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A B S T R A C T   

In this paper we present a method for transferring calibrations between different spectrometers based on 
assigning wavelength correspondence. It has been tested for near-infrared (NIR) and Raman spectroscopic in-
struments, and three examples are included in the paper. The calibration transfer is done in three steps: first 
wavelength correspondence is established. Second, PLS models are built and tuned for the new spectrometer. 
Third, the PLS models are slope and bias corrected. The advantages with this approach are that it does not 
require transfer samples and that there is only one parameter to tune: the number of PLS components. While a 
few samples with reference values are required for the tuning, it is fewer than methods with multiple parameters 
that need to be tuned.   

1. Introduction 

Vibrational spectroscopy for analytical measurements has become 
very common in industry because of two advantages: it is fast, and it is 
cheap. Most other versatile chemical analysis methods are more 
expensive and far slower. Near-infrared spectroscopy (NIRS) can pro-
vide information about sample traits and composition in milliseconds 
and is being used for in-line sorting of for instance food, pharmaceuti-
cals, and plastics. Raman spectroscopy is usually slower, and requires 
seconds to do the same, which is still orders of magnitude faster than 
other chemical analyses such as chromatography. As added advantages, 
the vibrational spectroscopic methods require little to no sample prep-
aration and are non-destructive. The trade-off is that they require 
extensive calibration work. This calibration can be time-consuming and 
expensive. Since many vibrational spectroscopic methods are used in 
industry, there are often multiple spectrometers calibrated for the same 
analysis. Either because of location: the analysis needs to be done in 
several plants or factories; or because of capacity: if large quantities of 
small items need to be sorted, even millisecond speeds are insufficient if 
only a single spectrometer is used. Even spectrometers of the same brand 
may be sufficiently different, so that a calibration developed on one 
spectrometer has lower accuracy when used on another spectrometer. 
When calibrations are used on spectrometers of different brands, models 
usually lose more accuracy or fail completely. The expensive and time- 

consuming calibration combined with multiple spectrometers calibrated 
for the same analysis makes calibration transfer very valuable, since 
both time and money can be saved by reusing the calibration. Datasets 
are also increasingly available for download on the internet. If those can 
be utilized, new applications can also be developed at a reduced cost. 

Calibration transfer is the process of using the same data to calibrate 
multiple spectrometers. For the calibration transfer the different spec-
trometers are usually labeled: Source, master, or parent for the spec-
trometer which the data used for modelling is collected on. Target, slave, 
or child for the spectrometer which the transferred model is deployed 
on. Throughout this article, the terms source and target spectrometer are 
used. 

There are several strategies for transferring calibrations [1,2], and 
there is a plethora of methods for those strategies [3]. Perhaps the most 
noteworthy method is piecewise direct standardization (PDS) [4]. PDS 
uses a set of transfer samples, i.e. samples that have been measured by 
both spectrometers, to model each wavelength (e.g. 1000 nm) in the 
source spectrometer using a few nearby wavelengths (e.g. 
990–1010 nm) in the target spectrometer. A PLS model is made for each 
wavelength in the source spectrometer. Spectra acquired on the target 
spectrometer are then used with the wavelength models to predict what 
the spectra from the same sample would look like on the source spec-
trometer, and the new spectra are then used with the original model. The 
reverse, called reverse PDS, is when the source spectra are instead 
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converted to the target spectrometer, and a new model is built. PDS has 
been used in numerous publications [5–11]. PDS should be considered 
the state of the art. There are many newer methods published, but PDS 
still sees very widespread use. Partially because of its relative simplicity. 

Another common method is slope and bias correction (SBC). It relies 
on the spectrometers being standardized [1]. The standardization pro-
cedure ensures that the spectrometers produce almost identical spectra, 
for instance with respect to wavelength correspondence and intensity. 
Sometimes small differences between the spectrometers cause small 
residual errors, normally slope and bias errors. In response to these er-
rors, slope and bias correction has been used successfully. It is a simple 
method, but it is becoming obsolete: some modern spectrometers are 
standardized well enough that slope and bias correction is unnecessary. 
Spectrometers of different brands are not standardized with regards to 
each other, so slope and bias correction fails. 

