
Highlights 

• A total of 14 wine sensory attributes were modelled from grape chemical measures.  

• Causal and correlational relationships were determined with chemometric modelling. 

• Five grape measures were used extensively for modelling. 

• Seven grape measures may be redundant in any future objective quality 

measurements. 
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Abstract 1 

In an investigation of objective measures that link grape composition to wine quality, this 2 

study sought to identify Cabernet Sauvignon grape parameters that predict the sensory 3 

properties of the corresponding wines. Eleven chemical measures comprising volatile and 4 

non-volatile compounds, enzyme activity plus standard industry harvest measurements 5 

were applied to grape samples obtained from different regions throughout South Eastern 6 

Australia over three vintages. Grapes underwent controlled vinification and the resulting 7 

wines evaluated with sensory descriptive analysis. The entire multi-vintage data sets were 8 

combined and modelled using a combination of partial least squares (PLS) and sequential 9 

and orthogonalised (SO) -PLS regression techniques. Optimal models were obtained with 10 

single sensory attributes rather than global modelling with the entire sensory profile. Five 11 

grape chemical measures, which in the main were harvest parameters, were used along 12 

and orthogonalised to model 14 sensory attributes of the Cabernet Sauvignon wines. The 13 

seven remaining measures were not used due to their poor ability to model wine sensory 14 

attributes, with enzyme activity and tannin by HPLC explaining the least. The study 15 

revealed new insights into the relationship between grape chemistry and wine sensory 16 

characters, which has implications for developing an objective measurement system for 17 

determining grape quality. 18 
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1. Introduction 23 

Measuring the chemical composition of grapes is of primary importance to wine 24 

producers so that informed decisions that affect style and quality can be made about 25 

harvest timing and vinification. As an extension of this, objective measures of grape 26 

quality that can help predict the sensory properties of wines are highly sought after by the 27 
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industry and actively pursued by wine researchers. Some insight has been provided by 28 

discoveries of important varietal compounds in grapes that lead to a direct contribution 29 

to wine sensory attributes, with notable examples being methoxypyrazines (green and 30 

vegetal) and rotundone (black pepper) (Allen & Lacey, 1998; Wood et al., 2008). Yet the 31 

entire grape to wine continuum remains poorly understood due to the complex interplay 32 

between grape composition and vinification interventions (i.e., interactions between 33 

chemical, biological and human phenomena). 34 

Simplistically, decision-making by winemakers chiefly relies upon tracking 35 

changes in basic chemical measures of grapes that include pH, titratable acidity (TA), 36 

total soluble solids (TSS), and colour for red grape varieties. Beyond this, grapes may 37 

also be assessed for flavour (Niimi, Boss, Jeffery, & Bastian, 2017; Niimi, Boss, Jeffery, 38 

& Bastian, 2018) and then wine styles created according to the winemaker’s 39 

craftsmanship and perceptions. Undoubtedly, winemakers cannot make high quality 40 

wines without grapes of a suitable standard, with the difference between high or low 41 

quality grapes often being reflected in the price per tonne. Take for example one of the 42 

world’s great red cultivars, Cabernet Sauvignon, where the price per tonne of grapes 43 

purchased in Australia in 2018 varied between AUD$354 to AUD$7300 (Wine Australia, 44 

2019b). However, questions remain, particularly with regard to which chemical 45 

constituents differ to justify such large price differences between parcels of grapes, and 46 

how any differences impact on wine style and quality. 47 

A wide range of compositional and biochemical factors in grapes are known to 48 

influence the chemical constituents of wines in the form of both volatile and non-volatile 49 

compounds (Waterhouse, Sacks, & Jeffery, 2016). These ultimately contribute to the 50 

holistic perception of wine quality through traits such as flavour, mouthfeel, and colour. 51 
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Wine volatile compounds contributing to aroma and flavour are derived from grapes by 52 

a number of mechanisms and can be classed as fermentative or varietal. Fermentative 53 

compounds such as volatile acids, esters, alcohols and some sulfur compounds such as 54 

H2S arise during fermentation either from glycolysis or metabolism of amino acids in 55 

grapes that provide a key component of yeast nutrition, leading to an array of volatile 56 

yeast secondary metabolites (Sumby, Grbin, & Jiranek, 2010; Ugliano & Henschke, 57 

2009). In contrast, varietal compounds including terpenoids, methoxypyrazines, sulfur 58 

compounds, and C13-norisoprenoids are directly transferred from grapes to wine as free 59 

volatiles or are liberated from bound precursors (e.g., glycosides or amino acid 60 

conjugates) during fermentation (Ebeler & Thorngate, 2009; Robinson et al., 2014a). 61 

With reference to Cabernet Sauvignon, some grape-derived volatiles have been correlated 62 

to aroma attributes of the wines: 2-pentylfuran was associated with aroma impact, ethyl 63 

acetate with pepper, heptanal with spicy, and 3-isobutyl-2-methoxypyrazine (IBMP) with 64 

woody/tobacco attributes (Forde, Cox, Williams, & Boss, 2011). 65 

Wine is of course, more than simply volatile compounds and there are other 66 

constituents in the majority such as non-volatile compounds derived from grapes that 67 

contribute to taste, colour, and texture. In fact, the wide range of sensory modalities 68 

perceived including aroma, taste, colour, and texture all contribute to a better 69 

discrimination of wine sensory perception and thereby wine quality judged by experts 70 

(Niimi, Boss, & Bastian, 2018). Non-volatile compounds are also prominent in wine, with 71 

the most abundant being organic acids and glycerol. Acids primarily contribute to taste 72 

and carry through from the grapes to the wine (e.g., tartaric, malic, acetic, and 73 

hydroxycinnamic acids) or are formed from yeast (e.g., succinic and pyruvic acids) and 74 

lactic acid bacteria metabolism (e.g., lactic acid), whereas glycerol is a by-product of 75 
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glycolysis (Antalick, Perello, & de Revel, 2012; Cappello, Zapparoli, Logrieco, & 76 

Bartowsky, 2017). In the case of red wine in particular, grape skin- and seed-derived 77 

polyphenols are an important class of non-volatile compounds that comprise pigmented, 78 

monomeric, and polymeric forms, including anthocyanins, flavonols, flavan-3-ols, and 79 

tannins. These are extracted during the maceration step of red winemaking and contribute 80 

to colour, taste and mouthfeel sensations (Waterhouse et al., 2016). The relative 81 

abundance of polyphenolic compounds, in particular anthocyanins and tannins, in grapes 82 

appear to be a reliable indicator of their amount in wine (Bindon et al., 2014; Chira, 83 

