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A B S T R A C T   

Digital sensors and machine learning enable efficiency improvements in production processes, through process 
monitoring, anomaly detection, soft sensing, and process control. However, the development of such solutions 
requires several data preprocessing steps. In continuous processes, a crucial part of the data preparation is 
adjusting for time delays between different sensors. This is necessary to ensure that each sensor measurement 
relate to the same volume of materials going through various processing steps. 

This study provides an overview of data-driven methods for estimating time lags between sensors in contin-
uous processes. The methods are assessed in a large simulation study, on data sets with different sample sizes, 
model complexities and autocorrelation functions. Our results shows that most methods work well if the re-
lationships are close to linear, but more flexible metrics like distance correlation and maximum information 
coefficient are needed in more complex systems. Finally, we present a real industrial example to illustrate some 
real-world aspects of the variable time delay estimation process.   

1. Introduction 

With the increasing affordability of physical and digital sensors, 
considerable process data has become available from most production 
processes. Along with the amount of data, increased awareness of the 
importance of data in processes fostered an increased effort in research 
and application of multivariate statistical and machine learning 
methods in various industrial settings [1,2]. Researchers and industrial 
practitioners started to make use of the large amounts of data originating 
from industrial processes at most levels [3], helping, among other 
things, e.g., decision-making [4], production planning and control [5], 
fault detection and prediction [6], predictive maintenance [7], energy 
efficiency [8], and quality control [9], to cite a few. In some applica-
tions, there is a need to obtain a frequent and reliable prediction as a 
surrogate of a quantity that is impractical, impossible, or 
time-consuming to measure. To obtain this prediction usually, models 
linking process variables and process states to the quantities of interest 
are used to predict it, e.g., powder composition in continuous tablet 
manufacturing [10], product quality in a batch polymerisation process 
[11], and concentrations in the bottom part of a distillation column 
[12]. These predictive models are often called inferential sensors, virtual 
online analysers, observer-based sensors, or, more commonly, soft 

sensors, from a union of the words “software” and “sensor” [13,14]. 
These soft sensors can also be categorised by the amount of physical 

and process knowledge the researchers and practitioners decide to 
include in the underlying model. When the soft sensor models are based 
on fundamental laws governing the relationships among the system’s 
physiochemical, biochemical, and mechanical properties, these are 
called first principles, mechanistic, or white-box models. When they are 
based on relationships derived from the available data, they are called 
data-driven or black-box models. When they are built employing both, 
with one class of models benefitting from the results of the other, they 
are called grey-box or hybrid models [15–18]. Notwithstanding the 
choice of model structure, soft sensors require data of sufficient quality 
to provide accurate and reliable predictions. Industrial data often suffer 
from low quality in the form of missing data, outliers or varying noise 
levels, and need some specific steps to increase their overall quality 
[19]. These steps are referred to collectively as pre-processing. They are 
among the most time-consuming steps in a model-building pipeline, 
taking up as much as 75% of a practitioner’s time during model-building 
[20]. 

A generally overlooked problem in data pre-processing is variable 
time delay [21]. A delay often occurs between the target and input 
variables in real industrial processes. This delay may depend on various 
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sources but can generally be classified as either measurement/signal 
delay or process delay [22]. Measurement delay is due to sensors taking 
time to measure some quantity, while process delay is a characteristic of 
the process and comes from, e.g., the time it takes from a given set of 
materials to go from a unit operation to the next, the residence time in a 
reactor or the blend time in a mixer. Variable time delay substantially 
impacts process modelling, especially in continuous industrial processes 
where there is a need to join data from different sensors that are distant 
in space and need to be adjusted for if an accurate model is desired [21]. 
Failing to address this delay might lead to inaccurate models especially 
in the case of process that are highly variable over time or when the 
process is not running at steady state. 

Process technicians often have some knowledge about approximate 
time delays between measurement points but are not always accurate 
enough to obtain good modelling results, as estimating flows from first 
principles can be especially challenging when conditions deviate from 
ideal, for example when buffer tanks are present where laminar flow 
cannot be expected or when parallel processing units create a mixture of 
flows. The time delay may also vary depending on changes in the ma-
terial flow or process settings. It is, therefore, often necessary to estimate 
the variable time delay from data. Over the years, several papers have 
been published on variable time delay estimation using different tech-
niques and approaches. However, to the best of our knowledge, an 
extensive overview and comparative study has yet to be carried out on 
these methods. In this paper, we compare different approaches for 
variable time delay estimation on industrial and synthetic datasets. We 
evaluate the methods’ ability to estimate the correct time delay in 
different scenarios, their computation time, and general ease of use. 

The rest of the paper is organised as follows. Section §2 will clarify 
the variable time delay problem with simple mathematical notation. 
Section §3 will overview the estimation methods used in the comparison. 
In section §4, the datasets used for the comparison are introduced. In 
section §5, the results are assessed and discussed, and based on the re-
sults, we give recommendations and guidelines for estimating variable 
time delay in continuous industrial processes. 

2. Variable time delay 

This section aims to give a brief mathematical formulation of the 
issue. Yao and Ge [23] have an excellent explanation of the problem, 
and we refer to that paper for further doubts on the topic. 

The aim of a soft sensor is to predict a quality attribute from a set of 
explanatory variables. The prediction model is usually made by training 
a machine learning algorithm on a set of data. Let X be a matrix of N 
observations (rows) with K columns (x1,…, xK) containing the values of 
K explanatory variables (X1,…,XK) sampled at regularly spaced time 
points in a continuous industrial process where variable time delay is 
present, and y be an N × 1 vector of a critical quality attribute Y 
measured from the same process. 

