, Bezdek, 1981) criterion to minimize the GPA loss for each group. The FCM algorithm can then be combined with the noise clustering modification (Dave, 1991) in such a way the clusters are found sequentially. The advantage of the sequential approach is that the most distinct clusters are identified first whereas consumers not contributing to the clustering structure remain in a "rest" cluster.

Another methodological recommendation that emerged from the data relies on the need to consider higher dimensions in the interpretation of projective mapping tasks, as recently recommended by $N æ s$ et al. (2017). The first dimensions usually underestimates the complexity of the sensory space as they are expected to mainly discriminate samples according to two main sensory dimensions. However, most applications of projective mapping only consider two dimensions without further considering the information included in the third and fourth dimension, which may represent the perception of specific groups of consumers (Vidal et al., 2016).

Acknowledgements

For the work conducted in Norway support was received from the Norwegian Foundation for Research Levy on Agricultural Products through the research program "FoodSMaCK, Spectroscopy, Modelling and Consumer Knowledge" (2017-2020) and to FFL and the Research Council of Norway through the RapidCheck project. The authors
would also like to thank CAPES-Brazil and Comisión Sectorial de Investigación Científica (Universidad de la República, Uruguay) for financial support for the study conducted in Uruguay.

References

Albert, A., Varela, P., Salvador, A., Hough, G., \& Fiszman, S. (2011). Overcoming the issues in the sensory description of hot served food with a complex texture. Application of QDA®, flash profiling and projective mapping using panels with different degrees of training. Food Quality and Preference, 22, 463-473.

Allport, G. W. (1937). Personality: a psychological interpretation. New York: Holt \& Co.
Ares, G., \& Varela, P. (2014). Comparison of Novel Methodologies for Sensory Characterization.In P. Varela \& G. Ares (Eds.), Novel Techniques in Sensory Characterization and Consumer Profiling (pp. 365-389). Boca Raton: CRC Press. Ares, G., Mawad, F., Giménez, A., \& Maiche, A. (2014). Influence of rational and intuitive thinking styles on food choice: Preliminary evidence from an eye-tracking study with yogurt labels. Food Quality and Preference, 31, 28-37.

Bárcenas, P., Pérez Elortondo, F. J., \& Albisu, M. (2004). Projective mapping in sensory analysis of ewes milk cheeses: A study on consumers and trained panel performance. Food Research International, 37, 723-729.

Berget, I., Næs, T., Varela, P. (2016) Clustering data from projective mapping. 13th Sensometrics Conference. Brighton, 2016-07-27-2016-07-29

Dahl, T. \& Næs, T. (2004). Outlier and group detection in sensory panels using hierarchical cluster analysis with the Procrustes distance. Food Quality and Preference, 15, 195-208.

Dave, R. N. (1991). Characterization and Detection of Noise in Clustering. Pattern Recognition Letters, 12, 657-664.

Davies, J., \& Graff, M. (2006). Wholist-analytic cognitive style: A matter of reflection. Personality and Individual Differences, 41, 989-997.

Dehlholm, C. (2014). Chapter 9: Projective mapping and Napping. In P. Varela \& G. Ares (Eds.), Novel techniques in sensory characterization and consumer profiling. Boca Raton, FL: CRC Press

Dehlholm, C., Brockhoff, P. B., \& Bredie, W. L. P. (2012a). Confidence ellipses: A variation based on parametric bootstrapping applicable on multiple factor analysis results for rapid graphical evaluation. Food Quality and Preference, 26, 278-280

Dehlholm, C., Brockhoff, P. B., Meinert, L., Aaslyng, M. \& Bredie, W.L.P. (2012b). Rapid descriptive sensory methods - Comparison of Free Multiple Sorting, Partial Napping, Napping, Flash Profiling and conventional profiling. Food Quality and Preference, 26 267-277.

Evans, J. S. B. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annu. Rev. Psychol., 59, 255-278.

Guildford, J.P. (1980). Cognitive styles: what are they? Educational and Psychological Measurement, 40, 715-735.

Hayes, J., \& Allinson, C.W. (1998). Cognitive style and the theory and practice of individual and collective learning in organizations. Human Relations, 51, 847-871.

Hopfer, H. \& Heymann, H. (2013). A summary of projective mapping observations - The effect of replicates and shape, and individual performance measurements. Food Quality and Preference, 28, 164-181.