Schmauch, Saucier, Fabre, & Teissedre, 2009). 84 

Due to the complexity, greater understanding of the links between grape chemical 85 

composition and the sensory characteristics of resultant wines is required to give 86 

producers an enhanced ability to make wines of a targeted style and quality. This approach 87 

contrasts with the many studies that have investigated the correlation between wine 88 

chemical composition and sensory characteristics (Robinson et al., 2014b). Extending this 89 

to examine the impacts of grape composition on wine sensory properties is comparatively 90 

less understood (Niimi, Boss, et al., 2017; Niimi, Boss, Jeffery, & Bastian, 2018).  91 

From a sensory perception approach, some key sensory attributes of Cabernet 92 

Sauvignon wines including colour, dark fruit aroma and flavour, and mouthfeel can be 93 

related to the sensory profile of the berries (Niimi, Boss, et al., 2017). However, berry 94 

attributes that contributed to the modelling varied across vintages, which presents a 95 

challenge when trying to relate data sets from different years (Niimi, Boss, et al., 2017; 96 

Niimi, Boss, Jeffery, & Bastian, 2018). Establishing reliable grape measures that can 97 

robustly predict wine sensory attributes stands as a significant challenge in the wine 98 

research field. 99 
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This study tested the hypothesis that grape chemical measures can contribute to 100 

the modelling of wine sensory attributes for Cabernet Sauvignon. Grape samples were 101 

harvested over three vintages and 12 different, independent groups of measurements were 102 

made on the grapes and used as predictors of the sensory profile of the Cabernet 103 

Sauvignon wines produced from these grapes with a uniform winemaking protocol. With 104 

multiple blocks and multiple vintages to model, the sequential and orthogonalised-partial 105 

least squares (SO-PLS) (Næs, Tomic, Mevik, & Martens, 2011) approach was taken to 106 

determine the grape measures that are most important for prediction of the sensory 107 

perception of wines.  108 

 109 

2. Materials and methods 110 

2.1 Grape samples and winemaking 111 

A total of 75 samples were harvested across the 2013, 2014, and 2015 vintages 112 

(25 samples per year) from eight geographical indications (GI) of South Eastern Australia 113 

and from identical vineyards across the three years wherever possible (Table 1). GIs are 114 

designations to specific regions of Australia that identifies goods and products of 115 

particular quality and reputation, in this case grapes and wines (Wine Australia, 2019a). 116 

Repeat access to some samples was not possible for various commercial reasons so 117 

substitutions were made from nearby vineyards within the same region. Grapes were 118 

harvested from February to April of each vintage and involved collecting bunches from 119 

all parts of the canopy, from both sides of vines spread throughout the vineyards. Sixty 120 

kg of grapes were sampled from each vineyard, and three subsamples of 150 g were taken 121 

from the large parcel, frozen immediately in liquid N2 and stored at -80 °C pending further 122 
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analysis. Samples were harvested at commercial maturity (between 22 - 25˚Brix) and the 123 

50 kg parcels were vinified separately and identically as described previously (Niimi, 124 

Boss, et al., 2017), in order for differences in the grapes to be reflected in the wines. 125 

Sampling and data generated from 2013 samples have already been reported previously 126 

(Niimi, Tomic, Næs, Jeffery, Bastian, & Boss, 2018). Vinification involved destemming 127 

and crushing the grapes, with the addition of 50mg/L Potassium Metabisulphite (PMS). 128 

Musts were fermented using Saccharomyces cerevisiae at a rate of 300mg/L (EC1118, 129 

Maurivin) at 19°C and inoculated with Oenococcus oeni (2mg/L of Lalvin VP41, 130 

Lallemand S.A.S.) on the second day for malolactic fermentation and the temperature 131 

raised to 20°C. Fermentation continued until residual sugars were less than 2g/L, followed 132 

by pressing of ferments from the skins into 20 L stainless steel kegs. Ferments were held 133 

at 20°C until the completion of malolactic fermentation with malic acid below 0.2g/L. 134 

Ferments were adjusted with PMS to free SO2 levels of 40mg/L, potassium bitartrate 135 

added at 4g/L and cold settled at 0°C. The wines were racked off lees and free SO2 136 

readjusted to 40mg/L. Wines were not adjusted for pH to retain the inherent differences 137 

between the samples. Wines were bottled under nitrogen gas and kept at 15˚C for three 138 

months to allow for bottle shock, prior to any sensory testing. The produced wines used 139 

were the same as those wines reported on previously (Niimi, Boss, & Bastian, 2018; 140 

Niimi, Boss, et al., 2017). 141 

2.2 Grape chemical measures 142 

A suite of chemical profiles was determined for the grapes, encompassing volatile 143 

and non-volatile compounds, and typical harvest measures according to the analytical 144 

methods described previously (Niimi, Tomic, et al., 2018) (Table 2). Briefly, 12 different 145 

parameters consisting of a number of variables (analytes) were evaluated: harvest 146 
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measures (X01), amino acids (X02), targeted volatile compounds (X03), non-targeted 147 

volatile compounds (X04), bound volatile compounds (X05), colour (X06), total phenolics 148 

and tannins (X07), anthocyanins (X08), tannins (X09), flavonols (X10), fatty acids (X11), 149 

and lipoxygenase enzymes (X12). Chemical measures X01 by weight, total soluble solids, 150 

pH, and TA, X03-05, 11 were performed by gas chromatography-mass spectrometry, X02, 08-151 

10 were performed using high performance liquid chromatography (HPLC), X06 by 152 

CIELab tristimulus, X07 by UV spectrophotometry, X12, by spectrophotometry. Every 153 

sample from each vintage was subsampled randomly from grape bunches in triplicate 154 

from the parcels.  155 

2.3 Wine sensory analysis 156 

The procedures for sensory analyses of wines from the 2013-2015 vintages have 157 

been described previously (Niimi, Boss, & Bastian, 2018; Niimi, Boss, et al., 2017) but 158 

the subsequent data obtained were subject to different analyses and interpretation in the 159 

current study. In short, assessors who had experience in tasting wine or who were 160 

screened for sensory performance according to the international standards organisation 161 

(ISO) participated in the sensory descriptive analysis of research-scale Cabernet 162 

Sauvignon wines. At the beginning of tasting wines of each vintage, vocabularies were 163 

developed and refined to list attributes that are relevant to the samples as well as the 164 

vintage. This was followed by training in the use of scales, as well as discrimination 165 

ability, agreement within the panel, and repeatability. All sensory data were collected in 166 

triplicate per assessor. These overall means were utilised for chemometric analyses. 167 

Sensory analyses were conducted with the approval of the university human ethics 168 

committee (H-2014-057). All wines were assessed within 6 months of bottling. 169 
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2.4 Data analysis 170 

