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Abstract

Even though the main steps of preprocessing and data analysis in Liquid / Gas Chromatography-
Mass Spectrometry have been frequently reviewed in recent years, little attention has been put on 
the initial processing of these data, from mass detection and centroiding to the use of the 
fundamental definitions such as resolution. The choices made in this initial part of analysis will 
severely affect the end result of the analysis, and this article presents a current approach to the 
decomposition of the mass spectrum into mass peaks and the estimation of mass centroid positions. 
In addition, recommendations on the use of fundamental definitions are often confusing and 
inconsistent across the literature. Although this conflict in terminology has been reported, different 
definitions are still supported. Thus, in this paper, recommendations and analogies are discussed. 
Topological terms of distinguishability and discriminability are also introduced to discern between 
the theoretical ability of a detector to distinguish adjacent MS peaks, and what could actually be 
achieved. 
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1. Introduction
Knowledge  of  the  characteristics  of  the  measurement  process  itself  is  crucial  in  any 

processing  and  analysis  of  measured  data.  The  ignorance  of  these  characteristics  and  their 
uncertainties will be propagated through the processing computations and may subsequently lead to 
an incorrect interpretation [1,2]. One of the most deterrent examples in history was the destruction 
of NASA’s spacecraft “Mars Climate Orbiter” during orbit insertion because of unit’s mismatch [3]. 
The mathematical abstraction of any characteristic is described via attributes. Unfortunately, some 
of  the  attributes  are  often  improperly  interchanged  even  in  recommendations  and  regulatory 
documents [4,5]. Thus, it is of utmost importance to define the exact meaning of each term before 
use.

Liquid (LC) or gas (GC) chromatography in tandem with mass spectrometry (MS) is widely 
used  in  many chemical  and biochemical  analytical  setups,  especially  in  the  so-called  “-omics” 
sciences,  and the techniques are  used as  key tools for unraveling biochemical  pathways within 
systems  biology  [6-8].  The  preprocessing  of  these  types  of  data,  including  feature  detection, 
alignment,  and normalization, with subsequent multivariate data analysis,  is an essential part  of 
understanding and interpreting the results. The output from LC/GC-MS, and thus the input for data 
processing and data analysis, might be separated into three distinct groups of attributes: 

I) Attributes of the obtained data, e.g. retention time, mass-to-charge ratio, intensity (counts), 
and derived attributes like TIC (Total ion current chromatogram), number of time scans, 



maximal intensity, and mass range.
II) Attributes of the measured sample, like the sample origin or a description of the preparation 

procedure. These are the attributes usually relevant only for analysis and interpretation, not 
for the data processing. (9).

III)  Attributes of the measurement device and its abilities. These are the fundamental attributes 
from the theory of measurement.[10]

In LC/GC-MS, the retention or elution time (rt) is the main attribute in the chromatographic 
domain, while the mass-to-charge ratio (m/z, or MZ) is the main attribute in the mass spectrometry 
domain. Whereas the units of the former attribute are unambiguously defined, the mass-to-charge 
variable is not. This variable is frequently expressed in unified atomic mass units, recommended by 
IUPAC [11, 12], but Dalton and Thomson units (Th, [13]) are also used. The unified atomic mass 
unit and the Dalton unit are not part of the SI system, but it is recognized by CGPM [14] that they 
will continue to be used in appropriate contexts [12].  Th is not an SI unit,  and it has not been 
accepted by IUPAC. Discussions are still ongoing in the MS community on which units that should 
be used [15-20]. 

Resolution and resolving power are other frequently used terms in LC/GC-MS analysis. 
These terms, however, are very often interchanged, and even though the conflict in terminology has 
been already reported [4,5], different definitions are still  supported [21-27]. A similar challenge 
within optical resolution was reviewed by den Dekker and van den Bos [28]: “In applied science,  
resolution has always been, and still is, an important issue. Since, it is not unambiguously defined,  
it is interpreted in many ways.” Thus, this confusion is not specific just for the mass spectrometry 
field, but has a generic perspective.

Even though the main steps of preprocessing in LC/GC-MS analysis have been frequently 
reviewed in recent years [2,4,9,10,15,18,23,24], little attention has been put on the initial processing 
of these data,  from mass detection and centroiding to decisions related to mass resolution.  The 
choices made in this initial part of analysis will severely affect the end result of the analysis, and in 
this paper, thus, an overview and summary of definitions and recommendations for the initial part of 
preprocessing in LC/GC-MS is provided. Section 2 describes the mathematical approaches that are 
widely used for LC/GC-MS data pre-processing. Different criteria for practical evaluation of such 
parameters from the theoretical recommendations/definitions, as well as the definitions themselves, 
are discussed in section 3. In section 4, we introduce the formal definitions of the fundamental 
attributes in mass spectrometry from a topological space point of view to advocate some of the 
recommendations from section 3. 