Jaeger, S.R., Wakeling, I.N., \& MacFie, H.J.H. (2000). Behavioural extensions to preference mapping: the role of synthesis. Food Quality and Preference, 11, 349359.

Kennedy, J. (2010). Evaluation of replicated projective mapping of granola bars. Journal of Sensory Studies, 25, 672-684.

Kim, M.-A., Dessirier, J. M., van Hout, D., \& Lee, H.-S. (2015). Consumer context-specific sensory acceptance tests: Effects of a cognitive warm-up on affective product discrimination. Food Quality and Preference, 41, 163-171.

Lê, S., Josse, J., \& Husson, F. (2008). FactoMineR: An R package for multivariate analysis. Journal of Statistical Software, 25, 1-18.

Leek, S. (1997). An investigation of consumers' decision processes and styles. PhD Thesis.: Birmingham, UK; The University of Birmingham.

Malhotra, N.K., Pinson, C., \& Jain, A.K. (2010). Consumer cognitive complexity and the dimensionality of multidimensional scaling configurations. Review of Marketing Research, 7, 199-254.

McElroy, T., \& Seta, J. J. (2003). Framing effects: An analytic-holistic perspective. Journal of Experimental Social Psychology, 39(6), 610-617.

Messick, S. (1984). The nature of cognitive styles: problems and promise in educational practice. Educational Psychologist, 19, 59-74.

Næs, T., Berget, I., Liland, K.H., Ares, G., Varela, P. (2017). Estimating and interpreting more than two consensus components in projective mapping: INDSCAL vs. multiple factor analysis (MFA). Food Quality and Preference, 58, 45-60.

Nestrud, M., \& Lawless, H. (2008). Perceptual mapping of citrus juices using projective mapping and profiling data from culinary professionals and consumers. Food Quality and Preference, 19, 431-438.

Nestrud, M. A., \& Lawless, H. T. (2011). Recovery of subsampled dimensions and configurations derived from napping data by MFA and MDS. Attention, Perception, \& Psychophysics, 73, 1266-1278.

Nisbett, R. E., Peng, K., Choi, I., \& Norenzayan, A. (2001). Culture and systems of thought: holistic versus analytic cognition. Psychological review, 108(2), 291.

Pagès, J. (2005). Collection and analysis of perceived product inter-distances using multiple factor analysis: Application to the study of 10 white wines from the Loire valley. Food Quality and Preference, 16, 642-649.

Peterson, E.R., Deary, I.J., Austin, E.J. (2005). Are intelligence and personality related to verbal-imagery and wholistic-analytic cognitive styles? Personality and Individual Differences, 39, 201-213.

Peterson, E.R., \& Deary, I.J. (2006). Examining wholistic-analytic style using preferences in early information processing. Personality and Individual Differences, 41, 3-14.

Peterson, E. R., Deary, I. J., \& Austin, E. J. (2003).The reliability of the Cognitive Styles Analysis test. Personality and Individual Differences, 34, 881-891

Peterson, E. R., Deary, I. J., \& Austin, E. J. (2003). On the assessment of cognitive style: Four red herrings. Personality and Individual Differences, 34, 899-904.

Peterson, E. R., Deary, I. J., \& Austin, E. J (2005). A new reliable measure of verbalimagery cognitive style. Personality and Individual Differences, 38, 1269-1281

Peterson, E. R., \& Deary, I. J. (2006). Examining wholistic-analytic style using preferences in early information processing. Personality and Individual Differences, 41(1), 3-14.

R Core Team. (2016). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Riding, R. J., \& Watts, M. (1997). The effect of cognitive style on the preferred format of instructional material. Educational Psychology, 17, 179-183.

Risvik, E., McEvan, J. A., Colwill, J. S., Rogers, R., \& Lyon, D. H. (1994). Projective mapping: A tool for sensory analysis and consumer research. Food Quality and Preference, 5, 263-269.

Robert, P., \& Escoufier, Y. (1976). A unifying tool for linear multivariate statistical methods: The RV coefficient. Applied Statistics, 25, 257-265.

Summers, J.O., \& McKay, D.B. (1976). On the Validity and Reliability of Direct-Similarity Judgments, Journal of Marketing Research, 13, 289-95.

Torri, L., Dinnella, C., Recchia, A., Naes, T., Tuorila, H., \& Monteleone, E. (2013). Projective mapping for interpreting wine aroma differences as perceived by naïve and experienced assessors. Food Quality and Preference, 29, 6-15.