In cases where the spectrometers are of the same brand and made by 
the same manufacturer, calibration transfer is usually an easy challenge: 
many manufacturers take care to standardize their spectrometers to 
simplify calibration transfer. When the spectrometers are from different 
manufacturers, or even of different types, e.g. grating, scanning, or 
Fourier-transform spectrometers, calibration transfer becomes more 
challenging. Differences in optical setups and sample handling can 
further increase the challenge. 

In response to these challenges, many calibration transfer methods 
have been developed, some of which are quite complex. PDS mentioned 
above requires selecting the number of components for the PLS models, 
perhaps at each target spectral variable, and this may lead to disconti-
nuities as stated in the literature [1]. Other methods that directly handle 
instruments with differing spectral support include trimmed-scores 
regression (TSR [12]) and principal components canonical correlation 
analysis (PC-CCA [13]). TSR formulates the problem as one of missing 
data and attempts to build the “missing” calibration set from existing 
observations. While not requiring parameters, the pseudo-inverses 
involved in the algorithm likely make the method sensitive to the size 
and selection of data. PC-CCA on the other hand builds a transform 
between “common” subspaces as identified by the CCA process. There 
are hence several steps with hyperparameter optimization involved. 
Again, it is expected that the method will require a number of samples 
both for the identification of subspaces and for estimating the re-
gressions. If one assumes a prior alignment of variables using interpo-
lation, then other methods are open for comparison. For instance, simply 
re-building the calibration by combining calibration data from the 
source and target datasets if reference values are present. This method is 
sometimes called “update” or “global” [1]. A close neighbour would be 
to explicitly suppress sensitivity to differences between domains such as 
with the calibration transfer by generalized least-squares [14] or 
null-augmented regression [15]. With both examples there are consid-
erations to address such as how to weigh the samples in the target 
domain in the former, and how much of the difference to use in the latter 
two. 

In this article we provide a comparatively simple calibration transfer 
method and show how it can solve the calibration transfer problem for 
both NIR and Raman spectroscopy, even when the source and target 
spectroscopic instruments have large differences. The method could be 
qualified as “simple” both because there are no tuning parameters, 
because it is expected to work with comparatively few samples (uni-
variate, linear regression) and because it does not require standardiza-
tion samples. 

There can be many differences between different spectrometers: 
wavelength correspondence, number of spectral variables, spectral res-
olution, signal intensity, wavelength range, and environmental sensi-
tivity, to name the most important. Correcting all the differences 
independently can be very challenging. The method presented in this 
article is based on the assumptions that the wavelength correspondence 
is the dominant model error, and that most other differences end up 
creating slope and bias errors, or overfitting errors. By correcting for the 

type of error, rather than for the difference between the spectrometers, 
the calibration transfer is simplified. Making fewer corrections lead to 
more robust results with less data required, which is ideal in most in-
dustrial settings. Wavelength correspondence can be assigned using 
linear interpolation based on wavelengths provided by the spectrometer 
vendors. It can also be done with wavelength references such as xenon, 
argon, or mercury lamps, or specialized wavelength reference tiles. 

More complex approaches exist to handle more difficult problems. 
Some, like PDS, use standardization samples which potentially suffer 
from the disadvantage of having to measure identical samples on both 
devices (distance between devices, if one device is broken). Others, as 
argued above, may require more samples and possibly expert supervi-
sion. The proposed method is a natural combination of existing pro-
cedures. The novelty is more in advocating the idea that a simple 
approach with a clear description of the errors it is compensating for is 
valuable information for the application of calibration transfer, partic-
ularly in a field where new methods are presented on a regular basis 
with a trend of increasing complexity. 

2. Materials and methods 

2.1. Data 

In this work we consider three cases. The details of the spectrometers 
used in the three cases are summarized in Table 1. 

The example data used in Case 1 Salmon was collected from previ-
ously published work on estimation of fatty acids in salmon. Fat rich 
fish, such as salmon, is a major source of marine fatty acids in the human 
diet. Docosahexaenoic acid (DHA) is one of the most important omega-3 
fatty acids which has been connected with health effects for human 
consumption [16–19] as well as fish welfare and fillet quality [20,21]. It 
is therefore an important quality parameter for the farming industry. 