Let f be some function linking X to y, 

y = f (X) + e, (1)  

where e is an error vector. 
Introducing t as the time index of the series comprising X and y, we 

have that the above equation might not generally be valid for the naive 
case of comparing data at the same time index 

yt ∕= f
(
xT

t

)
+ et, (2)  

where xT
t is a row vector containing the values of the K variables at time 

t. 
To correctly assess the relationship between the explanatory vari-

ables and the quality attribute, it is necessary to account for the time 
delay between variables in X and y. 

Let Ld be a shift operator [24] of order d, such as 

Ld(xt) = xt− d, (3) 

The variable time delay estimation problem then becomes to identify 
the unknown order of the shift operator vector that satisfies equation (1) 
whilst minimising the norm of the error vector e. 

What is required, in other words, is the vector d that satisfies 
⎧
⎨

⎩

Ld( xT
t

)
=

[
x1,t− d1 , x2,t− d2 , x3,t− d3 ,…, xK,t− dK

]

y = f
(
Ld(X)

)
+ e

s.t. argmin ‖e‖
d

(4)  

where d in equation (4) is a K × 1 vector, and each value of the vector is 
dk ∈ [Δl, Δu], where Δl and Δu are, respectively, the lower and upper 
limits of the time delay, two parameters usually known by process 
technicians. The chosen limits may also incorporate prior knowledge 
about the order of sensors. Fig. 1 has a simple representation of this 
problem on a system where three process variables and a target quantity 
are measured with time delay. 

It is important to note that while the chosen notation for Equation (4) 
and Fig. 1 might suggest that only one lag per variable can exist in the 
relationship with y, this is not the case; dynamics are an essential feature 
of most processes. In this case, it might be that X1 and X2 (in Fig. 1) 
come from the same sensor at t-4 and t-3 or that the subscript k in 
equation (4) refers to variables and their lags. In these situations, a 
single sensor can be present more than once at different lags. In this case, 
the time delay we are interested in detecting would be the one that 
occurs first. 

On a more practical side, the variable time delay estimation pro-
cedure can be divided into four steps.  

1) Set a fixed zero point on the time axis  
2) Identify the time frame to be used in the analysis  
3) Perform the delay analysis  
4) Assess the results 

Consider the alignment of two sensors. The first step requires the 
choice of which sensor to set as the reference time for the variable time 
estimation. When the end goal of the analysis is the creation of a soft 
sensor, the most probable target would be the dependent target variable, 
while for different analysis goals expert knowledge should be used to 
identify the appropriate zero point. The second step requires data 
analysis paired with domain knowledge to identify the correct time 
resolution of the variations in the quantities measured by these sensors 
and to consider the possible differences in measurement rates and 
granularity, in addition to the characteristic time of the process and the 
control system. The sampling frequency influences the dynamic order of 
the data; higher frequency sampling will result in higher order dynamic 
present just by virtue of the sampling happening faster than the varia-
tion in the measured quantity and their control system. While the almost 
universal assumption for data analysis is that all available records have 
the same resolution and time step, this is frequently not the case [25,26]. 
While process data is usually collected instantaneously, but possibly 
with different sampling rates, quality attributes often require manual 
sampling and therefore may have low and possibly irregular time res-
olution. Additionally, measures can sometimes be collated over different 
periods, e.g., shifts, hours or production runs. This difference in gran-
ularity needs to be considered, as the correct time resolution from a 
process point of view might be incompatible with the resolution or 
frequency of the measurements. Consequently, some sort of aggregation 
or interpolation is usually needed before the delay analysis can take 
place [27,28]. 

The third and fourth steps require performing and assessing the time 
delay estimation, which is the main topic of this work. Various methods 
are available for the analysis; a limited survey divided into different 
general approaches is reported in section §3. Regarding the assessment, 
process knowledge should be used to double-check the results. A general 
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goal of variable time delay estimation might be the time alignment of 
key process parameters and raw material characteristics to the end- 
product quality attributes. It is worth noticing that in industrial prac-
tice, not all the measured quantities are correlated to the end-product 
quality, and some processing steps may break the spatiotemporal cor-
relation structure of some or all the variables. A typical example of a step 
that breaks the correlation structure in one variable would be a heat 
exchanger breaking the temporal correlation in the temperature. An 
example of a step that breaks the correlation structure in most variables 
would be a non-FIFO (First In-First Out) step, for example, a mixing 
vessel, where, e.g., the temperatures and concentrations of a flow get 
averaged over a period. In these situations it might be useful to break 
down the process in smaller steps or to increase the time resolution of 
the analysis. 

3. Variable time delay estimation methods 

This section provides a survey of existing variable time delay 

estimation techniques and identifies the algorithms considered in the 
evaluation. The variable time delay estimation problem is a transversal 
issue that touches many different disciplines, among others, biomedical 
engineering [29], control systems theory [30], time series analysis [31], 
and chemical engineering [32], each with its preferred algorithms. 
While there is a partial overlap in techniques, not all can be applied to all 
data types. Here, we focus on those that apply to process data. 

Table 1 lists all the methods evaluated in this paper, and each 
method is briefly described in the following subsections. All methods 
can be applied statically or dynamically. The dynamic approach tackles 
dynamic variable time delay, i.e, when the d vector of equation (4) is not 
constant thoughout the process, and generally involves a moving win-
dow [32–34]. 

3.1. Methods based on measures of dependence 

All these methods work by calculating some measure of dependence 
between the response variable Y and lagged versions of the X-variables. 

