
Combining analysis of variance and three-way
factor analysis methods for studying additive
and multiplicative effects in sensory panel data

Q1 Rosaria Romanoa*, Tormod Næsb,c and Per Bruun Brockhoff d

Q3 Data from descriptive sensory analysis are essentially three-way data with assessors, samples and attributes as the
three ways in the data set. Because of this, there are several ways that the data can be analysed. The paper focuses
on the analysis of sensory characteristics of products while taking into account the individual differences among
assessors. In particular, we will be interested in considering the multiplicative assessor model, which explicitly models
the different usage of scale. A multivariate generalization of the model will be proposed, which allows to analyse the
differences in the use of the scale with reference to the existing structure of relationships between sensory
descriptors. The multivariate assessor model will be tested on a data set from milk. Relations between the proposed
model and other multiplicative models like parallel factor analysis and analysis of variance will be clarified.
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1. INTRODUCTION

In descriptive sensory analysis, a group of trained assessors,
the sensory panel, gives scores on a continuous scale for a
certain number of sensory attributes for all products in the
study. Besides studying variation in products/samples, which
is usually the main objective of the analysis, differences
between assessors and relationships among descriptors
should be taken into account in order to understand better
the system under investigation.
A number of methods have been proposed and used for the

purpose of analysing the different aspects separately and all
three aspects simultaneously, taking the three-way structure of
the data into account. The methods applied are often modifica-
tions or combinations of analysis of variance (ANOVA), principal
components analysis (PCA) and three-way factor analysis models,
depending on the focus of the study. Important examples of
methods, which have a solid basis in sensory analysis, are general
and used in many areas of statistics [1–6], while others are closely
related specifically to the effects that are specific for sensory
analysis [7–17]. Most of these methods have been illustrated in
a recent book [18].
One of the approaches given special attention in this paper is

the so-called multiplicative assessor model [9], which explicitly
models the product effect and the product × assessor interaction
effects by a joint multiplicative term. The model focuses on dif-
ferences in the different uses of the scale between assessors,
and it is based on the assumption that these effects are linearly
related to the main effects of products. It has been shown [16]
that scaling differences may considerably affect results of the
analysis. Therefore, the information about the differences
between the assessors in the use of the scale plays a crucial role.
First of all, because it is common practice in descriptive sensory
analysis to calculate and analyse the average of individual
judgments, correcting for scaling differences before averaging

may simplify and improve analysis. Second, the information on
these differences could be used to perform a pre-processing of
data in which any distortions could be resized. Furthermore, this
information could be used to improve the performance of panels
in the future. In a recent work [19, 20], the original assessor
model from [9] has been extended to the ANOVA mixed model
framework, the mixed assessor model (MAM), which is typically
needed to obtain the proper univariate statistical inference for
attribute-wise analysis of sensory data; see also [18]. In [19], the
focus is on how to obtain the proper analysis of the product in-
formation, and it is shown in a big meta-study of thousands of
sensory attributes that it clearly improves the attribute-wise
statistical power. In [20], it is shown how it is possible to
simultaneously obtain univariate assessor performance-focussed
analysis within the same mixed model framework. The model, as
it stands now, however, is essentially still a univariate model and
must be utilized for each sensory attribute separately. For this
reason and as this new work on the MAM is likely to increase
the future use of this approach for the analysis of sensory data,
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we aim in this paper to bridge the gap between the univariate
assessor model approach and the generic multivariate structure
of sensory data.
The main purpose of the present paper is to extend the multi-

plicative assessor model to comprise several attributes. A new
model named multivariate assessor model (MUAM) is proposed,
which explicitly models the product effect and the product ×
assessor interaction effects taking the multivariate structure of
the sensory descriptors into account. Here, too, as in the
univariate case, the focus is on scaling effects linearly related to
the main effects of products. As with all data compression
models, the basic assumption of the MUAM is that there is a
reduced number of latent variables that summarize the
relationships between sensory descriptors and that allow to
analyse sensory similarities and differences between the
products. Furthermore, the model assumes that assessors scale
the sensory attributes (manifest variables) in a different way.
The latter hypothesis is typical of the MUAM and differs from
other models proposed in the literature that suggest that
assessors perceive the same underlying sensory dimensions
(latent variables), but using these in different ways [8,15].
Different versions of the MUAM will, on one hand, be pre-