2. Mass assignment and centroiding
A typical dataset from LC/GC-MS measurements is represented as a discrete set of points in 

a discrete three dimensional space which is defined by discrete axes, namely retention time (rt), 
mass to charge ratio (m/z), and intensity (counts), as shown in figure 1. Analytes (components of the 
system being analyzed) elute at specific time points from the chromatographic column and enter the 
MS  ionization  chamber.  The  time  delay  of  elution  of  the  different  analytes  is  caused  by 
physicochemical  interactions  between the stationary phase on the chromatographic column,  the 
analytes and the mobile phase. The intensity at each detectable  m/z is registered inside the MS 
detector and its value represents the approximate amount of detected ionized molecules of each 
individual  m/z at the exact  retention time.  In practice, the continuous signal is sampled using an 
analog-to-digital converter, a non-ideal device with various physical limitations. All real signals are 
discretized, quantized, and reduced into a discrete finite set of values. Discrete-valued signals are 
always just an approximation to the original continuous-valued signal [29].

One  'slice'  of  the  3D  data  set  selected  at  one  specific  rt is  a  mass  spectrum,  as  an 
accumulation of all detections on the MS detector during a very short time period. The detector 
requires some time interval to provide the detection as well as to recover for the next counting. The 
mass  spectrum  represents  a  discretized  distribution  of  ions  by  the  mass  to  charge  ratio. 



Unfortunately,  even  the  beam of  ionized  molecules  at  the  same  m/z value  contains  ions  with 
different vectors of kinetic energy. Therefore, the trajectories of the ions are distributed in some 
width of the beam and will contribute to broadening of the mass peak on the detector [4]. 

The mass spectrometer can record mass spectra in two different modes: the profile mode and 
the centroid mode. While the profile (or quasi-continuous) mode preserves the shape of the mass 
peak (within limits of discretization), the centroid mode records only a weighted average of the 
mass  peak.  This  is  shown in  figure  2 for  different  types  of  mass  spectrometers. Ideally,  when 
symmetrical  and  smooth  peak  shapes  are  produced,  centroid  positions  are  equivalent  to  the 
positions of the local maxima, and the peak borders are equivalent to the local minima. However, if 
there are any contributions from adjacent or overlapping components, the peak shape is distorted 
[30, 31]. Magnetic sector instruments produce triangular or Gaussian centroid curves, while shapes 
from quadrupole analyzers are trapezoid or flat-topped. Ion traps and time-of-flight detectors tend to 
give centroid peaks with sharper apexes or with increased widths at the base [30]. The mass domain 
in cyclotron resonance and orbitrap mass spectrometers results after inverse Fourier transformations 
of the frequency domain, thus the mass peak shapes are represented by sinc (cardinal sine) shapes 
with Cauchy-Lorentzian envelopes [32].

As  all  subsequent  data  analysis  of  LC/GC-MS  data,  from  noise  reduction  to  feature 
extraction, presumes centroided values, the proper conversion from profile to centroid mode is a 
fundamental issue in pre-processing. The computation of the centroid position C on the m/z axis is 
defined in equation 1: 

C = ∑a
b (y . m) / ∑a

b (y), (1)
where  m represents the  m/z  position, y represents the intensity,  ∑a

b (y) represents the area of the 
mass peak, and a and b represents the borders of the mass peak. 
Thus, in order to calculate accurate centroid values, the peak position, the peak shape, as well as the 
peak  borders  have  to  be  properly determined.  There  are  several  basic  approaches  available  to 
determine these features. One way is to fit a proper distribution function according to the individual 
ion beam. The most common approach is to create a class of possible shape models (e.g. triangular 
or  Gaussian models) and choose the most appropriate.  However,  even when understanding the 
underlying physical and chemical properties of the MS instrument, it is a non-trivial task to select 
the proper shape model. Hence, regression analysis is frequently used [33] to find the model using 
the  minimal  error  criterion  between  detected  and  modeled  peak  shapes.  Unfortunately,  any 
evaluation of the parameters used can only help to decide which shape of the considered shapes is 
'optimal' [34]. Very strong fit still does not mean that the best distribution function was considered 
[35].

Two parameters are necessary to fit a symmetric shape distribution: the location and the 
scale parameters of the fitting function. The location parameter refers to the position (apex) of the 
maximal or mode value of the mass peak (which ideally already is the centroid position). The scale 
parameter represents a measure of the spread of the distribution (or standard deviation). In other 
words, the scale parameter is related to the width of the beam as well as to the m/z interval delimited 
by  the  peak  borders  a  and b.  In  figure  3,  peak  shape  fitting  using  Gaussian  and  Laplacian 
distribution fitting, respectively, is illustrated. 