Means were calculated from the replicates of each chemical measure in each 171 

vintage before further chemometric data analysis. Sensory measures were also calculated 172 

as means over the assessors and over the replicates to give an overall sample average for 173 

the panel. 174 

Mean measures of each data block within each vintage were checked for 175 

systematic variance by inspection of principal component analysis (PCA) plots. One 176 

sample was identified as an outlier (14CWA5) based on sensory data and was therefore 177 

removed from each data block, leaving 74 samples for further data analysis. Each data 178 

block per vintage was analysed with one-way analysis of variance (ANOVA) for sample 179 

effects with replicates representing the source of error in the models. Significantly 180 

different variables (α = 5%) within a block per vintage were noted for further data 181 

analysis. To exclude vintage effects, variables in each data set were standardised within 182 

vintage by mean centring and division by the standard deviation prior to further 183 

modelling. Having eliminated possible mean differences and differences in variability, 184 

the standardised data blocks were stacked vertically with matching variables to give long 185 

data blocks. During this process, variables that had missing values in any vintage were 186 

removed from the entire combined data set, since the implementation of the SO-PLS 187 

algorithm does not handle missing values. To minimise noise in the modelling, this was 188 

followed by the removal of variables in each data block that did not differ significantly 189 

among the samples for any vintage according to one-way ANOVA as described above. 190 

For example, the sensory data block dimensions for each vintage were different, with 28, 191 

32, and 28 attributes being measured in 2013, 2014, and 2015, respectively. Upon 192 

stacking and matching the same sensory variables measured across the vintages, followed 193 
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by removing variables that did not significantly differ in any of the vintages, a table 194 

containing 21 attributes remained for the final modelling stage. The resultant number of 195 

variables for each data block determined by this method of variable reduction is presented 196 

in Table 2. 197 

Data analysis procedures used specifically for SO-PLS (Næs et al., 2011) 198 

including partial least squares (PLS) have been described previously (Niimi, Tomic, et 199 

al., 2018). This method incorporates X-blocks sequentially after orthogonalization with 200 

respect to previously included blocks. 201 

Briefly, when all sensory variables were considered at the same time, a regular 202 

PLS2 model was first used to fit each X-block independently (chemical measures) to the 203 

Y-block (wine sensory data). Three criteria were implemented for the progression of data 204 

analysis. As a first criterion, input blocks that accounted for at least 10% validated 205 

explained variance (using full cross-validation) were retained and any blocks that 206 

accounted for less were removed from further data analysis. Further analyses with the 207 

retained data blocks were performed using SO-PLS2. For the inclusion of block number 208 

two in the SO-PLS process, 5% improvement in validated explained variance was used 209 

as a second criterion (Menichelli, Almoy, Tomic, Olsen, & Naes, 2014; Niimi, Tomic, et 210 

al., 2018). This was realised by modelling the X-blocks with the Y-block using PLS2 with 211 

an appropriate number of components. The blocks with the lowest root mean square error 212 

of cross validation (RMSECV) were then selected. Holding the optimal model parameters 213 

from PLS2 constant, an additional X-block was orthogonally added from the remaining 214 

data blocks and modelled with PLS2. The second X-block that gave the lowest RMSECV 215 

with an appropriate number of components was chosen. These steps were repeated until 216 

no further improvement in models was seen with further orthogonal addition of X–blocks, 217 
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as determined with RMSECV and validated explained variance values. As the third 218 

criterion, the importance of adding X-blocks to the prediction of Y-block/variables was 219 

determined using cross validation-analysis of variance (CV-ANOVA) (Indahl & Naes, 220 

1998) as an indicative analysis of block contribution. The CV-ANOVA was tested at  = 221 

0.1 instead of 0.05 due to the large transformations that take place when grapes are 222 

vinified into wines, meaning the statistical significances are supposed to be moderate at 223 

best.  224 

Finally, Y was predicted from the most optimal model using principal components 225 

of prediction (PCP) to yield scores and loadings plots for the series of X-blocks and the 226 

Y-block used for the SO-PLS models (Langsrud & Næs, 2003). All models were fitted 227 

using a maximum of four components for each X-block (Niimi, Tomic, et al., 2018). The 228 

progression of PLS1 for individual variables followed by SO-PLS1 used the same 229 

procedures described above for PLS2 and SO-PLS2.   230 

All analyses were performed using the Python programming language (Python 231 

version 3.5) utilising the Python packages numpy (Peréz & Granger, 2007), IPython 232 

(Oliphant, 2007), pandas (McKinney, 2010), and statsmodels (Seabold & Perktold, 2010). 233 

The Python implementation of SO-PLS was coded in-house. 234 

 235 

3. Results and discussion 236 

3.1 Data trends due to vintage effects 237 

As an initial approach, similarities in data sets across vintages were evaluated by 238 

determining pairwise RV coefficients for each X-block (grape measures) using samples 239 
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that were common across the 2013-2015 vintages (Table S1). As a general guide, an RV 240 

coefficient of >0.7 indicates high similarity between pairs of data sets (Cartier et al., 241 

2006). Many of the pairwise RV coefficients determined across years were low (below 242 

0.7), highlighting that measures between vintages were vastly different. The only 243 

exception was seen with data block X06 (CIELab) with RV coefficients of 0.63, 0.70 and 244 

0.76 between respective pairs, suggesting these colour-related measures were similar 245 

across the vintages (Table S1). Other moderate similarities were seen for X02 (amino 246 

acids) in all vintages as well as X08 (anthocyanins) when comparing 2013 and 2015 247 

vintages. This preliminary evaluation revealed in general the vast differences in each of 248 

the data sets across vintages.  249 

 The impact of vintage was also evident in the PCA plots of the descriptive sensory 250 

analysis data being standardised either across or within vintages, with the first two 251 

principal components accounting for 73% and 51% of explained variance, respectively 252 

(Fig S1). Standardisation across all samples yielded scores plots that clearly discriminated 253 

by vintage, with 2015 segregated in the top left of the plot. The resultant loadings revealed 254 

that 2015 wines typically had higher astringency, hue, and body but were lower in some 255 

fruity characters, whereas the 2013 and 2014 vintages were characterised by higher scores 256 

for sensory attributes other than those in the top left quadrant  257 

This contrasted with standardisation within a vintage, which resulted in 258 

discrimination based on region instead of vintage (Fig. S1) as observed when assessing 259 

data from a single vintage (Niimi, Boss, & Bastian, 2018; Niimi, Boss, et al., 2017). 260 