In this case, the source data was acquired on 618 samples of ground 
salmon using a Kaiser RamanRXN2 Multi-channel Raman analyzer 
(Kaiser Optical Systems, Ann Arbor, MI, USA), with a 500–1800 cm− 1 

Raman shift range and a 4 cm− 1 resolution [22]. The target data was 
collected on 51 intact salmon fillets using a MarqMetrix All-in-One (AIO) 
Raman system with a 100–3250 cm− 1 Raman shift range and a 6.5 cm− 1 

resolution [23]. The analyte chosen, the omega-3 fatty acid DHA, was 
quantified using GC/MS [22,23]. 

In Case 2 Bean flour the samples were prepared by dry fractionation 
of flours from different varieties of fava beans [24,25]. With a steadily 
growing population and new consumer trends, bean flour protein has 
been identified as a nutritious and inexpensive vegetable source of 
protein. Using pin mill separation, the protein content of the flour can be 
increased to the desired concentration, and NIR spectroscopy can be 
used to monitor the product composition. 

In this case, the source and target spectra were acquired in reflec-
tance mode on the same samples, and two target data sets were 
compared. The source data was collected using a FOSS NIR Systems XDS 
Rapid Content Analyzer (FOSS Analytical, Hillerød, Denmark) in the 
wavelength region 400–2500 nm with a 0.5 nm resolution. The Target 1 
data was collected using a Prediktor Spektron 1700 (Prediktor, Fre-
drikstad, Norway) inline NIR spectrometer with a wavelength range of x 
nm and a resolution of x nm. The Target 2 data was acquired using a 
VISUM Palm (Iris, Catalonia, Spain) handheld NIR instrument with a 
wavelength range of 980–1600 nm and a resolution of 1.5 nm. The 
protein contents of the samples were measured as 6.25 times the ni-
trogen content determined using Dumas method. 

In Case 3 Dried salted cod (Clipfish) Clipfish is a traditional product 
where the fish is first salted and then dried. The main quality feature is 
the amount of water in the fish. It has previously been shown that it is 
possible to estimate the water content by the use of hyperspectral 
interactance imaging in the NIR region 760–1040 nm [26]. This was 
done with the Qvision500 industrial scanner (TOMRA sorting solutions, 
Leuven, Belgium), The imaging approach was useful for proper sampling 
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since the water is unevenly distributed in the fish. The interactance 
measurement mode is needed to measure in depth in the fish, also to 
obtain representative spectra of the average water content. In the clip-
fish industry there is a need for a portable/handheld instrument for 
water content assessment. We are then limited to point interactance 
measurements and that these measurements are done at six different 
sites on the fish to obtain a satisfactory measurement of the average 
water content. Such measurements has been done with a prototype NIR 
system (SmartSensor) previously described by Wold et al. [27]. In this 
study it is of interest to see if it is possible to successfully transfer a 
calibration from the imaging system to the point based system. 

3. Calibration transfer method  

1. The first step of this calibration transfer method is assigning the 
wavelength correspondence between the two spectrometers. In this 
paper it was done using the wavelength correspondences supplied by 
the spectrometer vendors, and linear interpolation between the 
pixels. The linear interpolation was done using MATLAB and the 
interp1 function, with the default settings. The interp1 function takes 
the spectra, and the wavelengths of the two spectrometers and does 
linear interpolation between the datapoints in the spectra to estimate 
the spectral intensities at the wavelengths in the target spectrometer. 
If the wavelength correspondences supplied by the vendors are 
inaccurate, a wavelength reference can be used instead.  

2. When the wavelength ranges for the target and source spectrometers 
are different, only the overlapping range is selected.  

3. The adjusted spectra from the source spectrometer are then used to 
make a new model with the number of PLS components selected 
using data from the target spectrometer. The same preprocessing 
methods that were used for the original models on the source spec-
trometers are used on the target models.  

4. The predictions are then slope and bias corrected with linear 
regression: a linear regression is made using a few samples (8− 15) on 
the target spectrometer. The predictions on the target spectrometer 
are then multiplied by the slope, and the bias of the linear regression 
model is added to the predictions. This is both to correct for differ-
ences in intensities from the different spectrometers, and to correct 
for differences in the optics and geometries in the spectral acquisition 
setup. 