Asymmetric  (skewed)  and  noisy  peaks  require  smoothing  or  reshaping.  Usually,  these 
transformations are obtained by spline or wavelet functions. In practice, such functions are always 
discrete apodization filters with specified window lengths that are applied piecewise along the axis 
of the original signal. The window of the filter iteratively moves along the signal's first dimension 
(which is the m/z axis for mass spectra), subsequently producing a transformed or centroided signal. 

Numerous wavelet filters have been introduced during the last century. Some typical wavelet 
filters include the Bartlett (triangular) filter, the Hamming filter, the Gaussian filter, the Blackman 
filter,  and the Ricker  filter  (frequently denoted Mexican hat).  The crucial  issue  of  the wavelet 
approach is to select an appropriate filter  function and subsequently decide the length(s) of the 
window. This is illustrated in figure 4. The window length of the wavelet function is comparable 
with the scaling parameter of the fitting function, related to the mass peak width defined by the m/z 



position and the peak borders (a and b in equation 1). The output of a wavelet transformation can be 
the composition of many window functions instead of only one, as shown in figure 5. If the shape 
of the mass peaks is unknown, spline transformations are often better than wavelet transformations. 
The spline transformation is a polynomial function approximation that is able to approximate an a 
priori unknown shape by a polynomial function of a low degree. While the lower degree preserves 
the raw shape very well, peak smoothing is likely to happen spontaneously. On the other hand, at 
higher degrees the approximated function might produce artificial signal oscillations on the peak 
borders  (Runge’s  phenomenon).  Spline  transformations  provide  piecewise  polynomial 
approximations, meaning that the whole peak is decomposed into short intervals. Each interval is 
then  fitted  by  its  own polynomial  function.  Therefore,  the  total  shape  fit  consists  of  multiple 
polynomial  pieces.  While  the  interpolation  is  excellent  inside  the  peak,  extrapolation  produces 
unusable values, such as oscillations at the peak borders.

Spline transformation preserves the positions of the peak maxima and minima. The most 
used  and  well  cited  is  the  Savitzky-Golay  filter  [38].  The  Savitzky-Golay  filter  provides  an 
approximation of the underlying peak shape by averaging polynomial windows of higher orders 
(usually  4th degree  polynomials).  This  approach  was  originally  developed  for  spectroscopic 
applications in the time domain, and the approach is almost unknown in other scientific areas where 
filtrations,  fittings,  approximations  or  interpolations  are  required  [37].  As  was  pointed  out  by 
Persson and Strang,  “it  is  not a tremendously powerful filter,  but it’s  virtues are simplicity and 
speed” [39]. 

As discussed in this chapter, distribution fitting, wavelet or spline transforms are different 
tools to estimate the mass peak centroid and its border positions. The performance of each method 
is strongly dependent on the input scaling parameter or the window lengths, which thus directly 
corresponds to the mass peak width. Hence, the decision to use any of these techniques might not be 
as essential as knowing the distance between two valid maxima or minima on the mass axis [40]. 
Therefore, the proper centroid position value C arises from the mass peak width definition, which 
corresponds to the determination of resolution and resolving power.

3. Resolution versus resolving power

The IUPAC GoldBook [36] offers three approximately equivalent descriptions of the term 
“resolution” (R05318) in mass spectrometry and two descriptions for the terms “resolving power” 
and “mass resolving power” (R05321, M03730). The recommendations are often cited, described, 
or interpreted [21-24, 41]. Let us have a look at the expressions and examine their meaning and 
consequences (Tables 1 and 2). 

The first description of resolution (R05318) refers only to the resolution energy as a value 
derived from a peak showing a number of ions (intensity given in counts) as a function of their 
translational energy [23, 36, 41].Next, the valley definition states that if two mass spectrum peaks at 
masses m - Δm and m of equal heights are separated by a valley which at its lowest point is equal to 
10% of the height of the peaks [30, 49, 55], then the resolution is provided by equation 2:

R = m / Δm (2)

Here the resolution R is a function of m. Thus, it is not a constant value across the dynamic 
range of the m/z axis, a fact that is often overlooked [40]. The value of the ratio m / Δm represents 
an interesting theoretical property: if each peak has a width that equals Δm (or more precisely, if the 
distance between each two consecutive valid peak maxima equals Δm), then on the range between 
0 and m there could be exactly R distinguishable peaks. However, Δm might vary according to m.