Overall, the RVL samples were projected negatively on PC1, in the opposite direction of 261 

the WBY and McV wines. The majority of the CWA as well as CV samples were 262 

projected toward positive PC1 and negatively on PC2 whereas BV wines were projected 263 
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positively on PC2. These samples possessed higher intensities of mouthfeel, green, dark 264 

fruit, and pepper characters alongside taste intensities. The samples LC and EV in contrast 265 

varied across vintages. Standardisation within vintage before stacking the data sets 266 

together before any modelling was therefore necessary in order to determine differences 267 

by region rather than vintage.  268 

3.2 Global modelling of wine sensory profiles using SO-PLS2. 269 

The sensory profiles of the Cabernet Sauvignon wines were modelled using SO-270 

PLS2, with vertically stacked X-blocks of the three vintages, each standardised within 271 

vintage. To limit the chances of over-fitting the models, the optimum model (number of 272 

components) was determined using a single X-block prior to proceeding with the 273 

orthogonal addition of other X-blocks (Niimi, Tomic, et al., 2018), with a maximum of 274 

two X-blocks ultimately employed (as described in section 2.4). Colour from CIELab 275 

measures (X06) gave the highest validated explained variance as the first block (22.6%, 276 

Fig. 1a). The orthogonal addition of the harvest measures data block (X01) increased the 277 

validated explained variance to 28.8% (Fig. 1a) with two components giving a lower 278 

RMSECV (Fig 1b). Furthermore, modelling the Y-data set using X06 as the first block 279 

(CIELab colour) followed by X01 as the second block (harvest measures) significantly 280 

reduced the residual sum of squares through CV-ANOVA at p<0.001 and p=0.006, 281 

respectively. The CV-ANOVA showed that adding a second X-block (harvest measures) 282 

provided a significant increase in validated explained variance of the sensory profile, even 283 

though the increase was relatively small. Using CIELab and harvest measures met all 284 

three criteria required for consideration in modelling sensory profiles (see section 2.4 for 285 

the criteria). Orthogonal addition of a third X-block did not improve the model further 286 

with any X-block remaining. 287 
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The PCP scores and loadings based on the original X-data blocks of X06 and X01 288 

to model Y showed that most of the RVL samples were projected on negative PC1 (Fig. 289 

2a). These samples characteristically had high scores for confectionery and red fruit 290 

sensory attributes, along with light colour and low b* values being correlated (Fig. 2b). 291 

In contrast, samples projected positively on PC1 were predominantly from CWA, McV, 292 

and WBY and had high a* and Hue (ab) as well as TSS and Brix.  Accordingly, these 293 

wines were seen to have more depth of colour and dark fruit characters with more intense 294 

mouthfeel characters. Differences observed across regions supported previous reports 295 

where colour is predominantly driven by the climactic variations in temperature that 296 

influence pigment formation within the grape berries (Mori, Goto-Yamamoto, Kitayama, 297 

& Hashizume, 2007; Ojeda, Andary, Kraeva, Carbonneau, & Deloire, 2002). The RVL 298 

region is known to have a hot climate where the synthesis of anthocyanins is 299 

comparatively lower (and thereby lower depth of colour and hue) than the cooler regions 300 

such as CWA and WBY (where higher concentrations of anthocyanins lead to deeper 301 

colour) (Hall & Jones, 2010). The orthogonal addition of the second X-block 302 

predominantly discriminated samples on the second PC, however the loading for °Brix 303 

discriminated the samples the most, based on its position near the outer ellipse of the 304 

correlation loadings plot (Fig. 2b). Further, the loading for °Brix correlated with both 305 

bitterness taste and alcohol mouthfeel. Little discrimination was seen based on the 306 

variation of ripeness (std dev Brix), or bunch and berry weights, and the variations in 307 

these measures (std dev bunch and berry weights). pH was a variable that moderately 308 

discriminated samples on the PCP plots. 309 

In line with a previous report, fitting entire Y-blocks may have compromised the 310 

performance of SO-PLS2 evidenced by the low validated explained variance and high 311 
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RMSECV (Niimi, Tomic, et al., 2018). Therefore, single sensory attributes were 312 

investigated, using a combination of PLS1 and SO-PLS1. By doing so, this provides the 313 

opportunity to model attributes with underlying differences across the samples that may 314 

not have been otherwise determined with global modelling. 315 

3.3 Modelling single sensory attributes using PLS1 and SO-PLS1 316 

Analyses with PLS1 or SO-PLS1 were used to determine the X-blocks that 317 

contributed to the individual wine sensory attributes. During the initial modelling stage 318 

using PLS1, optimal models were obtained for each sensory attribute by computation with 319 

each X-block. Nineteen sensory attributes that were modelled met the minimum criteria 320 

of 10% validated explained variance, and models were determined for each attribute using 321 

up to 3 components (Table 3). Two taste attributes (acid and fruit sweetness) did not result 322 

in models that satisfied the minimum criteria and will not be interpreted or discussed 323 

further.  324 

Seventeen of the 19 attributes were best modelled using a single X-block with 325 

PLS1, as orthogonal addition of a second X-block did not further improve the models in 326 

terms of increases in validated explained variance and CV-ANOVA. The remaining two 327 

attributes were modelled with SO-PLS1 using up to two X-blocks, as the validated 328 

explained variance met the minimum required improvement of 5% upon 329 

orthogonalisation. Further, orthogonal addition up to three X-blocks did not improve the 330 

models of attributes using SO-PLS. CV-ANOVA calculations for the PLS1 and SO-PLS1 331 

models were used to determine whether the modelling with one or two blocks 332 

significantly contributed to the explanation of single Y-variables. Twelve PLS1 models 333 

showed a significant (p<0.1) contribution by the incorporation of single X-blocks (Table 334 
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3). The remaining five PLS1 models of A_Confectionery, A_Savoury, F_Confectionery, 335 

F_Green, and T_Bitter did not indicate a significant contribution of orthogonally adding 336 

a second X-block to the explanation of Y data blocks due to the models being weak from 337 

comparatively higher RMSECV values (Table 3). Only the significant PLS1 models 338 

according to CV-ANOVA will be interpreted hereafter. CV-ANOVA calculations on SO-339 

PLS models showed that overall aroma and body mouthfeel were the only attributes that 340 

had significant contributions (p<0.1) from the two X-blocks (Table 3). Other attributes 341 

including colour hue, dark fruit aroma and flavour, and savoury flavour only had a 342 

significant contribution of the first X-block (data not shown), thus data analysis was taken 343 

as far as PLS1 for these attributes. Positive and negative coefficients were determined for 344 

significantly contributing X-variables in each PLS1 and SO-PLS1 model (Table 4.). 345 

Depth and hue of colour attributes were modelled with CIELab colour (X06) 346 

measures as expected; depth being modelled with the highest validated explained 347 

variance at 66.9% and hue being 48.7% (Table 3). Measures a* (redness) and chroma 348 

correlated positively with high intensities of depth and hue of wine appearance, while L* 349 