Fig. 1. Illustration of the Variable Time Delay issue: X1, X2 and X3 are process variables, and Y is a quality attribute. a) shows a flowchart of the process with 
placements of the sensors, b) data vectors where each of the process variables are time-shifted with d = 0–4. The vectors that are marked by solid-line black 
rectangles are the time step that is responsible for the variation in the quality attribute highlighted by the dashed black rectangle; in this case, the d vector in equation 
(4) would be [2–4] as the variables responsible for the quality Y are L4(X1), L3(X2), and L2(X3). 

Table 1 
Methods employed in the analysis.  

Method Abbreviation Family Multivariate Main assumptions Reference 

Pearson’s correlation r Measure of dependence No Gaussian distribution and linear 
relationship 

[35] 

Kendall’s correlation τ No Monotonous relationship [35] 
Spearman’s correlation ρ No Monotonous relationship [35] 
Maximum Information Coefficient MIC No Any kind of relationship [36] 
Mutual information MI Yes Any kind of relationship [37] 
N-Norm N-Norm No Any kind of relationship [38] 
Distance correlation dCorr Yes Any kind of relationship [39] 
PLS regression coefficients PLS-Beta Variable importance in 

regression 
Yes Linear and some kind of nonlinear 

relationship 
[40] 

PLS regression + selectivity ratio PLS-SR Yes Linear and some kind of nonlinear 
relationship 

[41] 

Kernel PLS + variable permutation KPLS Yes Any kind of relationship [42] 
Random forest + Variable Permutation RF Yes Any kind of relationship [43] 
Variable time reconstruction using Linear Least 

Squares 
VTR-LS Optimisation Yes Linear and some kind of nonlinear 

relationship 
[23] 

Variable Time Reconstruction using Gaussian 
mixtures 

VTR-GMM Yes Gaussian mixture distribution [23] 

Genetic algorithm with mutual information GA-MI Yes Any kind of relationship [44]  
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The optimal lag for each X is then defined as the one having maximum 
dependence on the response. 

3.1.1. Classical correlation metrics 
Pearson’s (r), Kendall’s (τ), and Spearman’s (ρ) correlations are 

classical methods that see widespread use in data analysis. Pearson 
product-moment correlation measures the strength of the linear rela-
tionship between two variables and is one of the most used statistical 
estimators. Kendall’s and Spearman’s are two other very well-known 
correlation indices; they measure the strength of monotone relation-
ships between two variables using ranks (i.e., relative position label of 
the observations within the variable: 1st, 2nd, 3rd, …, n-th) between the 
two variables, resulting in increased performance and less influence 
from outliers, with Kendall’s being the most outlier resistant of the three 
[45]. 

Some examples of these methods applied to variable time delay 
estimation are the pre-processing step of modelling a de-aromatisation 
process [37] and calculating the melt flow index in a polymerisation 
process [46]. 

3.1.2. Mutual information 
Mutual information (MI) between two random variables, X and Y, 

MI(X,Y), measures the information that X and Y share; it is a measure 
capable of describing any relationship that measures the reduction in 
uncertainty about one variable that can be obtained by observing the 
other. Mutual Information is measured mathematically as the difference 
between the entropy of the marginal distributions of the two variables 
and the entropy of the joint distribution of the two variables: 

MI(X,Y) = H(Y) + H(X) − H(X,Y) (5)  

where H(X) and H(Y) are the marginal entropies of X and Y, respectively, 
and H(X, Y) is their joint entropy. Marginal entropies are calculated for 
discrete variables as follows: 

H(X)=H(X1,X2,…,XK)=
∑

x1

∑

x2

…
∑

xK

− PX(x1,x2,…,xK)log(PX(x1,x2,…,xK))

(6)  

where PX(x) is the marginal probability mass function of X; and for 
continuous variables as: 

H(X) = H(X1,X2,…,XK) =∫

x1

∫

x2

…
∫

xK

− PX(x1, x2,…, xK)log(PX(x1, x2,…, xK))dx1dx2…dxK (7)  

where PX(x) is the marginal probability density function of X. The joint 
entropy H(X,Y) is calculated similarly, but the integral is on x and y, and 
the joint probability PXY(xy) substitutes for PX(x). 

Mutual information is not straightforward to estimate from empirical 
data as the calculation of entropies is based on probabilities and suffers 
from possible biases [47,48]. 

These difficulties and biases are exacerbated by Mutual Information 
being derived specifically for discrete quantities, and the infinite inte-
gral of equation (7) being often impossible to solve. Nevertheless, a wide 
variety of strategies to estimate Mutual Information in real-valued data 
that account for these biases [48], albeit not universally, have been 
devised. The most widely used estimation strategies are based, among 
others, on k-nearest neighbour (k-NN) [49], kernel density estimation 
[50] or space discretisation [51]. MI has been extensively used for 
feature selection [52]; additionally, it was explicitly used for variable 
time delay estimation [53,54]. 

In this work, the KSG estimator (a k–NN–based estimator) from 
Kraskov et al. [49] has been used, virtually unchanged from the code 
provided in the MILCA package [55]. Although Mutual information is 
traditionally multivariate, we have employed it in a bivariate way. It is 
worth noting that MI is not a measure of dependence as per the 

definition of, e.g., Rényi [56] (i.e., it is not bounded between 0 and 1, for 
practical use), but when transformed with Linfoot’s [57] formula, it 
becomes one. The transformed version has been used when comparing 
MI with other measures of dependence. 