The peak width definition for a single peak expresses Δm as the width of the peak at a height 
which is a specified fraction of the maximum peak height (50%, 5%, or 0.5% is recommended). It is 
important to pinpoint that Δm is not the peak width. More precisely, Δm is the peak width at a given 
fraction of the maximum, and the used fraction should always be specified. According to the valley 



definition,  Δm  is the difference between m/z positions of two maxima for which the 10% valley 
value is fulfilled. The valley definition of Δm is “technically equivalent” [36, 41] to the peak width 
at 5% of the peak height, if and only if the peak is isolated and symmetrical, and that linearity is 
guaranteed between the 5% and 10% levels of the peak height. However, isolated peaks are not 
frequently  encountered  in  real  mass  spectra;  symmetry  is  often  distorted  by  random  noise 
contributions. The linearity condition refers to the linearity [42] of the sensor response [29, 43]. 
Then the “peak width” used in the valley definition is equal to the peak width at 5% of the height of 
an isolated symmetrical peak.

The IUPAC peak width definition states a common standard as the 50% fraction, the Full 
Width at Half Maximum (FWHM), which is sometimes also improperly denoted “half width” [36]. 
The relation between the FWHM and the scale parameter of an ideal Gaussian peak is given in 
equation 3:

FWHM = σ 2 √( 2 ln(2) ), (3)

where  σ is the standard deviation. Examples of relations for typical peak shapes are provided in 
Table 3. But why is it important to consider which peak fraction is the most meaningful? The valley 
definition of mass resolution is contingent upon two adjacent, mass peaks of equal size and shape, 
which is almost never the case experimentally [44]. The peak width definitions, on the other hand, 
are uncertain. Each fraction becomes valid only after the approximation: we want the Δm, which 
can be obtained from the approximated shape. However to approximate the shape, we need to know 
the value of Δm (or scale parameter or window length) as the input parameter. 

Six simple examples  on artificially created discrete mass peaks are illustrated in figure 6. 
The  examples  interpret  the  IUPAC  definitions  on  resolution  together  with  several  important 
practical consequences. The first example (figures 6a-d) compares the valley and the 5% peak width 
definition for peaks of equal heights. The second and the third example (figures 6e-h) extend the 
definitions to peaks of different heights. Finally, the fourth, the fifth, and the sixth example (figures 
6i-l) compare the valley definition with the FWHM.

A single isolated symmetrical Gaussian peak  m with its centroid at  m/z = 102 is plotted 
(solid line) in the beginning of the first example (figure 6a). The 5% fraction (dashed line) of the 
peak height provides a peak width value of exactly 1 m/z unit. Then the resolution (R) equals R = 
102 / 1,  according  to  equation  2.  The  50%  fraction  (FWHM,  dotted  line)  could  then  also  be 
evaluated. 

In figure 6b another symmetrical  Gaussian peak  m with centroid at  m/z = 101 is  added 
(dotted line). The new peak has exactly the same height, shape, and therefore also the same scale 
parameters and peak width at the 5% fraction (dashed line) as the former peak. The two peaks 
intersect exactly at the position of the 5% fraction level. The presence of the two mass peaks will be 
detected as a superimposed signal (solid line), as shown in figure 6c. The 5% fraction (dashed line) 
of the isolated peak is now below the valley between the two peaks. 

However, as shown in figure 6d, the value of the valley of the superimposed signal (solid 
line) at its lower point is exactly at the 10% fraction (dashed line) of the peak height. While the 
distance between the centroids equals the 5% peak width (102 – 101 = 1), the 5% peak width of the 
isolated peak and the distance fulfilling the 10% valley are equivalent. This is the reason why the 
5% fraction of an isolated symmetrical peak is technically equivalent to the valley definition.

The situation of two adjacent peaks with equal height is not usual in real experiments [44]. 
The  second example  (figure  6e)  starts  with  an  isolated  symmetrical  mass  peak  with  the  same 
centroid and scale parameter as the peak from figure 6a. However, the height of the peak is only 
half of the former peak. 

Then another peak, with similar characteristics as in figure 6b, is added with its centroid at 
m/z = 101 (figure 6f). 

The  superimposed signal  (figure  6g)  is  detected  by the  MS detector.  The  valley of  the 
superimposed signal between the peaks is below the 10% fraction of the highest peak, and it is also 



above the 10% fraction of the lower peak. Therefore, the valley should be considered valid and the 
distance between the peak maxima is again equal to the 5% peak width.

What then if the height of one of the peak is much lower than the height of the second peak? 
The third example (figure 6h) illustrates a modified situation of figure 6g. The mass peak with a 
centroid at m/z = 102 is exactly 20 times lower than the mass peak with its centroid at m/z = 101. 
The scale parameters and the positions remain unchanged, and the  102 mass peak height is even 
below the 10% fraction of the  101 mass peak. However, there is still  an observable valley, and 
again, as shown in figure 6g, the valley is below the 10% fraction of the higher peak, and above the 
10% fraction of the lower peak. Therefore, the valley should be considered valid. 