4. Validation of model transfer 

In all examples in this article, the target dataset acts as the test set, 
with a few samples used for selecting the number of PLS components and 
performing the slope-and-bias correction. In case 2 and Case 3, all 
samples have been measured on both instruments. The models based on 
those datasets were validated by holding out the same samples from 
both the target and the source spectrometer while the models were 
cross-validated. When the impact of the number of samples was tested, a 
random set of samples was used for selecting the number of PLS 

components and performing the slope-and-bias correction. The 
remaining samples were used for validation. This was repeated multiple 
times to assess the variation due to the selected samples. Fig. 1 illustrates 
the sample split between calibration, tuning, and validation sets. 

The transferred models were also compared with native models using 
both the source and target datasets, i.e. models where both the cali-
bration and test set are from the same spectrometer. In all cases the data 
was split randomly into a calibration set, a tuning set, and a test set. The 
different models were created with the same split. For case 2 and Case 3, 
which have the same samples in the source and target datasets, the split 
is the same for the source and the target. For the case 2 and Case 3, 8 
samples were used for tuning. For Case 1, 15 samples were used for 
tuning, due to the larger differences between the datasets. PLS models 
with up to 10 components were created using the calibration set. The 
tuning set was used to select the number of components and slope and 
bias correct the model. The performance was then assessed using the test 
set. This was repeated 100 times, and the average performance is pro-
vided in Table 2. For all transferred models, the PLS regression used the 
entire wavelength-ranges that were overlapping for the target and 
source spectrometers. 

5. Results and discussion 

Fig. 2 shows how Raman spectra from Case 1 compare before and 
after the wavelength adjustment. Spectra from Source and Target have 
different intensities, different number of variables, and different Raman 
shift range. Without transforming the spectra, models based on the 
source instrument will fail on the target instrument. The spectra shown 
are from different samples; the two datasets have no samples in com-
mon. The wavelength correspondence is in this case assigned with linear 
interpolation using the wavelengths provided by the spectrometer 
vendors. In the examples, i.e. Fig. 2, the spectra after wavelength cor-
respondence adjustment are also normalized. That is not strictly 
necessary as it does not impact the model performance, but it makes the 
manual interpretation easier. 

Fig. 3 shows the performance of estimating the concentration of the 
fatty acid DHA for different number of components for the two spec-
trometers used in Case 1. The source and target spectrometers have 
different numbers of optimal PLS components. This is often the case 
when spectrometers are very different. In this case, another contributing 
reason for the different number of components used is the differences in 
composition between the samples. In the source dataset, the salmon 
have been given the same feed. In the target dataset, acting as an 
external test set, the salmon have been given different feeds, changing 
the fatty acid composition. For datasets where the sample composition is 
the same, there can still be overfitting due to changes between spec-
trometers, if they are different enough. For spectrometers that are suf-
ficiently similar, and where the sample sets have the same composition, 
the tuning of the PLS model again for the calibration transfer is not 
necessary. Fig. 3 also shows a higher performance for the transferred 
model compared to the source model. The reason for this is that the 

Table 1 
the spectrometers used for the different cases, and their respective characteristics.  

Case Data 
set 

Instrument Wavelength 
region 

Optical 
resolution 

Digital 
resolution 

Sample Analyte Analyte range 
(%) 

Case 1 Source Kaiser RamanRXN2 500–1800 cm− 1 4 cm− 1 0.3 cm− 1 Ground salmon 
fillet 

DHA fatty 
acid 

5–9% 

Case 1 Target MarqMetrix AIO Raman 
system 

100–1800 cm− 1 6.5 cm− 1 2 cm− 1 Salmon fillet DHA fatty 
acid 

2–7% 

Case 2 Source FOSS NIR Systems XDS 400–2500 nm 2 nm 0.5 nm Bean flour Protein 28–78% 
Case 2 Target 1 Prediktor Spektron NIR 

sensor 
1020–1700 nm 8 nm 3 nm Bean flour Protein 28–78% 

Case 2 Target 2 VISUM Palm handhelt NIR 980–1600 nm 3 nm 1.5 nm Bean flour Protein 28–78% 
Case 3 Source QVision Scanner 760–1040 nm 20 nm 20 nm Dried salted fish Water 42–57% 
Case 3 Target SmartSensor 760–1280 nm 17 nm 17 nm Dried salted fish Water 42–57%  
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Fig. 1. An illustration of how the datasets are split into sets for calibration, tuning, and validation.  