sented for the purpose of theoretically clarifying the characteris-
tics of the various models and the relations to existing models
and approaches. Some of them permit to demonstrate important
relations between a number of methods frequently used for
modelling sensory data. Some of the methods that will be in-
volved in the discussion are parallel factor analysis (PARAFAC)
[5], regular factorial ANOVA, ANOVA-simultaneous component
analysis (ASCA) [21] and PCA. On the other hand, a particular
version of the model will be presented as a valid analysis tool
for sensory data. This version of the MUAM permits to analyse
the product space, with the key consideration on the identifica-
tion of scaling differences among the assessors. It is based on a
multivariate component decomposition of the product effects
and scaling effects separately. Such a separate decomposition
allows to obtain information on the sensory differences and
similarities between the products, which is the main objective of
any sensory analysis, as well as information on the differences in
the use of the scale among the assessors considering the set of
sensory variables simultaneously. This additional information pro-
vided by the model may be used to perform a pre-processing of
data before continuing the analysis with the classical statistical
methods. This will improve the results of the analysis. In addition,
this type of information on the assessors performance is a great po-
tential for a panel leader to improve the future panel performance.
Such a specific multivariate extension of the assessor model for the
analysis of multivariate sensory data is a novelty. It gives insight
into the communality among the multiplicative effects that is not
obvious if each variable is treated separately. Furthermore, it links
more directly to a multivariate analysis of the product effects than
if each variables is transformed individually.
How to interpret, validate and estimate the model will be

discussed and visualized using an example from sensory analysis
of milk.

2. METHODS

2.1. Univariate assessor model

Let Yk
ijm denote the score of assessor i (i= 1, …, I) on attribute k

(k= 1, …, K) of the mth replicate (m= 1, …, M) of the jth product

( j= 1,…, J). A model accounting explicitly for all individual differ-
ences, apart from the so-called disagreement (refer to
succeeding discussions) is the multiplicative assessor model
[9,11]. The model can be formulated for each attribute k as

Yk
ijm ¼ ak

i þ bk
i vj þ e k

ijm; where ekijmeN 0; σ 2
i

� �
(1)

As can be seen, the model includes assessor main effects αi
and multiplicative interaction effects βivj, which are simply the
product of the scaling effect βi with the product effect vj.
Assessors with large βi use a larger portion of the scale than
the average assessor. Note that differently from a classical two-
way ANOVA with assessor, product and assessor × product
interaction, the model only treats the part of the interaction ef-
fects connected to the usage of the scale without considering
all the other non-additive assessor differences generally called
disagreement. In addition, the error variance (σ2i ) here allows for
different assessors’ variability. Specifically, the error terms eijm
include all systematic interaction effects not accounted for by
the multiplicative terms and individual differences between the
sensory replicates. Although both differences are important for
determining panel reliability incorporating, this aspect in a multi-
variate setting is beyond the scope of the present paper. For the
rest of this section, when considering univariate models, the k
superscript will be omitted.
The assessor model can also be written as

Yijm ¼ α i þ vj þ β�i vj þ eijm (2)

that is, a model that also incorporates the main effects for
product with β = 1+ β*. Note that the model can equivalently
be formulated with a general mean μ, but for the multiplicative
model, it is usually omitted.
In [9, 11], formal model fit hypothesis tests are suggested as a

way of investigating the validity of the assessor model.
For simplicity and without loss of generality, we will in the rest

of this paper, unless otherwise stated, subtract the assessor
means from the data, ending up with the model

Xijm ¼ vj þ β�i vj þ eijm ¼ βivj þ eijm (3)

This corresponds to correcting data by removing differences
between assessors in location (level effect).
The estimation of the model parameters is achieved by an

iterative algorithm described by the authors in their original
paper [9].
Note that the assessor model is closely related to the

model proposed by Mandel in 1971 [22], which consists in
the use of a multiplicative model based on PCA for modelling
of interactions:

Yijm ¼ μþ αi þ vj þ
X
a

tiapja þ eijm (4)

Here, a is the number of reduced dimensions in the
interactions. If one in the Mandel model assumes that a= 1 and
that vj= pj (or better proportional to each other), one ends up
with the multiplicative assessor model 2.