This means that the 10% valley definition could be extended for any two adjacent peaks, 
without the condition of equal height. If the valley between the peaks is above the 10% of the lower 
peak and simultaneously the valley is below the 10% of the higher peak, then the distance  Δm 
between peak maxima approximately equals the peak width at the 5 % fraction of the isolated peak. 
The order of peaks is not relevant, but the value of the IUPAC resolution always has to be computed 
from the peak of the higher m/z position. 

The fourth example (figure 6i) illustrates a situation where the second peak is half the height 
of the first peak. The FWHM now has the same value as Δm computed via the valley definition in 
all previous examples. The resolution R (as provided in equation 3), computed using the FWHM, 
produces the same value as the resolution using the 10% valley of figure 6d. Numerically, the same 
resolution is obtained. 

Graphically, however, the interpretation is somewhat different. The superimposed signal on 
the  MS detector  has  no  valley,  as  shown in  figure  6j.  In  other  words,  the  two  peaks  are  not 
distinguishable. The individual peaks have bigger scale parameters as they produce the FWHM of 
the same value as the valley or 5% Δm in figure 6d. Obviously, the meaning of 5% Δm and 50 % Δm 
are  not  analogous.  Actually,  the  5%  Δm is  always  2.0792 times  FWHM for  Gaussian  shapes. 
Moreover,  the  resolution  values  computed  from  differently  defined  Δm always  have  to  be 
interpreted differently. The details will follow in the two subsequent examples.

The fifth example (figure 6k) introduces a case where the valley between the peaks becomes 
observable in the superimposed signal. If the scale parameter will be just a little bit higher, the 
valley disappears. The FWHM values of both peaks could be easily estimated. While there are two 
distinct apexes, the half width of the half maximum could be computed and then multiplied by two. 
However, the peaks are so close that the maximum of the superimposed signal are not on the same 
m/z position as the maxima of the individual peaks, but slightly shifted towards each other. The 
estimated FWHM values are  0.8142 m/z for the lower peak and  0.9590 m/z for the higher peak, 
whereas the FWHM of the lower individual peak was 0.8242. 

It is thus important to realize that the peak width definition is describing isolated peaks, 
which is clearly not the case here. Moreover, the IUPAC peak definition states that the resolution 
may be expressed as m / Δm. It tells nothing about how to distinguish or separate these two peaks. 
The instruction of 'separation' is in the valley definition, but the 10% condition is far to be fulfilled 
in this example. What if the valley is not a real valley, but the product of the noise contribution? 
Unfortunately, none of the recommendations is helping in the decision here. 

The last example (figure 6l) illustrates the worst case scenario where two individual peaks of 
equal height intersect or overlap. Both peaks are sufficiently broad that the superimposed signal 
produces a new (false) maximum instead of a valley between the two maxima. In this case it is not 
possible  to distinguish if  the detected signal  is  the superimposition of  two peaks  or if  it  is  an 
individual peak. The FWHM of the superimposed peak was calculated to 2.0174 m/z.

Generally, the FWHM is used to describe the measurement of a peak width when that peak 
does not have sharp edges. On the other hand, the scale parameter does not describe the total width 
of the profile, as it theoretically extends forever [45]. The width across the profile when it drops to 
half  of  its  maximum is  a  simple  and well-defined  number  which  can  be  used  to  compare  the 
measurements obtained under different conditions. The only problematic issue of the FWHM is in 
the  computation  of  the  resolution.  The  R = m / (50% Δm)  is  approximately  double  than  the 



R = m / (5% Δm). The difference is this large because the 5% Δm and 50% Δm represents different 
characteristics of the measurement.  While the 5% Δm is equivalent to the distance between the 
maxima, the interpretation of the 50% Δm is not that simple.

It is common to express any variable (and in this case m) as the mean ± z proportions of 
standard deviation. The interval expressed as the FWHM (2z = 2.355σ) covers only 84.27% of the 
peak values. However, if the FWHM is considered as the ± Δm concept, then the interval of 2 z = 2  
FWHM = 4.71σ covers 99.53% of the peak. Thus, the analogy of the 5% and 50% fraction peak 
widths could be approximated as 5% Δm = 2 (50% Δm).  The IUPAC resolution (R05318) is then 
defined as in equation 4:

R = m / (5% Δm) = m / (2 FWHM) (4)

The term “resolving power” describes the ability to distinguish between ions differing in the 
quotient of mass/charge by a small increment. The IUPAC description of resolving power in mass 
spectrometry (R05321) states that the resolving power might be characterized by the peak width at 
50% and at 5% of the maximum peak height. In other words the resolving power is equal to the 
FWHM from the peak width definition or the Δm from the valley definition. 