3.1.3. Maximal Information Coefficient 
The Maximal Information Coefficient (MIC) is a measure of depen-

dence between two random variables, X and Y (components of a 
multivariable random variable), formulated by Reshef et al. [36], useful 
for all kinds of relationships. The MIC is based on an algorithm that 
sequentially partitions the marginals of the joint distribution of X and Y. 
On these partitions, i.e., different ways of discretising the data, MI is 
calculated and then normalised by dividing by the base(2) logarithm of 
the grid size (i.e., the minimum of the number of times it was divided on 
each dimension), and the highest resulting normalised mutual infor-
mation among all grids is chosen. 

MIC is presented as an equitable measure of dependence, i.e., it 
should present the ability to rank in the same way different relationship 
types that present the same noise level [58,59]. However, this is still 
debated [60,61]. To the best of our knowledge, there are no direct ex-
amples of using MIC for variable time delay, but it has been used as a 
part of the N-Norm method (see section §3.1.5). In other fields, it has 
been used, e.g., for predicting periodic patterns in large-scale time--
resolved protein expression profiles and exploring the coupling rela-
tionship between two time series in specific frequency bands [62,63]. 
The MATLAB version of the minepy package detailed in Albanese et al. 
[51] has been used in this work. 

3.1.4. Distance correlation 
Distance correlation is a multivariate measure of dependence be-

tween two paired data matrices X and Y, that can measure relationships 
of any kind. It was developed by Szekély, Rizzo, and Bakirov and 
expanded upon by Szekély and Rizzo [39,64,65]. Distance correlation is 
based on the intuition that if the distances among observations in X and 
Y co-vary, then X and Y are, in some way, related. Mathematically, this 
is done by first calculating the pairwise distances between the N ob-
servations in X and in Y, referred to as aij and bij, respectively, and then 
double centring, 

Aij = aij − ai• − a•j + a••, aij =
⃦
⃦xi − xj

⃦
⃦

Bij = bij − bi• − b•j + b••, bij =
⃦
⃦yi − yj

⃦
⃦
, i, j = 1,…,N (8)  

where a•• is the overall mean,while aj• and a•k are the row and column 
mean, respectively, of the distance matrix between observations in X 
(and similarly for Y). 

The distance covariance is then calculated as the average of the 
element-wise product of the two double-centred distance matrices, 

dCov2(X,Y) =
1

N2

∑

j

∑

k
AjkBjk. (9) 

The distance correlation is then calculated as in equation (10) if the 
denominator is above zero and is zero otherwise. 

dCorr(X,Y) =
dCov2(X,Y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
dCov2(X,X) dCov2(Y,Y)

√ . (10) 

In contrast to Pearson’s correlation, which can be negative, distance 
correlation is bounded between 0 and 1, as MIC. 

Distance correlation has been used for time series autocorrelation 
identification [66], identification of associations in astrophysical data-
bases [67], in a version of Independent Component Analysis [68], and a 
non-parametric extension of ANOVA [69]. Although distance correla-
tion is generally multivariate, it is used here as a bivariate measure of 
dependence. The code used in this work has been written by the authors 
and tested for consistency against the implementation of Shen et al. 
[70]. 
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3.1.5. Panel-based methods 
N-Norm is a class of methods that employs a Euclidean norm to 

aggregate several different measures of dependence to identify variable 
time delay; it was introduced by Graziani and Xibilia [71] and fleshed 
out in further publications by the same authors [38,72]. The application 
we replicate here uses an expert panel composed of Pearson’s, Kendall’s, 
and Spearman’s correlations and Maximal information coefficient [38]. 
Unlike most other variable time delay estimation techniques, the 
application of this method is based on the lag augmentation of the 
response vector y. While all the N-Norm-type methods are worthy of 
consideration and the base framework described in the referred publi-
cations is flexible and can be adapted for many situations, it is specif-
ically tailored for applications where many X variables have the same 
delay from y. This is not the case of the synthetic dataset of §4.1, nor for 
the industrial example of §4.2. When applied to a dataset where only one 
variable X is paired to the vector y the measures of [71,72] simplify to 
Person correlation included in §3.1. The measures of dependence among 
the lagged y and the input X variables are collected in a vector, and their 
norm is calculated. The norm is then used to rank the dependence of the 
inputs on the column of the augmented y response vector. In this work, 
the N-Norm was coded using base MATLAB functions for the classical 
correlations and minepy [73] for MIC. 

3.2. Methods based on multivariate regression 

Estimating time delay can be seen as a sister task to variable selection 
in multivariate regression. In this case, an augmented descriptor matrix 
is created by adding lagged copies of each X-variable. Contrary to 
classical variable selection, a restriction to select one variable for each 
subset of lagged variables (corresponding to the same X variable) is 
defined. It could, therefore, be possible to adapt, with some changes, 
most of the variable selection literature to this task. That said, a wealth 
of publications comparing and rating variable selection algorithms are 
available [74–76], but it is beyond the scope of this paper to include all. 
We have focused on some of the most popular regression methods of-
fering well-established metrics for variable importance. The optimal lag 
for each X-variable is then defined as the lag with the highest variable 
importance within each subset of lagged variables. 