R. Romano, T. Næs and P. B. Brockhoff

wileyonlinelibrary.com/journal/cem Copyright © 2014 John Wiley & Sons, Ltd. J. Chemometrics (2014)

2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130



2.2. Multivariate assessor model

If the data (averaged over replications) are corrected for the
assessor-wise attribute averages, the assessor model 3
formulated for all attributes simultaneously (without assuming
any common structure among the attributes or samples) can
be written as

Xijk ¼ βikvjk þ eijk (5)

Then, it is clear from a data compression perspective that the
MUAM is simply the attribute-wise one-component PCA of the
assessors-by-products matrix without correcting for (removing)
product effects. But as can be noted, this model incorporates
no link between the attributes, that is, there is no modelling
involved associated with the relation between the attributes.
As sensory data rarely vary in the full dimensional space of all

attributes, a dimension reduction approach will often enhance
the stability and interpretability of the results. Hence, it is likely
to expect that similarly the scaling differences would also benefit
in the same way by a dimension reduction.
At this aim, we suggest some possible restrictions that can be

used to connect the attributes with each other. The main idea is
to assume a multivariate component decomposition of the
products effects and scaling effects separately, that is,

• an L-component product-by-attribute structure: ν̂ jk ¼
XL
l¼1

tjlplk

and

• an H-component assessor-by-attribute structure: β̂ ik ¼
XH
h¼1

cihdhk

The factor models can in principle be defined in different ways,
but here, we confine ourselves to PCA models. The former
component model is possibly the most obvious because prod-
ucts usually vary in a low-dimensional sensory space. Note that
for the maximum number of components, this is exactly model
5, so these assumptions represent a true restriction.
The full model using these restrictions and then called

restricted MUAM (RMUAM) can be formulated as:

Xijk ¼
XH
h¼1

cihdhk

 ! XL
l¼1

tjlplk

 !
þ eijk (6)

The parameters of the RMUAM are estimated by two indepen-
dent PCAs. The algorithm for the estimation of the model param-
eters is described in the Appendix.
As discussed earlier, the model in 6 imposes restrictions on

both the product effects and the scaling constants, but in a
rather flexible way. The extreme variant of this is to set the
number of components in both models equal to 1. This model will
here be called the one-component RMUAM and can be written as

Xijk ¼ ci1d1ktj1p1k þ eijk (7)

Note that model 7 represents a very strict assessor model; it
essentially assumes that the use of scale for a single assessor is
identical except for a multiplicative effect and that this effect is
the same for each attribute. In addition, this version of the model
is closely related to the one-dimensional PARAFAC model. This
connection will be discussed in a later section.

3. ASSESSING THE ADEQUACY OF THE
MULTIVARIATE ASSESSOR MODEL

The multivariate extensions of the assessor model lead to a hier-
archy of models as discussed earlier: the most flexible full MUAM
5 with no assumptions on the relations between attributes and
samples; the RMUAM 6, which reduces the dimensionality of
both the products and the scalings structures; and the one-
component RMUAM 7. Assessing this hierarchy of models in a
practical data analysis situation requires a strategy based on
different model comparisons with different focuses.

The test of adequacy of the MUAM 5 can be carried out by
simply checking for uni-dimensionality of the individual PCA
models. If some attributes follow the multiplicative structure
and others do not, it may be possible to continue further investi-
gations with the former group only. Or one may choose to use
the MUAM whether it fits the data completely or not, knowing
that in this way the generic scaling effect has now been sepa-
rated from the real perceptual disagreement effects. The latter,
represented by the residuals from the MUAM, could then be sub-
jected to further multivariate analysis to study this information.

Then the RMUAM 6 should be evaluated for different numbers
of components in each of the two modes (product and scaling).
The question is whether there is a link between the attributes
that can be adequately modelled by a reduced factor model in
at least one of the two modes.