The IUPAC description of the mass resolving power in mass spectrometry (M03730) refers 
directly to the valley (10% is recommended, and the used valley must always be stated) for two 
peaks (m1, m2) of equal height, as shown in equation 5:

 m1 / (m1 − m2) (5)

There is thus a deep inconsistency in these terms of resolving power. While the resolving power in 
R05321 is expressed as the peak width (at a certain fraction), the resolving power in M03730 is 
expressed as the ratio of the peak mass over Δm. But, if m=m1 and m-Δm = m2, the same ratio was 
already referred to as the resolution (in R05318), as shown in equation 6:

Resolution = m / Δm = m1 / (m1-m2) (6) 

So  what  does  the  resolving  power  really  mean?  Is  it  the  peak  width  or  the  ratio?  The 
literature does not provide a conclusive explanation. Boyd et al. describe the resolving power as a 
property of the instrument and the resolution as “the separation between similar m/z values actually  
achieved in a real mass spectrum” [4]. Resolving power is then explained using both the valley and 
the peak width definitions, where the resolving power is the ratio from equations 2 or 5. Even the 
IUPAC sponsored project to update the Standard Terms and Definitions for Mass Spectrometry [47] 
(so-called  Mass  Spec  Terms  Wiki),  reports  the  term  Resolution  in  mass  spectrometry  as  a 
problematic  term.  The  main  part  of  the  literature  [21-24]  in  the  mass  spectrometry  field  uses 
resolution as the ratio m/Δm and refers to the IUPAC definition R05318. However, in other fields of 
physics and chemistry, the ratio  m/Δm is  usually described as the resolving power and Δm as the 
resolution, which has also been adopted in some mass spectrometry literature [25-27]. In the IUPAC 
recommendations this definition is consistent for microscopy and optical spectroscopy. Ken Busch 
[44] recommended to use the meaning common in most fields, where resolution is the difference 
Δm, while the resolving power it is the ratio R. The strong confusion between these two terms could 
be easily avoided by distinct and clear definitions.

4. Discriminability and distinguishability

Two other terms that are frequently encountered in MS, are the terms of discriminability and 
distinguishability.  In order to investigate these terms, as well as to relate the terms to the ones 
already proposed, it is natural to include terms from the field of topology. Topology is one of the 



unified branches of mathematics, and it is the study of qualitative characteristics of spaces. While 
topology generalizes shapes via abstraction, it also offers more formal definitions to describe some 
structural characteristics. 

In topology, the separability is defined as the ability to divide the measurable space into 
countable dense subsets [47]. Every topological space is already dense in itself. Therefore, the 10% 
valley describes one of many possible designs of mass spectrum separation and is designated as 
resolution.
Additionally, topological discriminability is the quality to perceive or discern differences between 
two similar objects. While the mass spectral values represent the coordinates in two domains (mass 
and intensity), the shape of each mass-intensity pair could be considered as a point in topological 
space. Therefore, discriminability quantifies not only the position, but also the distance.The formal 
definition of discriminability is exhausting, but the interpretation is rather simple: “Two objects are 
discriminable if there is an open sentence that is satisfied by one of the objects and not the other. If  
all  the  objects  of  domain  are  discriminable,  then  each  of  them  uniquely  satisfies  infinite  
conjunction. Each real number is uniquely determined by the set of all the sentences that it satisfies.  
Ordinal  numbers  are  only  moderately  discriminable,  since  any  two  of  them  satisfy  the  open  
sentence in one order an not the other“ [48, 49]. An open sentence is usually an equation or equality 
whose true value is meaningless until its variables are replaced with specific numbers. The mass 
values are ordinary numbers where the preceding relation is defined (m/z 100 < m/z 101). The 
preceding relation by itself already fulfills the existence of an open sentence. In other words, if it is 
possible to define some metric in which the two objects are discriminable (like relation/operator of 
<  or  >,  or  just  ≠),  then  the  objects  are  discriminable.  It  is  not  important  in  what they  are 
discriminable, it is important that such metric could be defined.

In topology, distinguishability is usually considered to be the same concept as resolution, but 
mathematically it is a slightly different term: a set of non-empty values is required to distinguish 
between two values. In other words, two distinguished values have to share the same neighborhood 
value(s). There has to be a valley between the values. This definition of distinguishability represents 
a very important concept:  it  is  describing the practically achieved ability,  meaning that we can 
distinguish two mass peak (centroid) values only if there is a valley between them. Moreover, the 
IUPAC recommendation additionally puts requirements on the value of the valley. Thus, the IUPAC 
recommendation  is a guideline on how to move from the theoretical description to practical values. 
The  resolution  is  the  theoretical  characterization.  According  to  Ken  Busch’s  suggestion  [44], 
resolution  Δm is the theoretical limit of the distance between two points. Resolving power is the 
theoretical ability to resolve R = m/Δm peaks of the 5% peak width equals Δm in the range (0,m). 