3.2.1. Partial Least Squares Regression 
Partial Least Squares Regression (PLSR) is a widely used multivariate 

regression and dimensionality reduction tool between two sets of vari-
ables. This technique is based on the projection of the original data 
matrices (X and Y) into a lower-dimensional space called latent space, 
where the regression modelling is carried out. Mathematically, the di-
rection of the latent space is defined to maximise the covariance of the 
latent variables (linear combinations of the original variables) between 
both spaces [77,78]. While PLSR is not a selection method, many feature 
selection algorithms have been proposed based on it; see Refs. [79,80] 
for a review. Most of these methods can be adapted to variable time 
delay estimation. In this comparison, the Selectivity Ratio and Beta 
coefficients have been selected based on the information from Mehmood 
et al. [79]. Selectivity Ratio is a method for variable importance based 
on target projection. It uses the beta coefficient of the estimated model 
to recalculate the predictors’ weight and, from that, recalculates load-
ings and scores. These new loadings can be used to calculate how much 
each predictor variable contributed to the response of the estimated 
model. Further information can be found in the review cited above and 
the paper first describing the method [41,79]. 

Beta coefficients use the absolute value of the regression coefficients 
of the estimated latent variable model to gauge the importance of each 
X-variable in the predictor set. 

3.2.2. Kernel Partial Least Squares Regression 
Kernel partial least square (KPLS) is a nonlinear extension of the 

PLSR algorithm based on the kernel transformation. The kernel 

transformation uses a so-called kernel function that projects the original 
X matrix into an increased dimensional space, called feature space, 
where it is possible to describe in linear ways relations that would have 
been nonlinear in the original space. Additionally, it provides ways of 
calculating inner products in the implicit feature space without explic-
itly transforming the original variables; this is referred to as the kernel 
trick and is at the heart of the usefulness of kernel methods. Many kernel 
types have different functions and properties; a review can be found here 
[81]. In the past, kernel PLS has been used for fault diagnosis in batch 
and continuous processes or analysing mixture design of experiments 
and feature selection [82–85]. 

In this work, the Gaussian kernel was employed, applied through the 
radial basis function (RBF). Optimisation of the meta-parameter asso-
ciated with the RBF has been carried out in the low-size, high- 
complexity cases (see Table 2 in §4.1); a value of one was selected. The 
authors of [76] provided the code employed. Although pseudo-samples 
are commonly used to gauge the importance of variables when kernel 
transformations are applied [86,87], the variable importance has been 
measured as the increase in prediction error of cross-validation incurred 
when removing from X the information of one variable at the time by 
randomly permuting its rows, as detailed, e.g., by Fisher et al. [88]. The 
variables that resulted in the highest error increase were selected. 

3.2.3. Random forest 
Random forest is a general-purpose classification and regression al-

gorithm based on an ensemble of simple tree models [43]. In the stan-
dard implementations, the method combines many randomised decision 
trees via either polling or averaging, depending on the desired appli-
cation. These randomised trees operate according to a “divide and 
conquer” strategy; each tree is built on a subsample taken randomly with 
replacement, and aggregated as described above; this is generally 
referred to as Bagging [89]. Random forests are considered very simple 
to use, with limited parameters to tune a good accuracy in a wide range 
of applications and the ability to deal with small sample sizes and high 
dimensional predictor spaces. A review of the method can be found in 
Ref. [90]. 

In this work, we used the MATLAB implementation of random for-
ests. There are several ways of assessing variable importance in random 
forest models. One way is to calculate the improvement in the split 
criterion when a regressor variable is used in a tree split, obtaining the 
overall variable importance as the average over all trees in the forest. 
Another way of constructing the variable importance measure is using 
variable permutation on the out-of-bag samples, i.e., the samples not 
used to grow each specific tree [91]. In this work, the importance has 
been calculated with the same algorithm used for KPLS (§3.2.2). 

3.3. Methods based on optimisation frameworks 

Methods in this category work by finding the vector d in equation (4) 
either by solving the optimisation problem presented therein or by 
finding the vector that gives the maximum multivariate dependence 
between X and y, i.e., the strength of f without any assumption on the 
functional relation. 

3.3.1. Variable time reconstruction 
Variable time reconstruction (VTR) is a framework introduced by 

Yao and Ge in 2020 [23]. It consists of two nested loops, an outer 

Table 2 
Factor levels used in the analysis.  

Factors Levels 

Size 100 1000 10000 
Complexity Linear Polynomial Power ratios 
Autoregressive Order 1 2  
Autoregressive Strength High Low   
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modelling loop and an inner optimisation loop, used to solve a version of 
equation (4). It starts with a model chosen to represent the f in (4); this is 
the outer modelling loop. The model is then substituted into equation 
(4), and the optimiser finds the optimal vector d for the model built in 
the outer loop; this is the inner optimisation loop. These two loops 
continue iteratively until the maximum number of iterations for each is 
reached. The framework is very flexible; in the original paper, it is 
suggested that it can be used with most models as the outer modelling 
loop to adapt to different requirements of the modelling exercise. 
Outside of Yao and Ge, it has been used with an encoder-decoder 
network based on long short-term memory cells to extract time delay 
and dynamic features from semi-supervised process data to predict the 
output quality [92]. 

Here, we use the framework with two different model alternatives in 
the outer loop, both introduced in the original paper of Yao and Ge. 
These are a Linear Least Square model (VTR-LS) and a Gaussian Mixture 
Model (VTR-GMM). The code for the implementation of the VTR 
framework was obtained from the authors’ GitHub. 