Another way of assessing the validity of the RMUAM consists
in evaluating how much variability is explained by ignoring
information on scaling differences among assessors. This can
be carried out by calculating the model explained variance but
replacing the predicted X̂ ijk values with the product-by-attribute
averaged data for each ith assessor slice, that is, by replicating
the vjk matrix I times. If the explained variance computed in this
way is close to the ones obtained from the RMUAM, then this is
an indication of a poor performance of the RMUAM. In other
words, a multivariate model accounting also for the scaling
effects does not provide further insights in the analysis of data.

Implicit in the assessment of RMUAM 6 is the check of the
validity of the one-component RMUAM 7, as one component is
one of the models that take part in this comparison.

4. ASSESSING THE QUALITY OF THE
RESTRICTED MULTIVARIATE ASSESSOR MODEL

The model in 6 provides three different types of explained
variance by combining the predicted values from the two PCA
fits into predicted values for the full model:

• the model explained variance relative to the total variation

1�

X
ijk

Xijk � X̂ ijk
� �2
X
ijk

X2
ijk

(8)

• the product explained variance relative to the total product variation

1�

X
jk

vjk � v̂ jk
� �2
X
jk

v2jk
(9)
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• the scaling explained variance relative to the total scaling variation

1�

X
ik

βik � β̂ ik

� �2
X
ik

β2ik
(10)

The model explained variance can be calculated for all the
combinations of possible number of components in the two
separated PCAs. This is possible because the two decompositions
are independent from each other, which means the product
variation and the scaling variation can be decomposed by a
proper number of components according to their respective
structure. The optimal number of components for the full model
comes up from the combination of the two PCAs producing the
highest model explained variance.
Besides different explained variances, the RMUAM also

provides different sets of loadings, which can be plotted in order
to visually detect both how products differ with respect to the
sensory descriptors and how these descriptors are scaled
differently by assessors.

5. RELATIONS OF THE MULTIVARIATE AS-
SESSOR MODEL WITH ANOVA AND
THREE-WAY FACTOR ANALYSIS

Another interesting way of combining PCA and ANOVA was pro-
posed by Smilde and co-workers [21]. The method is called ASCA
and is based on using standard multivariate ANOVA for estimat-
ing the effects and then using PCA for each of the effect matrices
separately. The PCA can, however, also run on matrices that are
composed of combinations of, for instance, main effects and
interactions matrices. Note that the estimated interaction matrix
for multivariate response data can be matricized/unfolded
before PCA in different ways according to the three
dimensions/ways of the data set. Alternatively, the cube of
interactions can be directly investigated by three-way methods.
This is the strategy behind PARAFASCA model [23], which uses
PARAFAC as a three-way method to explore interactions.
In the following, we will consider the multivariate ANOVA on

data averaged over replicates and with the assessor effects
subtracted, that is,

Xk
ij ¼ νkj þ γkij þ ekij (11)

Again, the mean is subtracted from each assessor and attri-
bute combination, and therefore, no assessor or average effect
is needed. The νkj ’s are the sample main effects, the γkij ’s are the

interactions between assessors and attributes and the ekij ’s are
the error terms. For this model, an ASCA/PARAFASCA approach

provides least squares estimates of the effects matrices Λ ¼
νkj
n o

and Γ ¼ γkij
n o

and then analyses the two matrices

separately by PCA or PARAFAC. If we, in addition, assume that
both the matrices can adequately be fitted by one-dimensional
PCA and PARAFAC models, we end up with

Λ ¼ tjpk (12)

and

Γ ¼ aisjrk (13)

for the terms. Assuming further that the j (product) dimensions
are identical (tj= sj), and also that the k (attribute) dimensions
are identical (pk= rk), we end up with the following model for Xijk:

Xijk ¼ 1þ aið Þtjpk ¼ a�i tjpk (14)

which would have been identical to one-component RMUAM in
6 if ai= cidk, that is, if assessors had presented the same scalings
for the different latent dimensions. In other words, the estimated
ANOVA model with a PCA/PARAFAC decomposition of each of
the effects accompanied with restrictions discussed earlier leads
us to the same restricted model as was obtained in 7 using a
totally different approach.
On the other hand, the one-component RMUAM is also strictly

related to PARAFAC model:

Xijk ¼ ci1d1ktj1p1k þ eijk ¼ cidktj þ eijk (15)