While distinguishability can be achieved in practice, the resolution is a theoretical potency 
estimated via calibrations. The practical impact is immediate. The theoretical resolution equals the 
distinguishability only in the ideal case.  The distinguishability for real  measurements is usually 
worse than the theoretical resolution.

It  is  a  normal  situation  that  the  superimposed  signal  (as  in  figure  6i)  does  not  show 
distinguishable peaks, even if the single peaks could be measured. This does not mean that the 
resolution gets worse, but the distinguishability of this particular case is worse than the resolution. 
Moreover,  the  superimposed  signal  of  figure  6k  cannot  be  clearly  used  for  estimation  of  the 
resolution, but the two peaks are distinguishable - there is a valley. The concepts of discriminability 
and distinguishability create differences between mass values of the same peak and mass values of 
the other mass peaks.

Topological definitions discussed here are not in opposition to the previous descriptions. In 
contrast, they complete the resolution concept and repair some of the existing confusion.  In real 
measurements, many of these valleys could be considered not valid: they could be caused by noise, 
or they could be not fulfilling some given criterion. This theoretical criterion is the resolution (10% 
valley,  5% peak  width,  or  2  FWHM).  This  leads  us  to  the  important  difference  between  the 
theoretical and practical ability to distinguish adjacent MS peaks:

− All theoretical values are discriminable. The subsets of values (ideal peaks) fulfilling to be 



isolated (5% criterion) or with a certain valley (10% criterion) are defining the value of the 
resolution. The resolution is a special case of distinguishability. The values with a distance 
between the points  smaller  than the resolution are just  discriminable.  The values with a 
bigger distance are distinguishable by the resolution. The detector has the resolving power to 
separate peaks (subset) of a given width (=resolution).

− All  measured  values  are  discriminable.  The  theoretical  resolution  define  the  minimal 
distance (discriminability value) when the points may become distinguishable. The criterion 
defined for resolution does not have to be fulfilled for the real peaks to be able to distinguish 
them (Figure 6k).  It  is  enough that  the distance between the apexes fulfill  the value of 
theoretical resolution for isolated symmetrical peaks (theoretical), and the valley exist. The 
resolution is the minimal acceptable distinguishability, as shown in equation 7:

Discriminate ≤ Resolution ≤ Distinguishable. (7)

Figures 6j and 6l show cases where peaks are not distinguishable, but where the distance 
between theoretical apexes equals the theoretical resolution.

4. Conclusions

Generally, the challenge of determinations of mass centroids consists of three related parts:
1) Defining the fundamental characteristics of MS
2) Establishing criteria on how to link the theoretical and practical ability of an instrument to 

distinguish adjacent MS peaks
3) Estimating the input parameters of the initial processing functions to obtain centroid 

positions and peak areas

A sufficient number of processing methods to decompose the mass spectrum into individual 
mass peaks and compute the centroids values are available. The crucial issue is, however, selecting 
input  parameters  for  the  initial  processing  functions.  The  scaling  parameter  or  window length 
chosen is much more important for the result of the subsequent data analysis than the decision on 
the type of processing function. 

The fundamental characteristics of resolution and resolving power are often described in 
different ways. The interpretation as well as the relations between different concepts is not always 
immediate. The IUPAC descriptions are only recommendation or statements instead of definitions. 
The  resolution  could  be  estimated  on  isolated  peaks  or  valley  fulfilling  the  10%  criterion. 
Otherwise, with two adjacent and overlapping peaks, it is recommended to estimate the FWHM. 
The FWHM has to be at least 1/2 of the theoretical resolution. In addition some valley has to be 
present  between  two  peaks.  The  IUPAC 10%,  5%,  and  50% fraction  definitions,  respectively, 
constitute recommendations on how to estimate the scale parameters. The relations between valley 
Δm, 5% Δm, FWHM scale parameter are known.

The  terms  of  distinguishability  and  discriminability  complete  our  recommendations  of 
fundamental  definitions  in  MS.  Topological  definitions  offer  a decision between the theoretical 
ability  of  a  measurement  device  and  the  practically  achieved  ability  of  the  measurement  to 
distinguish  adjacent  MS peaks.  If  there  is  a  valley between  the  mass  peaks,  and  the  distance 
between mass peak apexes is bigger than theoretical resolution, then the peaks are distinguishable. 
In other words, the distinguishability cannot be better than the resolution. 