3.3.2. Genetic algorithm with mutual information 
This method uses a genetic algorithm to build multivariate realisa-

tion of the Mutual Information (GA-MI) reported in section §3.1.2. This 
version is a modified version based on the one detailed by Ludwig et al. 
[44], where it was used for feature selection. The method uses a genetic 
algorithm to identify the optimal d vector in equation (4). Instead of 
assuming the functional form f linking X and y, it only assumes that the 
relationship between the variables can be correctly rated. The algorithm 
works by generating tentative vectors dtrial, and calculating the multi-
variate dependence between Ldtrial (X) and y. Algorithmically, the joint 
conditional entropy H(Y|X) = H(X,Y) − H(X) is estimated using dis-
cretisation with equal size bins, whose number is set by a meta param-
eter. To avoid calculating the multidimensional probability (mass or 
density) function necessary for the entropy calculations, the optimisa-
tion in this algorithm is based on the maximal relevance minimal 
redundancy approach [93], which aims to jointly maximise the average 
bivariate mutual information between the single variable vectors xk (see 
equation (11)) and y and minimise the mutual information among all 
the variable vectors in X (see equation (12)). 

max
1
n

∑

k
MI

(
Ldk (Xk),Y

)
(11)  

min
1
n2

∑

k

∑

l
MI

(
Ldk (Xk),Ldl (Xl)

)
(12) 

The authors in the original paper [44] give proof of the equivalence 
between the maximal relevance and minimum redundancy approach 
and the minimisation of the joint conditional entropy. It is worth noting 
that in the aforementioned paper the equivalence holds only for inde-
pendent Xk which is not the case in Variable time delay estimation. The 
approximation still results in acceptable performance. This work em-
ploys a modified version of the code from Ludwig et al. [44]. 

4. Datasets 

This section presents the datasets used in the comparison. At first, 
synthetic datasets are used to compare the performances of the methods 
on datasets with different characteristics and where the ground truth is 
known. Afterwards, a selection of the best-performing methods are also 
used on industrial data to illustrate some real-world aspects of the var-
iable time delay estimation process. 

4.1. Synthetic dataset 

Data has been generated from a simulated continuous process illus-
trated in Fig. 2. The response variable Y is a function of two underlying 

phenomena, V 1 and V 2. In addition, there is a third underlying phe-
nomenon V 3 that does not influence Y. These three phenomena are 
indirectly measured by three sensors each, placed at different locations 
along the process, represented by x’s in Fig. 2. The true time delays 
between the response and each of the relevant sensors are d = [10,15, 
25,30,40,45]. 

Data sets with different sample sizes (three levels), functional 
complexity (three levels), autoregressive order (two levels) and autor-
egressive strength (two levels) were generated according to a full 
factorial design; see factor levels in Table 2. The design was replicated 
three times, yielding a total of 108 simulated data sets. 

In practical terms, a set of three vectors vi, i ∈ [1,3] were generated 
from an uncorrelated normal distributed random stream z , with zero 
mean and identity covariance matrix, of these only vi, i ∈ [1,2] are 
correlated with y while v3 is uncorrelated with the response variable and 
is included as “noise” for the models. This stream was then passed 
through a one-dimensional filter to apply the selected autoregressive 
relationship to the data in the following form: 

vi(t) = a1vi(t − 1) + a2vi(t − 2) + z(t) (13)  

where ai (i = 1,2) measures the strength of the autoregressive behaviour 
and a2 = 0 when autoregressive order is one. 

Three “sensor” measurements are generated from each autore-
gressive variable by multiplication by a set of coefficients b plus a 
measurement error, ϵ ∼ N(0,0.05)

xi,j = v ibi,j + ϵi,j, j ∈ [1, 3] (14)  

where xi,j is the jth “sensor” measurement of the “true” variable vi. 
The responses are generated with increasing order of complexity. 

These complexity levels are:  

1) Linear 

y = V 1,2l, l ∼ N(μl,Σl), (15)  

where μl = [− 0.7071,0.7071]T and Σl = σI and V 1,2 = [v1 v2].  

2) Polynomials 

y = V 1,2p1,2 + v2
1p3 + v2

2p4 + v1v2p5,p ∼ N[μP,ΣP] (16)  

where μp = [− 0.2300,0.2300, − 0.7146, − 0.4732,0.3995]T, 
diag(Σp) = [0.1σ,0.1σ,σ,σ,σ], and all off-diagonal elements are zero, 

p1,2 is a column vector containing the first two values of p.  

3) Power ratios 

Fig. 2. Simple illustration of the simulated continuous process from which the 
synthetic data are generated. The x’s are surrogate measurements of the real 
phenomena V i , of which the first two are used to generate the response 
variable y. 
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y =
(v2l2)

2

1 + (v1l1)
3, l ∼ N(μL,ΣL), (17)  

where μl = [− 0.7071,0.7071]T and Σl = σI, and li is the ith element of 
l. 

In equations (15)–(17), σ is a dispersion parameter used to differ-
entiate between replicates of the simulated datasets and is set to σ =

0.01. Responses are then normalised using the median and interquartile 
range, and a small error, ϵ ∼ N(0, 0.25), is added to simulate mea-
surement error. 

4.2. Kamyr dataset 

The KAMYR dataset contains data from a pulp manufacturing pro-
cess employing a Kamyr digester. For an in-depth description of the 
process and the measured variables, we refer to previous publications 
[94,95]. The dataset contains 301 observations of 21 predictor variables 
and one target variable. The target variable is the Kappa number, which 
characterises the pulp’s quality in terms of lignin content. The lignin 
content determines the suitability of the pulp for different applications 
and, thus, is a key quality parameter in the process. The predictors are 
measurements from throughput and operating variables in the digester, 
measured hourly for eight months under closed loop. The dataset is 
available online at [https://openmv.net/info/kamyr-digester (accessed 
on 20/12/2023)]. The variable time delay was known for this dataset, 
and the available data is already lagged to account for it. In order to test 
the methods in a closer-to-reality scenario, artificial lags have been 
introduced in all the variables; thus, the true lags are known. The True 
lags for the variables and the end product quality is 11, while the upper 
and lower limits are 21 and 1, respectively. After adjusting for missing 
values, removing variables that contained more than 10% missing en-
tries, and accounting for the introduced lags, the analysed dataset con-
tains 19 variables and 245 observations. 