In fact, it corresponds to a one-component PARAFAC model of
the matrix X, which is centred for each assessor and attribute
combination.
The two models are not exactly the same because of the con-

straint in the RMUAM model that the scalings average to 1. How-
ever, this difference can easily be removed if the 1-term is
introduced in the scaling part:

Xijk ¼ 1þ
XH
h¼1

cihdhk

 ! XL
l¼1

tjlplk

 !
þ eijk (16)

The one-component RMUAM can then be written as

Xijk ¼ 1þ ci1d1kð Þ tj1p1k þ eijk (17)

At this point, the comparison between the fit of the model 17,
which corresponds to a one-component PARAFAC model, and of
the RMUAM 6 selecting one-component for both the scaling and
the product mode, will produce the same results.

6. RESULTS

6.1. Data description

Six varieties of milk with respect to two dairy cow breeds
(Holstein Friesian (HF) and Jersey (JE)) and six different farms
(UGJ, HM, EMC, OA, JP and KI) were profiled by a panel of 10 as-
sessors over nine descriptors (green and feed odour, yellow and
grey appearance, creamy, boiled milk, sweet, bitter and sourness
flavour). The samples were evaluated in three replicates, ran-
domized within the full experiment, according to a continuous
scale anchored at 0 and 15. The data were collected in a three-
way table (samples × assessors × attributes) with the J ×M
products (J= 6 products in M= 3 replicates) as the first way,
the I= 10 assessors as the second way and the K= 9 attributes
as the third way.
The MATLAB® (Mathworks, Inc., Natick, MA) software has been

used for implementing multivariate data analysis and making
plots. All analyses for multi-way models were performed in
MATLAB® using the PLS_Toolbox version 4.0 (Eigenvector
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Research, Manson, WA). Additional in-house made routines using
the R free software were used for implementing the MUAM.
First, a two-way ANOVA with assessor and interaction as

random effects is run on the raw data. Results in FigureF1 1 show
the attribute-wise (1� p-value) for all the effects in the model.
As it can be seen, there is a significant assessor effect (1� p-value
0.95) for all attributes but feed odour and sourness flavour. There
are significant differences among products for the four
attributes: yellow and grey appearance, and creamy and sourness
flavour. Finally, there are significant assessor × product interac-
tion effects for all the attributes apart from sweet flavour.
Results from PCA on raw data averaged across assessors and

replicates can be seen in FigureF2 2. The biplot shows a strong
separation among samples with respect to the cows’ breed on
the first principal component, which explains most of the
variation (77.4% Exp. Var.). Specifically JE milk is described as
yellow, creamy and sweet milk, whereas the HF samples are
characterized by the sensory attributes grey appearance, bitter
and boiled milk flavour. The second principal component
(16.7% Exp. Var.) discriminates samples within the same race. In

particular, the UGJ-JE milk presents higher values on the
attributes sourness flavour and feed odour.

In the following, only data corrected for the assessor level
effect will be used.

6.2. Assessing the multivariate assessor model

As discussed in Section 3, assessing the appropriateness of the
MUAM is a multi-step procedure according to the MUAMmodel’s
hierarchy.

6.2.1. Testing the full multivariate assessor model

The first step consists in checking for attribute-wise one-
component PCA of the assessor-by-product matrix corrected
for the assessor effects. Figure F33 shows that the uni-
dimensionality assumption is satisfied in more than half of the
cases. The first principal component explains most of the variabil-
ity for all the sensory attributes except for grey appearance,
creamy flavour and feed odour, whereas the second component
also plays an important role. Figure 3 also shows that the amount
of variance explained by the first principal components of the
different PCAs is very high as compared with the variability
explained by the remaining components.

6.2.2. Testing the restricted multivariate assessor model

The second step of the models comparison strategy consists in
testing the adequacy of the RMUAM to focus on how much of
the variation in the interaction structure is explained by the model.
This model comparison is carried out by modelling only the six
variables that have passed the first test, that is, the variables pre-
senting a uni-dimensional structure of the assessor-by-product
matrix (green odour, yellow appearance, and boiled milk, sweet,
bitter and sourness flavour).

At this point, the RMUAM 6 is computed for each combination
of components in the two separated PCA models. Note that the
testing of the one-component RMUAM 7 will be part of this when
the one-component structure for the two separated PCA models
is taken into account.