Table 2 
The number of PLS components used (LVs) performances (R2 (coefficient of determination), RMSEP (root mean square error of prediction)) of the transferred models 
compared to the native models on both the source and targets instruments, the source model on the parts of the source spectra that was available of the target in-
struments, as well as the performance when PDS was used for the calibration transfer.  

Case model original 
Source data 

model on source spectra overlapping with target 
spectra 

Test transfer model 
on test data 

model of test data obtained by 
target instrument 

Test model transferred by PDS 
on test data  

LVs R2 RMSEP LVs R2 RMSEP LVs R2 RMSEP LVs R2 RMSEP LVs R2 RMSEP 

Case 1  7  0.66  0.33  7  0.66  0.33  4  0.91  0.39  3  0.92  0.36       
Case 2 

Target1  
6  0.97  2.6  6  0.97  2.7  5  0.96  3.9  7  0.96  3.3  3  0.82  8.4 

Case 2 
Target2  

6  0.97  2.6  6  0.97  2.7  2  0.84  7.2  5  0.91  5.5  5  0.66  10.7 

Case 3  5  0.86  1.4  5  0.86  1.4  5  0.75  1.9  5  0.83  1.7  5  0.70  2.8  

Fig. 2. Raman spectra from Case 1: from the source spectrometer where the calibration was originally developed on, and the target spectrometer that we want to 
deploy the model on. The figure shows these spectra plotted by variable, which is how a model is applied. The target spectrum has been offset for clarity. The right 
figure shows the same spectra, where the target spectrum has been interpolated to match the source spectrometer. To simplify the comparison between spectra, they 
have been normalized by SNV. Source and target spectra are from different samples. 
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target data shows much wider range in DHA, which means that the er-
rors are relatively lower. The performance of the transferred model is 
not quite as high as the performance of the native target model. Part of 
this is due to differences in the samples, but there is likely a calibration 
transfer error contributing as well. In this case, there are clearly numbers 
of components that yield models with lower performance. In large part, 
this is due to the differences between the samples rather than the 
spectrometers: the source dataset has concentrations of DHA ranging 
from 5% to 9%, while the target dataset has concentrations ranging from 
2% to 7%. Since the model needs to be retuned, there is a risk that the 
wrong number of components is used. This was tested by drawing 
samples at random from the target dataset and used to tune the number 
of components. If the standard deviation of the reference values for the 
drawn samples was higher than 1% DHA, this was considered too low 
and new samples were drawn. This was repeated 10000 times to assess 
how reliably good PLS parameters can be found given different number 
of samples. With 10 samples, the optimal number of components (3, 4, 
or 5) we found 80% of the time, and a passable number of components 
(2− 6) were found 91% of the time. With 15 samples, the percentages 
were instead 90% and 96%, and with 20 samples they were 95% and 
98%. 

In these tests, the samples have been selected randomly. It is often 
possible to select samples more systematically. Kennard-Stone [28] has 
been successfully used in many applications, particularly with PDS. 
When selecting samples methodically rather than randomly, the per-
formance of calibration transfer by wavelength correspondence also 
increases for the more complicated datasets. Case 1 also reaches stable 
performance with 8 samples. For case 2 and Case 3, the performance is 
also improved, but the change is very small since those datasets are less 
challenging. With PDS, sample selection is still important since PDS 
solves the differences between the instruments by modelling the dif-
ference in the spectra. Calibration transfer by wavelength correspon-
dence solves the differences by direct measurements of the two 
instruments, either supplied by the vendors or by measuring a wave-
length reference such as a xenon lamp. One important consideration is 
how much sample variation is required for the calibration transfer. All 
examples here are from the food sector. Many cases in the food sector 
have seasonal variation. If the seasonal variation needs to be covered for 
the first calibration transfer, it can become very cumbersome. Calibra-
tion transfer by wavelength correspondence does not require the sea-
sonal variation to be covered for the initial transfer, but it can be prudent 
to update the transfer if the seasonal variation is significant. 