4.3. Industrial dataset 

A dataset taken from an industrial bioprocess is used as an example 
of variable time delay estimation on industrial data. In this process, the 
rest raw materials from poultry are upcycled into a protein product 
using enzymatic hydrolysis. The process is carried out continuously 

through a series of unit operations. Raw materials are transported from a 
neighbouring slaughterhouse in pipes and ground to a paste. Then, 
water is added to improve flowability and provide a medium for the 
reaction. After heating, an enzyme is added to the fluid in a mixing tank. 
The fluid then flows through a pipe reactor and, in the end, passes 
through a heat exchanger for enzyme inactivation. The resulting emul-
sion is then separated into a protein-rich water phase, an oil phase, and 
solid sediment. The water phase, the product of interest in this project, 
can be dried to different extents, either to a protein concentrate or to a 
protein powder. 

Fig. 3 shows a sketch of the process along with the most relevant 
sensors and their rough spatial positioning; the sensors are described in 
Table 3. 

While the aim of our analysis is to estimate time delays between each 
unit operation and the sampling point for the end-product quality, this 
cannot be achieved in “one shot” in this case as we did for the synthetic 

Fig. 3. Sketch of the enzymatic protein hydrolysis process and a representation of where the various sensors and sampling points are placed. The upper square shows 
the four alignment tasks performed in order to determine the time delays between all unit operations of this particular process. 

Table 3 
Process measurements and their characteristics.  

Name Description Measurement 
unit 

Frequency 

F1 Inbound raw material 
flow 

m3/h ~2/s 

F2 Inbound water flow m3/h ~2/s 
F3 flow outbound from the 

reagent mixing tank 
m3/h ~2/s 

P1 F3 pump torque Nm ~2/s 
P2 flow reactor pressure bar ~2/s 
T1 Flow reactor temperature 

1 

◦C ~1/s 

T2 Flow reactor temperature 
2 

◦C ~1/s 

T3 Flow reactor temperature 
3 

◦C ~1/s 

NIR Near infrared spectra of 
the inbound raw material 

AU ~2/s 

Brix Brix Degrees of the 
protein mixture 

◦Brix Manual, 
~20/d 

Average molecular 
weight (AMW) 

Average Molecular Weigh 
of the protein product 

Dalton Manual, 
~20/d 

Collagen Collagen content in the 
protein product 

% Manual, 
~20/d  
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data since the assumption that all process variables are related to the 
end-product quality is not met. Therefore, estimation of the four delay 
values (as illustrated in Fig. 3) are split into three separate estimation 
tasks:  

1) L1: The raw materials flow and chemical composition (measured by 
NIR) have a strong influence on the end-product quality. For esti-
mating the lag L1 between grinding and end-product quality, mea-
surements in the first unit operation (grinding) are therefore used as 
explanatory variables, and the end qualities as responses.  

2) L2 & L3: While the reaction temperature may also affect the end- 
product quality, the relationship is weak and does not provide pre-
cise lag estimations. The three temperature sensors are however 
strongly correlated as there is no exogenous heat sources between the 
mixing and inactivation units. The temperature sensors are therefore 
well suited for precise estimations of the lags L2 and L3. The tem-
perature in the mixing unit (T1) and the temperature in the midpoint 
of the pipe reactor(T2) are used as the explanatory variable, and the 
temperature of the fluid entering the inactivation unit (T3) as a 
response.  

3) L4: The delay between grinding and mixing could be identified by 
the difference between L1 and L2, but it is estimated as a double- 
check for the whole procedure. In this estimation, the flowrates F1 
and F2 are used as explanatory variables, while P1 and F3 are used as 
responses. 

In this case, the real delays are unknown. 

5. Results 

5.1. Comparison of methods based on synthetic dataset 

The methods are assessed on synthetic data by comparing estimated 
to true time lags; the employed metric is the Euclidean norm of the 
normalised variable time delay estimation error vector as reported in 
equation (18), 

Dmethod =

⃦
⃦
⃦
⃦

dmethod − dtrue

Δu − Δl

⃦
⃦
⃦
⃦, (18)  

where the method subscript is used to differentiate among the different 
methods, and Δl,Δu are, respectively, the lower and upper boundary 
vectors for the possible lags. The computation time for each estimation is 
also recorded and used as an additional assessment tool. The tuning of 
metaparameters is sometimes important for the stability and the per-
formance of some of the methods. While this is less crucial for measures 
of depencence – and some do not have metaparameters to tune, like the 
pearson correlation or distance correlation – it is quite important for the 
other two classes of methods. All metaparameters where optimised for 
maximum performance, measured by root mean square error, in the 
most challenging scenario (low size, high complexity). These meta-
parameters were also verified on other sizes and complexities to assure 
that the performance was not affected. In the case of the metaparameters 
of the optimising algorithms, the base metaparameters where used; the 
one proposed by the authors of the original works. The overall ranking of 
methods across all synthetic data sets is presented in Table 4. From this 
table, it is clear that the performance varies substantially between 
methods. Distance correlation and MIC perform well on most data sets, 
while the VTR-based methods generally have poor performance and 
among the highest computation times. The remaining methods work 
well for some configurations but not all. 