(lightness) correlated negatively for both attributes (Table 4). Dark fruit aroma and 350 

flavour were also modelled with the total tannins and phenolics with the same variables 351 

positively contributing to the attributes (Table 4). It is likely the case that the dark fruit 352 

attribute models were correlative, as total phenolics and tannins themselves are unlikely 353 

to directly translate to dark fruit aromas. Likewise, with red fruit attributes, aroma was 354 

modelled with flavonols measures whereas flavour was modelled with CIELab colour 355 

measures. The contribution of flavonols and CIELab colour measures as a predictor for 356 

red fruit perhaps implies correlative rather than causative effects, simply because 357 

flavonols and pigments are not volatile for the perception of aroma and flavour 358 



 

17 

 

perception, respectively. However, it is possible that the differences in colour reflects 359 

changes in the expression of VvMYBA genes, which are the transcription factors that 360 

regulate anthocyanin production, that have been shown to regulate other genes in grape 361 

berries (Rinaldo et al., 2015), some of which could affect composition of the fruit and 362 

wine. The differences in anthocyanin concentration in the berry skin may also alter the 363 

light quality in the berry which, in turn, may alter fruit composition. Despite dark and red 364 

fruit characters being most likely a complex mixture of volatile compounds (Robinson et 365 

al., 2014b), these attributes could be conceptually driven by the intensity of colour, 366 

determined from expectations by colour (Spence, Levitan, Shankar, & Zampini, 2010). 367 

This phenomenon has been demonstrated in simple systems (Zellner & Whitten, 1999) 368 

and further work would be beneficial to confirm this hypothesis in wine, in that colour 369 

may contribute to the difference between perceived red fruit vs dark fruit characteristics. 370 

Other mechanisms could however concurrently be at play. It is possible that indirect 371 

correlations between colour and red/dark fruit characters are being described by the 372 

models, where maceration of skins during wine fermentation can increase intensities of 373 

red or black berry aromas (Pineau, Barbe, Van Leeuwen, & Dubourdieu, 2011). Higher 374 

levels of polyphenolic constituents in wine has been shown to influence intensities of 375 

various aroma attributes in wine (Perez-Jiménez, Chaya, & Pozo-Bayón, 2019).  376 

Astringency mouthfeel was modelled best with CIELab measures, where 377 

calculated hue from a* and b*, a*, and chroma measures were positive contributors while 378 

b* and L* were negative contributors to the attribute (Table 4). Modelling of astringency 379 

could be considered as a direct correlation with pigmented polyphenolics, as there is 380 

evidence that anthocyanins and their oligomeric forms can contribute towards astringent 381 

mouthfeel characteristics (Gawel, Francis, & Waters, 2007; Sáenz-Navajas et al., 2017). 382 
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The attribute was also modelled alternatively with PLS1 using two components, where 383 

the X-block was total phenolics and tannin (X07) and this resulted in a validated explained 384 

variance of 47.1% (data not shown). The model was comparatively more complicated and 385 

perhaps over-fitted compared to CIELab, because of the extra component required whilst 386 

yielding a validated explained variance. Nevertheless, total tannin concentrations in 387 

grapes can correlate well with that in wine when extracted under wine like conditions 388 

(Bindon et al., 2014) and total tannin concentrations in wine are known to positively 389 

correlate with astringency (Smith, Mercurio, Dambergs, Francis, & Herderich, 2007), 390 

which accords with the current study. On the other hand, tannin profiles (X09) measured 391 

by means of HPLC were comparatively poorer at modelling the sensory data, based on 392 

the considerably lower validated explained variance (15.8% with one component, data 393 

not shown). Thus, despite the relationship between measures of grape total 394 

phenolics/tannins with astringency, elucidating the role of specific tannins from grape 395 

and astringency perception in wine remains challenging to determine (Vidal et al., 2004). 396 

Pepper flavour and alcohol mouthfeel were modelled best using harvest measures, 397 

namely °Brix for both attributes (Table 4). A direct correlation between °Brix and alcohol 398 

mouthfeel is to be expected but nevertheless indicated the reliability of the modelling 399 

method. Interestingly, the projection of scores in  the PLS1 model for pepper flavour was 400 

very similar to that of alcohol mouthfeel (Fig S2 and S3) and pepper character has been 401 

reported to change with TSS (Heymann et al., 2013).This flavour attribute is characteristic 402 

of the grape-derived compound rotundone, a sesquiterpene usually associated with the 403 

Shiraz variety, although low concentrations have been measured in Cabernet Sauvignon 404 

wines (Wood et al., 2008). However, the relationship of harvest measures with pepper 405 

flavour and alcohol attributes in the current study were so similar that they are likely to 406 
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be linked to ripeness as a common factor. In fact, pepper flavour and alcohol mouthfeel 407 

gave a significant positive Pearson correlation of 0.565 (p<0.001). Pepper flavour and 408 

alcohol mouthfeel correlation had been seen with two vintages previously (Niimi, Boss, 409 

et al., 2017) and the relationship appears consistent when modelling across three vintages 410 

(after standardisation within vintage).  411 

Green aroma was explained by targeted volatiles (X03) (Table 3), which included 412 

compounds that are known to impart green characteristics (hexanal and IBMP) (Preston 413 

et al., 2008). However, X-block X03 was not a significant contributor to green flavour 414 

based on CV-ANOVA, with a low validated explained variance at 21.7% (Table 3). This 415 

suggests that the perception of the green attribute was better modelled as an aroma 416 

modality because of greater discrimination through orthonasal perception, which is 417 

known to be more sensitive than retronasal aroma perception due to a lower perceived 418 

threshold (Diaz, 2004). In contrast to the present work, IBMP in Cabernet Sauvignon 419 

grapes did not appear to contribute to green characteristics modelled in the wines (Forde 420 

et al., 2011). The differences in these studies may reflect the different descriptors used 421 

for the character imparted by IBMP to the wines, which was described as 422 

“woody/tobacco” in Forde et al. (2011) and “green” in the current study. 423 

Overall aroma was one of the two attributes that was modelled with two blocks 424 

using SO-PLS1 (Table 3). The first block that modelled best was flavonols (X10) with two 425 

components giving 35% explained variance. Similar to the model for red fruit aroma 426 

attribute, the likelihood for the relationship with flavonols is either correlative or 427 

causative. The second data block that significantly contributed to modelling the attribute 428 

was harvest measures using one component and improving the model by 14.9%. Positive 429 

contributors to overall aroma intensity were °Brix, variation of °Brix, and pH (Table 4). 430 
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These results are in agreement with previous work on Cabernet Sauvignon wines 431 

produced with grapes harvested as a function of °Brix, which showed increases in the 432 

intensity of overall aroma with riper grapes (Schelezki, Šuklje, Boss, & Jeffery, 2018). 433 