In cases where the optical setups and sample handling are the same, 
the slope and bias errors will be much smaller, possibly to the point that 

the slope correction is not necessary. Using the method presented in this 
article, a bias correction is usually necessary, even with identical optical 
setups due to small errors in the assigned wavelength correspondence.  
Fig. 4 shows the predictions and references for Case 1. The performance 
is good for the transferred model, despite the differences between the 
spectrometers and the different range of DHA. 

Case 1 have different samples, and the spectra were obtained at 
different times, at different locations. This is a common occurrence, and 
therefore a suitable test for a calibration transfer method for industrial 
use. 

While this is not always possible to do in industry, some calibration 
transfer methods do require spectra from the same samples obtained 
from all spectrometers. Case 2 and Case 3 fulfill that criterion, which 
makes these datasets useful for comparing different transfer methods. 
They are also very useful in assessing the transfer error itself: since the 
samples are the same, differences in performance come from the cali-
bration transfer. Fig. 5 shows how the performance changes with 
number of components in case 2. The source and the target 1 spec-
trometers are both larger scale instruments, with similar design but from 
different vendors. The target 2 spectrometer is a handheld spectrometer, 
and the performance behaves very differently compared to the other 
two. Fig. 6 shows the spectra, and despite any similarities in design, the 
spectra from the three spectrometers look very different. The two similar 
spectrometers have very similar performance until very high number of 
components are used. The handheld spectrometer has similar perfor-
mance for the first two components, just slightly lower than the two 
larger spectrometers. For models using more than three components, the 
performance collapses completely for the handheld spectrometer, the R2 

dropping from 0.85 to 0–0.4 depending on the number of components. 
This shows that the model reoptimization step can be important, unless 
the spectrometers are sufficiently similar. Fig. 7 shows the predicted 
versus reference for the three spectrometers. Despite the differences 
between the three spectrometers, the performance for the native model 
on the source instrument and the transferred models on the target in-
struments ended up similar. 

The target 1 spectrometer had similar performance regardless of how 
many components were used, so the number of samples used for the 
model tuning is essentially irrelevant: regardless of the selected number 
of components, the performance is fine. The target 2 spectrometer be-
haves more like Case 1 in that it has an acceptable range of 1–3 PLS 
components. With 5 samples for tuning, selected randomly, the optimal 
range was reached 88% of the time. With 10 samples for tuning, the 
optimal range was reached 99% of the time. A large reason that fewer 

Fig. 3. This figure shows the performance (R2 (coefficient of determination)) of 
the DHA (Docosahexaenoic acid) predictions in Case 1 depending on the 
different number of components for the transferred model, and the cross- 
validated (CV) performance for the source and target datasets. 

Fig. 4. A plot of the DHA (Docosahexaenoic acid) predictions and references 
for the source and target datasets for Case 1. The source spectrometer has cross 
validated predictions, while the target spectrometer shows the predictions of 
the test set. 
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samples were required for this dataset, compared to Case 1 is that this 
dataset uses the same samples, so there is no overfitting error that 
complicates the situation. The more different the new samples are 
compared to the old samples; the more samples will be required for the 
tuning. For the target 1 spectrometer, the optimization curve was 
generally flat if at least 8 samples were used. When fewer samples were 
used, the optimization curve would occasionally have strong differences 
depending on the number of PLS components. 

Fig. 8 shows how the performance changes with the number of PLS 
components used when PDS was used for transfer. This shows the same 
issue with a reduced performance for the transferred models when too 
many components are used, but even more than in Fig. 5. A part of this is 
due to the selection of transfer samples: here they were selected at 
random. This was repeated several times, with differences in perfor-
mance every time. The target 2 spectrometer was more sensitive to the 
sample selection. This highlights the importance of sample selection and 
parameter tuning in calibration transfer. Parameter tuning and sample 
selection can be costly processes in terms of number of samples and level 
of validation required. For situations where multiple transfers are 
necessary, calibration transfer methods that have fewer parameters to 
tune can be optimal. 