Results in Table T1I show how the best model is the one with two
components in the product structure and two components in
the scaling structure because it explains more variability
(61.8%), while it seems that beyond the third dimension, the
increase is modest. Here, the explained variance is computed
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with respect to the total variability of data with the main effect of
the assessors removed. As the algorithm behind the model does
not provide a global fit but just refit the scalings taking the
product structure fixed throughout, the explained variances in
the table increase as the number of components in the scaling
structure increases but could decrease when the number of com-
ponents in the product structure increases. A RMUAM solution
with two components in the product structure and two compo-
nents in the scaling describes 98.5% of the product variation
(Table I, third column), 76.4% of the scaling variation (Table I,
third row) and 61.8% of the total variation (Table I, second
column). The product variation corresponds to the explained
variance in the two PC components of the product information,
that is, the PCA on the averaged assessors corrected data (Table I,
third column). The scaling variation corresponds to the explained
variance in the two PC components of the scaling information
estimated by the RMUAM (Table I, last row). The total variation
corresponds to the variation explained by the RMUAM relative
to the total variance, that is, the total variance of the full cube
of assessor-corrected values. This solution explains almost
the same variation (69.2%) as the full model withQ4 (5, 8) compo-
nents, respectively. This underlines the advantage of the RMUAM
in explaining a major part of the information by using a reduced
number of components. The RMUAM fit can also be compared
with the situation where only the average product configuration
is used as the model for all the assessors. Results in Table I high-
light the good performance of the RMUAM because the
explained variances of all its possible combinations of the two
dimension are always higher than those obtained by considering
only the average product configuration (Table I, last column).
The loading plot of the two-component model fitting the

scaling structure is shown in FigureF4 4. This plot allows visualizing

and exploring the relationships between assessors and attributes
concerning the scaling effects. Specifically, Figure 4 shows how
assessors use the scale differently for each attribute. In fact, it
can be seen that assessors 4 and 6 utilize a large range of the
scale for attributes green odour and boiled milk flavour, which
are situated in the positive direction of the first component.
Assessors 10 and 2 have also high scalings, but for the sourness
flavour attribute located in the opposite direction. Finally, the
assessors who are at the far ends of the second principal
component are those that show differences in range for the
attributes bitter and sweet flavour. There are no substantial
differences for the attribute yellow appearance located at the
origin of the axes.
In order to have a feedback on the results of the RMUAM, the

standardized deviations of each assessor with respect to each at-
tribute are shown in Figure F55. As can be seen, all assessors have
the same mean equal zero (denoted by the ‘x’ markers) because
the data were corrected in order to remove the individual differ-
ences in location. The graphs for individual attributes confirm the
presence of a higher range: assessors 2 and 10 on sourness
flavour, assessor 3 on sweet flavour and assessors 4 and 6 on green
odour and boiledmilk flavour. In addition, assessors 8, 5 and 1 have
very small range on the attribute bitter flavour. In fact, these are the
same assessors who were located on the opposite side of this var-
iable in the loading plot of the RMUAM. Furthermore, the detailed
information of Figure 5 confirms the absence of differences in use
of scale for the attribute yellow appearance.
As discussed in Section 3, implicit in the assessment of

RMUAM is the validation of the one-component RMUAM. Results
in Table I show that a model with one component in both the
product and the scaling structures explains 46% of the total
variability, which is quite low compared with the model with
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Figure 3. Explained variances from attribute-wise PCA.
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Table I. Explained variance from the RMUAM for each combination of components in product and scaling structures

Scaling structure PCA on
product averages

Product PCA as model
for full data matrix

PC1 PC2 PC3 PC4 PC5 PC6

Product structure PC1 46.0 51.3 51.8 52.4 54.1 55.6
PC2 55.5 61.8 63.3 63.9 66.9 68.4 98.5 50.2
PC3 56.3 62.1 63.5 64.1 67.2 68.6 99.5 50.7
PC4 56.7 62.6 63.9 64.4 67.5 69.0 99.9 51.0
PC5 56.9 62.9 64.1 64.6 67.7 69.2 100.0 51.1

PCA on scaling values 44.5 76.4 89.4 95.6 99.5 100.0
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two components (61.8%). The one-component RMUAM is then
inappropriate for the milk data.