Those authors reported a decrease in berry weight with later ripening dates, and especially 434 

at harvest due to berry shrivel in the hot 2015 season and interestingly, the weight of both 435 

bunches and berries were negatively correlated with overall aroma in the current study 436 

(Table 4), implying that smaller weight of fruit increases overall aroma. Berry shrivel 437 

may have also been one of the causes as some of the samples, for example CV, were 438 

consistently observed to have proportions of shrivel at commercial harvest.  439 

The mouthfeel trait of body was the second attribute modelled by SO-PLS1, using 440 

CIELab colour measures followed by harvest measures as the two X-blocks. In particular, 441 

Chroma, a*, and °Brix correlated highly with this attribute. At first glance, colour and 442 

harvest measures do not appear to have any relation to body, where body was a measure 443 

of the mouth-filling sensation of wine on the palate. Body has been reported to be 444 

influenced by ethanol and glycerol (Gawel, Sluyter, & Waters, 2007). Results were 445 

consistent with literature where higher bodied wine was produced from extended grape 446 

ripeness (Schelezki et al., 2018). There is also the possibility that body is related to 447 

cognitive expectation based on the intensity of attributes from other modalities as wine 448 

body was recently found to have little reference to texture but rather more related to 449 

holistic perception of flavour and its intensity (Niimi, Danner, Li, Bossan, & Bastian, 450 

2017). It is plausible that body may extend to incorporate colour intensity associations 451 

such as colour with more intense body may be unavoidable because of top-down 452 

psychological phenomena.   453 
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To summarise, the strategy employed in this study has provided insights into the 454 

important grape measures for Cabernet Sauvignon that may contribute to the variation in 455 

sensory perceptions of wines. A total of 19 wine sensory attributes that were common 456 

across three vintages (2013-2015) were assessed and 14 of the attributes were modelled 457 

with either one (PLS1) or two blocks (SO-PLS1) of grape measures (X-blocks) from the 458 

suite of 12 grape chemistry measurements. Most optimal models were determined using 459 

five of the 12 blocks (Table 3), where harvest measures (X01) was used most often (five 460 

sensory attributes). This was followed by simple assays giving measures of total 461 

phenolics and tannin (X07) as well as CIELab (X06) colour, which modelled three 462 

attributes each and flavonols (X10) used to model two attributes. The targeted volatiles 463 

block (X03) was used to model one attribute, suggesting the specificity of certain volatiles 464 

with the attribute. Notably, the remaining seven X-blocks of grape chemical measures 465 

produced suboptimal models, at least from the progressive modelling approach of SO-466 

PLS; those X-blocks were amino acids (X02), non-targeted volatiles (X04), bound volatiles 467 

(X05), anthocyanins (X08), tannins (X09), fatty acids (X11), and enzymes (X12). In fact, 468 

enzyme activity and tannin measures explained the least amount of validated explained 469 

variance during initial modelling stage with PLS1. These seven measures were redundant 470 

from the modelling of the data, which therefore suggests that for future studies, the 471 

number of grape chemical measures can be minimised to the most meaningful blocks for 472 

the prediction of sensory attributes. Leaving out redundant X-blocks would ease the 473 

burden of computing many models for SO-PLS and simplify the data analysis process, as 474 

well as better focus on the selection of metabolites for measurement. This of course 475 

requires validation of the current models with prediction and perhaps further vintage data 476 

collection. 477 
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Modelling single sensory attributes common to the three vintages gave further 478 

details into the contributing chemistry underlying their possible cause of the perceived 479 

attribute, providing models with improved validated explained variance that were 480 

consistent with the best models from single vintage data (Niimi, Tomic, et al., 2018). 481 

Measures related to colour (CIELab or Total phenolics and tannins) were prominent X-482 

block predictors for attributes. Similar observations were made in the current study to 483 

previous findings, where F_Dark fruit, MF_Body, C_Depth, and MF_Astringency were 484 

modelled with either CIELab or Total phenolics and tannins (Niimi, Tomic, et al., 2018). 485 

It was often observed that models using CIELab or Total phenolics and tannins as X-486 

blocks resulted in similar explained validated variances but with slight differences in the 487 

number of components used. F_savoury was an attribute that was modelled only with one 488 

block (X01 harvest measures), which was different from the previous work (which was 489 

X05, bound volatile compounds) (Niimi, Tomic, et al., 2018), and therefore this attribute 490 

should be interpreted with care. Further studies to reassess the nature of the savoury 491 

flavour attribute and the relative importance of measuring it should be considered before 492 

deeper investigation of the grape chemical measures that best model this attribute.  493 

3.4 Challenges and limitations 494 

One of the major challenges faced was obtaining identical samples across vintages 495 

from all regions. All samples tested were commercially grown throughout South Australia 496 

and some samples were not able to be harvested repeatedly year after year, due to 497 

vineyards being removed for commercial reasons. Direct comparisons by sample series 498 

across years therefore were not always possible.  499 
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The choice of the 12 grape measures to model sensory perception of wine was 500 

based on the available knowledge of possible metabolomics measurements in grapes at 501 

the time. It is possible that other types of useful grape measures exist that may be 502 

important for the prediction of wine sensory perception such as berry sensory analysis 503 

(Niimi, Boss, et al., 2017). A significant challenge in future is the identification of 504 

additional grape metabolome measures that have possible implications for sensory 505 

perception in the corresponding wines (Bokulich et al., 2016; Fabres, Collins, Cavagnaro, 506 

& Rodríguez López, 2017; Pinu, 2018; Rochfort, Ezernieks, Bastian, & Downey, 2010). 507 

The seven grape measures that did not produce optimal models for any sensory attribute 508 

of Cabernet Sauvignon does not necessarily imply that these measurements will be 509 

redundant for the prediction of other grape varieties. The “redundant” measures may 510 

contribute to sensory attribute predictions through complex formation mechanisms that 511 

have a direct correlation. Many of these measures are plausible for other varieties and 512 

their ability to predict sensory perceptions of those corresponding wines remains to be 513 

determined. 514 

The removal of the prominent vintage effect during pre-processing was an 515 

important step in order to fulfil the objectives of the study. This made it possible to 516 

determine the underlying differences between grape samples rather than by yearly 517 

influences. It also meant that data from different vintages can be stacked thereby 518 

increasing the number of samples, which is beneficial in determining stable PLS models. 519 

A caveat when standardisation of data sets within vintage before stacking into a larger 520 

table for analysis is that the values are no longer raw, i.e., to the scale of the original 521 

measurements. Therefore, the RMSECV values do not reflect the scale of the original 522 

responses and prediction with unknown samples using raw data points e cannot be added 523 



 