Resolution  and  resolving  power  are  theoretical  values  for  the  ideal  case.  In  real 
measurements  we  have  to  deal  with  the  distinguishability.  The  minimal  possible  value  of  the 
distinguishability is given by the theoretical resolution. The value of distinguishability could be 
estimated by the use of 2 FWHM.
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Figure  1.  A typical  3D representation  of  a  blank LC-MS measurement  using  TopView 1.8 
software [50] (left plot).  The Total Ion Current chromatogram (TIC, upper right plot) and a 
selected mass spectrum (lower right plot) are obtained using Mzmine 2.2. [51] 

Figure 2. Illustration of differences between profile (top) and centroid (bottom) data obtain with 
an ion trap detector (pig blood), a quadrupole detector (beer), a QTOF detector (phenolic acids), 
and an Orbitrap detector (MeOH), respectively. 

Figure 3.  Peak shape fitting of two mass peaks,  coumaric acid (left) and  Sinapic acid (right), 
using Gaussian and Laplacian distribution fitting, respectively. Data were obtained by LC-MS 
with QTOF detection.

Figure 4. Mass spectrum smoothing by window functions.
A: Raw mass spectrum (beer) smoothed using a Gaussian apodization filter (scale parameter : 
0.4 m/z units)  
B: Comparison of Gaussian and triangularfitting  using the same scale parameter (0.4 m/z units). 
C: Comparison ofGaussian fitting with different window lengths. 

Figure 5. Estimation of mass peak centroid positions using wavelet transformation (right) of raw 
signals (left). 

Figure 6. Illustrations of the IUPAC R05318 recommendation and the relationship between the 
peak valley and peak width definitions. The left column explains the analogy of 5% fraction and 
10% peak valley for peaks of equal heights. The middle column extends the analogy also for 
peaks  of  non-equal  heights.  The  right  column explains  the  practical  difference  between the 
resolution  evaluated  via  peak  valley and full  width  at  half  maximum (FWHM).  Additional 
details are described in the main text.



Table 1: Three IUPAC recommendations for the term resolution in mass spectrometry [50]:the 
so-called energy definition, the peak valley definition, and the peak width definition.

R05318 resolution in mass spectroscopy:

energy

10 per cent valley definition

peak width definition

By analogy with the peak width definition for mass resolution, a 
peak showing the number of ions as a function of their translational 
energy should be used to give a value for the energy resolution.
Let two peaks of equal height in a mass spectrum at masses m  and 
m − Δm  be separated by a valley which at its lowest point is just 
10 per cent of the height of either peak. For similar peaks at a mass 
exceeding m , let the height of the valley at its lowest point be more 
(by any amount) than ten per cent of either peak height. Then the 
resolution (10 per cent valley definition) is m / Δm . It is usually a 
function of m. The ratio m / Δm  should be given for a number of 
values of m .
For a single peak made up of singly charged ions at mass m  in a 
mass spectrum, the resolution may be expressed as m / Δm  where 
Δm  is the width of the peak at a height which is a specified fraction 
of the maximum peak height. It is recommended that one of three 
values 50%, 5% or 0.5% should always be used. For an isolated 
symmetrical peak recorded with a system which is linear in the 
range between 5% and 10% levels of the peak, the 5% peak width 
definition is technically equivalent to the 10% valley definition. A 
common standard is the definition of resolution based upon Δm  
being Full Width of the peak at Half its Maximum height, sometimes 
abbreviated 'FWHM'. This acronym should preferably be defined 
the first time it is used.



Table  2:  IUPAC  recommendations  for  the  terms  resolving  power  in  mass  spectrometry 
(R05321) and mass resolving power in mass spectrometry (M03730) [50].

Table 3: Relation of full width at half maximum (FWHM) and scale parameter of five common 
distribution functions (http://mathworld.wolfram.com/FullWidthatHalfMaximum.html). 

Peak shape Multiplicator
Blackman 0,810957
Lorentzian 2
Gaussian 2 sqrt( 2 ln(2) )
Hamming 1,05543
Bartlett 1

R05321 resolving power in mass spectrometry

M03730  mass resolving power in mass spectrometry

The ability to distinguish between ions differing in the quotient mass/
charge by a small increment. It may be characterized by giving the 
peak width, measured in mass units, expressed as a function of 
mass, for at least two points on the peak, specifically at fifty percent 
and at five percent of the maximum peak height.

Commonly and also acceptably defined in terms of the overlap (or 
'valley') between two peaks. Thus for two peaks of equal height, 
masses m1  and m2, when there is overlap between the two peaks 
to a stated percentage of either peak height (10% is 
recommended), then the resolving power is defined as 
m1 / (m1 − m2). The percentage overlap (or 'valley') concerned 
must always be stated. 
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