Valentin, D., Chollet, S., Lelievre, M., \& Abdi, H. (2012). Quick and dirty but still pretty good: a review of new descriptive methods in food science. International Journal of Food Science and Technology, 47, 1563-1578.

Varela, P., \& Ares, G. (2012). Sensory profiling, the blurred line between sensory and consumer science. A review of novel methods for product characterization. Food Research International, 48, 893-908.

Varela, P., Antúnez, L., Cadena, R. S., Giménez, A., \& Ares, G. (2014). Attentional capture and importance of package attributes for consumers' perceived similarities and differences among products: A case study with breakfast cereal packages. Food Research International, 64, 701-710.

Vidal, L., Cadena, R.S., Antúnez, L., Giménez, A., Varela, P., \& Ares, G. (2014). Stability of sample configurations from projective mapping: How many consumers are necessary? Food Quality and Preference, 34, 79-87.

Vidal, L., Antúnez, L., Giménez, A., Varela, P., Deliza, R., \& Ares, G. (2016). Can consumer segmentation in projective mapping contribute to a better understanding of consumer perception? Food Quality and Preference, 47, 64-72.

Figure captions

Figure 1. Distribution of the coefficient between the median response time for the matching figures tasks (involving wholistic processing) and the median response time for the embedded figures task (involving analytic processing) for consumers who participated in Study 1 (chocolate flavoured milk) (a) and Study 2 (yogurt packages) (b).

Figure 2. Sample configurations and projection of the terms in the first four dimensions of the Multiple Factor Analysis performed on projective mapping data of consumer segments with different cognitive styles in the chocolate flavoured milk study: (a) wholistic consumers ($n=31$), (b) intermediate consumers ($n=30$) and (c) analytic consumers ($n=31$). The size of the font of the descriptive terms reflects the frequency of mention of each term in the PM task.

Figure 3. Sample configurations and projection of the terms in the first two dimensions of the Multiple Factor Analysis performed on projective mapping data of consumer segments with different cognitive style in the yogurt study: (a) wholistic consumers ($n=33$), (b) intermediate consumers ($n=34$) and (c) analytic consumers ($n=33$). The size of the font of the descriptive terms reflects the frequency of mention of each term in the PM task.

Figure 4. Example of the individual evaluation sheet of one of the analytic consumers in Study 1. Dotted ellipses represent groups of samples with similar characteristics in terms of formulation (sugar and cacao concentration), whereas the arrows represent increasing vanilla concentration.

Tables

598

.

Table 1. Concentration (\%) of cocoa, sugar, vanilla and fat of eight samples of chocolate flavored milk samples, formulated following a 2^{4-1} fractional factorial design.

Sample	Cocoa	Sugar	Vanilla	Milk fat
1	1.5	9.0	0	3.2
2	1.5	4.5	0.05	3.2
3	1.5	9.0	0.05	1.6
4	2.5	4.5	0.05	1.6
5	2.5	9.0	0	1.6
6	2.5	4.5	0	3.2
7	2.5	9.0	0.05	3.2
8	1.5	4.5	0	1.6

Table 2. Characteristics of the yogurt packages included in Study 2.

Sample	Samples' Characteristics
P1	Greek yoghurt, 2\% fat, Low Sugar, «protein 14g», «90kcal», «source of fibre»
P2	Yoghurt, Lactose free, Wholefat, w/Sugar
P3	Cultured milk, Fat free, Sugar free, «16g protein», «original Icelandic cultures»
P4	Fat free, Sugar free, w/muesli, «rich in protein and fibre»
P5	Bifidus-culture, w/Sugar, 2,8\% fat, w/cornflakes, «actiregularis»
P6	Soy fermented product, w/Sugar, 2\% fat, «with yoghurt cultures», «naturally lactose
free»	
P7	Yoghurt, Wholefat, w/Sugar, «Extra blueberry»
P8	Yoghurt, Fat free, Sugar free, «fruit yoghurt with fibre»
P9	Bifidus-culture, w/Sugar, 2,8\% fat, «actiregularis»
P10	Greek yoghurt, Fat free, w/Sugar, «thick and creamy», «a layer of blueberry pieces»
P11	Greek yoghurt, Fat free, Low Sugar, w/muesli, «protein 14g», «source of fibre»
P12	Curd, Wholefat, w/Sugar