24 

 

to expand the models unless a complete data set in the new vintage is collected and pre-524 

processed with standardisation. Although standardisation will not influence explained 525 

variances of the models, future work would benefit from optimised designs to account for 526 

confounding and challenging factors that do not require vintage standardisation. This may 527 

involve the inclusion of control samples within each vintage to assist in removing vintage 528 

as a factor in the data handling stage to eventually allow for prediction of new samples.  529 

For any PLS analyses, models are susceptible to over-fitting and the analyst is 530 

required to scrutinise the best number of components required in a model for optimal 531 

variations explained. With so many blocks of data there is an added challenge, which is 532 

to determine the predictor blocks that give optimal models and to verify that the models 533 

make sense. In the case of the current study, data modelling was performed conservatively 534 

using full cross-validation and the progressive modelling approach based on limiting the 535 

number of components up to four per X-block The number of components was fixed for 536 

each stage before going to the next.  537 

An aspect of cross-validation in this case is that for each step in the sequence, a 538 

sample is kept out from a geographical area which is already present in the calibration 539 

set. Especially for small data sets, this may in some cases lead to somewhat overoptimistic 540 

prediction with respect to potential prediction ability in other regions not represented in 541 

the data set. However, the focus here is on interpretation rather than universal prediction 542 

ability and given that the data set is relatively large, this was not viewed to be an issue 543 

here. Nonetheless, to check that the results generally hold for Cabernet Sauvignon outside 544 

the regions studied, the model must be tested on data from other locations. In order to 545 

shed some light on this issue, segmented cross-validation was performed using year and 546 

area of production as segments. The predictions were reasonable in both cases (data not 547 
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shown), indicating the potential for using a similar model with fruit from other 548 

geographical origins.    549 

Minor variation of panel members is at times unavoidable and may contribute to 550 

variation in descriptive analysis data, as well as drifts in data across time despite using 551 

the same panel. However, it is also possible to yield similar data sets with different 552 

members of panels across the same data set, provided that consistent training procedures 553 

are undertaken (Drake et al., 2005). The challenge in describing wine is that its complex 554 

nature as a product can make it difficult to be certain that different panel members 555 

understand the same attributes in the same way across vintages. Further, there may have 556 

been unique attributes that were only detected within a single vintage that were not 557 

captured in the current study, because the SO-PLS modelling does not handle missing 558 

data points. 559 

 560 

4. Conclusions 561 

Key grape chemistry measures that correlate with wine sensory attributes have 562 

been determined for Cabernet Sauvignon using PLS and SO-PLS modelling. Similar to 563 

previous reports, modelling single sensory attributes (PLS1 or SO-PLS1) gave better 564 

validated explained variances compared to modelling the entire sensory profiles with SO-565 

PLS2. Harvest measures of grapes most frequently correlated with individual sensory 566 

attributes. While some of the attributes appear to be explained appropriately, where they 567 

were most likely causation from chemical composition, others may be merely 568 

correlations. Simple measures of harvest measures, CIELab colour, and total tannins and 569 

phenolics were used to predict 8 of the 14 attributes through either PLS1 and SO-PLS1. 570 
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This means that there may still be other possible grape measures that were not captured 571 

in the current study that might predict the wine sensory attributes better. The systematic 572 

modelling of the sensory attributes revealed that seven X-blocks were not used for 573 

modelling and may be removed for future analyses of Cabernet Sauvignon to have a more 574 

focused range of grape chemical measures. Confirmation studies are required to validate 575 

the refined list of grape chemical measures to correlate sensory perceptions in Cabernet 576 

Sauvignon wines. 577 

Overall, the relative similarity of the models determined in the current multiple 578 

vintage study with the previous single vintage work demonstrates the promising outlook 579 

of the application of PLS/SO-PLS procedures to the prediction of wine sensory attributes 580 

from grape chemistry. Work within our group is underway to explore the applicability of 581 

the current approach to a white grape variety (Chardonnay), and in future, attention will 582 

be turned to the influence of viticultural intervention on grape chemistry and the resulting 583 

influence on sensory perceptions of the wine.  584 
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Fig 1. Summary of SO-PLS2 model showing a) validated and calibrated explained variances, 

and b) Måge plot of RMSECV decrease as a function of total number of model components 

for 2 block SO-PLS2 using X06 (CIELab measures) and X01 (harvest measures). Numbers 

above points denote the number of components for 1st block_2nd block. 

  

a) b) 



 

 

Fig 2. PCP plots from the SO-PLS2 model using X06 (CIELab measures) and X01 (harvest 

measures) as first and second blocks, respectively, showing A) scores (as vintage year, 

sample location and number), and b) correlation loadings plots including X-variables for the 

two data blocks. Loadings in blue denote those belonging to the Y-block, red loadings are 

from the first X-block (CIELab), and green loadings are from the second X-block (harvest 

measures). 

 

a) 
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Table 1. Samples harvested for each vintage (n = 25) and subsequently used for modelling.  

Sample GI 
Vintage 

2013 2014 2015 

Barossa Valley (BV) 
13BV1 14BV1 15BV1 

13BV2 14BV2 15BV2 

    

Clare Valley (CV) 
13CV1 14CV1 15CV1 

13CV2 14CV2 15CV2 

    

Coonawarra (CWA) 

13CWA1 14CWA1 15CWA2 

13CWA2 14CWA2 15CWA3 

13CWA3 14CWA3 15CWA5 

13CWA4 14CWA5 15CWA6 

    

Eden Valley (EV) 
13EV1 14EV1 15EV1 

13EV2 14EV2 15EV2 

    

Langhorne Creek (LC) 
13LC1 14LC1 15LC1 

13LC2 14LC2 15LC2 

    

McLaren Vale (McV) 
13McV1 14McV1 15McV1 

13McV2 14McV2 15McV2 

    

Riverland (RVL) 

13RVL1 14RVL3 15RVL3 

13RVL2 14RVL4 15RVL4 

13RVL3 14RVL6 15RVL6 

13RVL4 14RVL7 15RVL7 

13RVL5 14RVL10 15RVL10 

13RVL6 14RVL11 15RVL11 

13RVL7 14RVL12 15RVL12 

13RVL8 14RVL13 15RVL13 

13RVL9 14RVL14 15RVL14 

    

Wrattonbully (WBY) 
13WBY1 14WBY1 15WBY1 

13WBY2 14WBY2 15WBY2 

Sample 14CWA5 was later removed due to being an outlier (see Section 2.4). 

  



Table 2. Data blocks arising from different vineyards within GIs for Cabernet Sauvignon 

grape composition-related measures (X) and wine sensory attributes (Y) assigned for PLS 

and SO-PLS modelling. 