7. DISCUSSION AND CONCLUSIONS

In this paper, we have discussed the problem of analysing
the sensory data as three-way data by taking into account
all the three ways of information: products, assessors and
attributes.
We have emphasized the importance of considering the

individual differences among assessors in the use of the scale
in a multivariate perspective that takes into account the relation-
ship between the sensory variables.
As a first contribution, we have extended the univariate

assessor model to comprise several attributes. In its more general
version, we have shown how the MUAM is simply the attribute-
wise one-component PCA of the assessors-by-products matrix
corrected for the assessor effects. Thus, considering the uni-

dimensionality of the milk data, we have found out that it is
appropriate for a restricted group of variables.

As the MUAM does not take into account relations among the
different sensory attributes, a restricted version of it defined
RMUAM has been presented, which can be used to connect
the attributes among them. It is based on a principal component
decomposition of both the product and the scaling effects. In its
first version (not shown in the paper), the proposed algorithm for
the estimation of model parameters consisted in an iterative pro-
cedure that calculated recursively the PCA on the product ef-
fects, the assessor-attribute-wise scalings and the PCA on the
estimated scalings. However, the algorithm that was set up this
way did not produce any reasonable results when an attempt
to actually optimize jointly the model Q5was made. Thus, the alter-
native was to consider two separate PCAs: one to decompose the
product structure and one to decompose the scaling structure.
The predicted values from the two PCAs are then combined in
order to obtain predicted values for the RMUAM. Note that this
two-step procedure based on a simple separated PCA allows to
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Figure 4. Score and loading plot of the assessor-by-attribute structure from two-component RMUAM.
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estimate the RMUAM without fitting it globally as a truly multi-
way model. We have tested this model on milk data for each
combination of components in the two separated PCA models.
Results have highlighted the advantage of the model in
explaining a major part of the information by using a reduced
number of components. It has also been shown that the RMUAM
provides a better understanding of the data because it explains
more information compared with the situation where only the
average product configuration is used as the model for all the
assessors. Note that the RMUAM also provides graphical outputs
to visualize and explore relations between assessors and attri-
butes concerning the scaling structure. This is a great potential
of the model because a few simple graphics (loading plots from
the two separated PCAs) give you information on the sensory
differences and similarities between the products, and the differ-
ences in the use of the scale among the assessors considering
the set of sensory variables simultaneously.
The extreme variant of the RMUAM consists in setting the

number of components in the two separated PCAs equal to 1.
This type of model has been called one-component RMUAM. It
has been theoretically compared with other methods frequently
used for modelling sensory data: ANOVA and PARAFAC. In the
first case, we have shown that the estimated ANOVA model with
a PCA decomposition of the product effects and a PARAFAC de-
composition of the interaction effects under some assumptions
leads to the one-component RMUAM model. In the second case,
we have discussed how the one-component RMUAM is very
close to a one-component PARAFAC model on a matrix centred
by subtraction of the main effects and interactions between
assessors and attributes. Specifically, one-component RMUAM is
comparable with PARAFAC, but results cannot be exactly the
same owing to the constant 1-term in the scaling part.
An apparent limitation of the MUAM in all of its versions is that

it only looks at scaling effects, so it does not fit the entire data
when there are attributes present with real perceptual disagree-
ments. However, it can still play the important role of separating
the generically present scaling part of the interaction prior to
subsequent multivariate methods, to make sure that the scaling
effect is not mistaken for any other effect in the data.
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APPENDIX: ALGORITHM FOR THE ESTIMATES
OF THE PARAMETERS IN THE RESTRICTED
MULTIVARIATE ASSESSOR MODEL
The decomposition of the product structure is based on a PCA of
the matrix of product-by-attribute averaged data:

vjk ¼
XL
l¼1

tjlplk þ ejk

The decomposition of the scaling structure is based on a PCA of
the assessor-by-attribute matrix holding the attribute-wise scalings:

βik ¼
XH
h¼1

cihdhk þ eik

The attribute-wise scalings βik are estimated by assessor-wise
least squares linear regressions of the observations Xijk on the
given product values vjk. The least squares criterion can be
written as X

ijk

Xijk � βikνjk
� �2
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