Case 3 uses interactance NIR. Here the interactance depth can 
interfere, and it has a shorter wavelength range, and lower wavelength 
resolution than is commonly used in NIR. Fig. 9 shows the performance 

Fig. 5. The cross-validated transfer performance (R2 (coefficient of determi-
nation)) for case 2. The same samples have been measured on the source and 
two target spectrometers. The data from the source spectrometer has been used 
for modelling with seven-fold cross-validation. It is the same model, from the 
source spectrometer, that has been used on all three spectrometers. The same 
samples have been held out in the two target spectrometers. 

Fig. 6. Spectra from the same sample from the three different spectrometers in case 2, before (left) and after (right) wavelength correction and normalization with 
SNV. The figure shows these spectra plotted by variable, which is how a model is applied. The wavelength range in the source spectrometer is reduced to the 
overlapping range after the correction. 

Fig. 7. The predicted versus reference for the three spectrometers in case 2. For 
the source data, it is the native model. For the target1 and 2, it is the trans-
ferred models. 

Fig. 8. The performance (R2 (coefficient of determination)) depending on the 
number of components for case 2 when PDS was used for the transfer. 
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depending on the number of components used both for calibration 
transfer by wavelength correspondence and by PDS. It shows similar 
behavior as case 2: PDS was more sensitive to overfitting. The target 
spectrometer measures several depths simultaneously. PDS was more 
sensitive to the interactance depth as well. For PDS, this becomes a 
question of robustness, and validation: is there enough time and samples 
to select good settings to achieve the best performance? 

In this figure the highest performance is achieved by PDS. Depending 
on which samples, and how many samples were selected for model 
tuning, the performance of PDS varied strongly. For case 2, calibration 
transfer by wavelength correspondence was consistently higher. Cali-
bration transfer by wavelength correspondence has lower performance 
than expected for Case 3 because are some errors in the wavelengths 
supplied by least one of the instrument manufacturers. PDS only needs 
the approximate wavelengths of each spectrometer, since it compares 
one pixel in one spectrometer to several pixels in the other spectrometer.  
Fig. 10 shows the predicted versus reference for the source dataset, and 
the different transfer methods. The performances for both methods are 
good. Ultimately, the choice of calibration transfer methods should be 
decided by practical considerations: are the instruments located at the 
same place? How much time can be spared for sampling, spectral 
acquisition, referencing and validation? How important is the model 
performance? How important is model robustness? 

Table 2 compares the performances of the transferred models to the 
native models on both the source and target spectrometers, as well as the 
performance of the source data after the wavelengths that are missing in 
the target data have been removed. The most notable observation is that 
the performances of the transferred models are lower than new models 
trained on the target spectrometers. It is plausible that larger differences 
between the source and target spectrometers will lead to a larger 
decrease in performance. All cases except the Case 3 require fewer PLS 
components for the transferred models compared to the models trained 
on the source dataset. Case 2 target 2 also require fewer PLS components 
in the transferred models compared to the models trained on the target 
dataset. This illustrates how the models sometimes overfit to the spec-
trometer they are trained on. Case 1 shows higher R2 for the transferred 
models compared to the models applied to the source dataset. This is due 
to the target dataset covering a much wider analyte range, while having 
comparable absolute errors, making the relative errors lower. While the 
performances were lower for the transferred models, the transfer 
worked for all cases in the sense that RMSE/R2 where not much worse 
than models built on target and better than those obtained by PDS, 
despite the differences between the target and source spectrometers, and 
without using spectra from the same samples from both spectrometers. 
This simplifies calibration transfer in increasingly common scenarios 
where it is difficult or even impossible to acquire transfer samples, such 

as when spectrometers are located far away, or the use of models from a 
damaged or broken spectrometer, or creating a new application using a 
dataset downloaded from the internet. 

6. Conclusions 

Even very simple calibration transfer methods can yield good results, 
even between spectrometers that have large differences. Here calibra-
tion transfer was done by assigning wavelength correspondence, reop-
timizing the model to compensate for overfitting to the spectrometers 
and differences in covariances in the two datasets, and then slope and 
bias correction for differences in optical setups and sample handling. 
Despite its simplicity, this calibration transfer method had good per-
formance for both NIR and Raman, even for datasets that had differences 
in both sample handling and sample composition. Since this method 
does not require access to the source spectrometer, or samples measured 
on both the target and the source spectrometer, it can be used in cases 
when the source spectrometer is far away, broken, or otherwise 
unavailable. 
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