Data 

block* 

Measurement Data dimensions† Analysis method 

X01 Harvest measures 74 × 8 Weight, TSSǂ, pH, TA# 

X02 Amino acids 74 × 24 HPLC 

X03 Targeted volatile compounds 74 × 10 GC-MS 

X04 Non-targeted volatile compounds 74 × 25 GC-MS 

X05 Bound volatile compounds 74 × 56 GC-MS 

X06 Colour 74 × 5 CIELab tristimulus 

X07 Total phenolics and tannins 74 × 3 UV spectrophotometry 

X08 Anthocyanins 74 × 11 HPLC 

X09 Tannins 74 × 9 HPLC 

X10 Flavonols 74 × 7 HPLC 

X11 Fatty acids 74 × 22 GC-MS 

X12 
Lipoxygenase (LOX) pathway 

enzyme activity 
74 × 3 Spectrophotometric 

 

Y Sensory analysis 74 × 21 Descriptive analysis 

*X-block measurements were made on grapes and the Y block measurement was made on wines. 
† Data blocks consist of mean values for 74 samples rather than 75 due to the removal of an outlier. 

ǂ Total soluble solids 

#Titratable acidity. 

  



Table 3. Optimal models of individual sensory attributes that were common across the three 

vintages. Optimal models for each attribute were determined using PLS1 when only one 

block was required and SO-PLS1 when two blocks were required. For each attribute 

modelled with SO-PLS1, the first row of parameters denotes the first X-block and the second 

row is the orthogonal addition of the second X-block. 

Y-variable(s) X-block RMSECVa Compb Calc Vald CV-ANOVAe 

PLS1       

C_Depth X06 0.572 1 67.7 66.9 <0.001  

C_Hue X06 0.712 1 50.2 48.7 <0.001  

A_Dark fruit X07 0.705 2 57.6 55.2 <0.001  

A_Red fruit X10 0.851 2 33.0 26.5 0.050  

A_Confectionery X10 0.900 2 24.2 17.9 0.118  

A_Green X03 0.791 2 47.4 36.6 0.052  

A_Savoury X01 0.861 3 38.0 24.9 0.130  

A_Pepper X06 0.860 1 26.9 24.9 0.025  

F_Dark fruit X07 0.722 2 55.1 52.4 <0.001  

F_Red fruit X06 0.890 1 21.9 19.7 0.085  

F_Confectionery X06 0.928 1 15.6 12.7 0.258  

F_Green X03 0.878 1 35.2 21.7 0.234  

F_Savoury X01 0.864 3 38.5 24.3 0.092  

F_Pepper X01 0.785 2 49.0 38.1 0.004  

T_Bitter X02 0.884 2 30.8 20.7 0.155  

MF_Astringency X06 0.703 1 51.2 49.8 <0.001  

MF_Alcohol X01 0.681 2 60.0 53.0 0.001  

        

SO-PLS1       

A_Overall X10 0.854 2 40.4 35.0 0.019  

  X01 0.703 1 57.7 49.9 0.066  

MF_Body X06 0.729 1 47.5 46.0 0.001  

  X01 0.651 1 62.0 57.0 0.061  
a
Root mean square error of cross validation 

b
Components. SO-PLS models are reported as number of components for the first followed by the second blocks. 

c
Calibrated explained variance 

dValidated explained variance 
e
Values in bold denote for p<0.1. 

  



Table 4. Significantly (p<0.1) contributing X-variables in modelling single Y-variables using 

PLS1 and SO-PLS1 models. 

Y variables X data block +ve coefficient X variables  -ve coefficient X variables 

PLS1    

C_Hue X06 H(ab); a*, chroma b*, L* 

C_Depth X06 H(ab); a*, chroma b*, L* 

A_Dark fruit X07 
Colour per berry; Total 

phenolics 
 

A_Red fruit X10 
% Quercetin-3-O-glucuronide; 

% Laricitrin-3-O-galactoside;  

Total flavonols; %a 

Myricetin-3-O-glucoside; 

% Kaempferol-3-O-

glucuronide 

A_Green X03 
Benzyl alcohol; Hexanal; 

IBMP 
2-Pentyl furan 

A_Pepper X06 a*, chroma b*, L* 

F_Dark fruit X07 
Colour per berry; Total 

phenolics 
 

F_Red fruit X06 b*, L* H(ab); a*, chroma 

F_Pepper X01 °Brix  

F_Savoury X01 
°Brix; Std devb bunch weight; 

Std dev °Brix; TAc 
Bunch weight 

MF_Astringency X06 H(ab); a*, chroma b*, L* 

MF_Alcohol X01 °Brix, pH  

    

SO-PLS1    

A_Overall 

1) X10 Total Flavonols; % Myricetin-

3-O-glucoside; & % 

Kaempferol-3-O-glucuronide 

% Quercetin-3-O-

glucuronide; % 

Kaempferol-3-O-glucoside 

 

2) X01 °Brix; Std dev °Brix; pH Bunch weight; Berry 

weight; TAc 

MF_Body 
1) X06 a*; chroma L* 

2) X01 °Brix; pH  
a % = percentage of total composition. 
b Std dev =  standard deviation. 
c TA = titratable acidity 
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S1. Data similarity between vintages. 

In order to determine the overall data similarity across the three vintages for each data block, 

RV coefficients were computed. As the analysis requires the data sets to have the same 

dimensions as well as identical samples for comparison, the data sets were first matched to 

have identical samples throughout the three vintages. Columns were matched according to 

that described in the data analysis section.  
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Table S1. Pairwise RV coefficients between vintages within a data block prior to 

standardisation. 

Data block Block identity 
RV coefficients 

2013 vs 2014 2013 vs 2015 2014 vs 2015 

X01 Harvest measures 0.07 0.11 0.06 

X02 Amino acids 0.64 0.55 0.54 

X03 Targeted volatiles 0.18 0.36 0.11 

X04 Non-targeted volatiles 0.13 0.23 0.30 

X05 Bound volatiles 0.40 0.27 0.20 

X06 CIELab 0.63 0.70 0.76 

X07 Total phenolics and tannins 0.58 0.20 0.17 

X08 Anthocyanins 0.04 0.65 0.22 

X09 Tannins 0.33 0.28 0.27 

X10 Flavonols 0.24 0.37 0.38 

X11 Fatty acids 0.26 0.36 0.26 

X12 Enzymes 0.05 0.05 0.32 

Y Descriptive analysis (wine) 0.09 0.11 0.24 
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 2 
Fig S1. PCA scores and loadings of descriptive sensory analysis of Cabernet Sauvignon wines for three vintages 2013-2015. A) data sets 3 

standardised together and B) data sets standardised within vintage  Refer to Table 1 for sample abbreviations. C_ = colour, A_ = aroma, F_ 4 

= flavour, T_ = taste, and MF_ mouthfeel.5 
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Fig S2. PLS1 scores and loadings of F_Pepper 

 



 

 

 

Fig S3. PLS1 scores and loadings of MF_Alcohol 

 