In order to understand how variable time delay estimation respond 
to different data set characteristics, an analysis of variance (ANOVA) 
was performed on Dmethod with the factors Method, Size, Complexity, AR 
order and AR strength. The model included main effects, two- and three- 
factor interaction, and the ANOVA table is given in Table 5. Note that 

most effects are statistically significant (p-value<0.001) due to the high 
number of residual degrees of freedom, even if the effect sizes (repre-
sented by explained variances) are very small. Focusing on the effect 
sizes, it is clear that factors Method, Size and Complexity are the ones that 
affect the results the most. Interaction plots for comparing factor levels 
of these three factors are given in Fig. 4. 

The results from the ANOVA are largely as expected, as some 
methods are known to be better suited to tackle linear problems while 
others are designed to model nonlinear problems. Some of the methods 
linked to variable importance in regression (§3.2), namely PLS-Beta, 
KPLS and RF, are the best performing when the true model complexity 
is linear, even for small sample sizes, as can be seen in the top subplot of 
Fig. 4. Most methods, except the VTR variants, still perform adequately 
at higher complexity levels as long as sample size is high (see middle and 
bottom subplot of Fig. 4). In the bottom subplot of Fig. 4 it is possible to 
see that while no methods would work perfectly at low Size and highly 
nonlinear Complexity there is a grouping on how the methods perform. 
Methods that are derived from information theory or distance correla-
tion (i.e., MIC, dCorr, GA-MI, N-Norm, and MI) seem to perform better 
than the other methods, as long as sample size is high. Conversely a 
different group of methods have overall lower performance (i.e., higher 
Distance) across all sizes (e.g., ρ,τ,PLS-SR,PLS-Beta, r). 

There is a small but statistically significant interaction effect between 
AR Order, Size, and Complexity in Table 5. Further investigation of this 
effect shows that AR Order has an effect when Complexity is “linear” and 
Size is “100". In this particular scenario, most methods have worse 
performance when AR Order is 2 (see Figure S5 in the supplementary 
material). AR strength had a negligible effect on the results and it 
therefore not shown. 

Computation time is impacted only by method and size as that is the 
main factor that impacts the number of calculations performed. Fig. 5 
shows the average computational time for each method and Size level. 

In most cases, the time dependence is linear in the number of ob-
servations and sensors to align, however, some exceptions exist. The 
KPLS using the radial basis function and distance correlation are 
quadratic in the number of observations as they require the calculation 
of pairwise distances. The MI estimator and GA-MI methods are 
quadratic in the number of sensors to align. While computational time 
can be an important parameter in the choice of method for variable time 
delay estimation, it seldom is a strict limiting factor since the estimation 
is generally performed post-mortem. This might be different in the case 
of dynamic time delay because of the additional moving window 
parameter to tune. It might be important to note that, especially for 
measures of dependence-based methods (§3.1), the type of nonlinearity 
does also impact the performance as some methods perform better for 
different types of relationships. An example would be a sinusoidal 
relationship between X and y. With that said, the presented are among 

Table 4 
Overall results ranked by correctness: % of hits (percentage of correctly iden-
tified lags, i.e., Dmethod = 0). The table also shows the average Dmethod and 
average computational time.  

Method % of Hits Avg. Dmethod Std Dmethod Avg. Computing Time (s) 

dCorr 92 0,092 0,237 615,08 
MIC 90 0,085 0,189 294,46 
GA-MI 83 0,138 0,257 52,07 
N-Norm 82 0,154 0,297 300,58 
MI 80 0,158 0,243 45,50 
RF 74 0,200 0,291 46,46 
KPLS 71 0,244 0,310 529,37 
ρ 64 0,298 0,354 0,08 
τ 61 0,305 0,358 13,68 
r 59 0,359 0,405 0,02 
PLS-Beta 58 0,337 0,372 2,28 
PLS-SR 49 0,327 0,366 2,31 
VTR-LS 29 0,569 0,294 153,73 
VTR-GMM 11 0,804 0,330 830,37  
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the most common types of relationship in the process industry; for 
further reading on the topic, see, e.g., §4.3 in Chatterjee [61]. 

5.2. Application of methods on the Kamyr dataset 

The methods are also applied in a semi-synthetic way to an industrial 
dataset to complement the application to the synthetic dataset; in this 
occasion, the lags are known, but the data comes from a real industrial 
process, as introduced in §4.2. A resampling procedure was used to 
evaluate the uncertainties of the estimated lags: each method was 
applied to 50 subsets of the dataset, sampled randomly without 
replacement from the augmented time series. Each subset contained 125 

samples. Estimates that had an interquartile range above 3 were defined 
as “non-estimable”. In Table 6 results are reported as the estimated delay 
for all analysed variables. Variable names and numbers are reported as 
written in Table17.1 of [94]. 

From Table 6, it is possible to notice some things. First,we see that 
many methods give similar results regarding the number of “Hits” and 
“Uncertain” estimations. Inspection of the PLS model reveals that the 
relationships between process variables and the response are mainly 
linear, which means that this data set resembles the “low complexity” 
scenario of the synthetic data. It is therefore expected that most methods 
work well, as seen from Fig. 4. Second, the uncertain estimation are 
mostly from the same variables across most methods, suggesting that 

Table 5 
ANOVA table for assessment of how the estimation methods and data characteristics affect the results.The explained variance (each effect’s sum-of-squares relative to 
total sum-of-squares) is used as a measure of effect size. Rows in bold have explained variances above one percent, while in italics have explained variance below one 
percent.  

Source Sum Sq. d.f. Mean Sq. F Prob > F Explained Variance 

Size 27,82 2 13,91 413,16 <0.001 13,77 
Complexity 28,55 2 14,27 424,02 <0.001 14,13 
AROrder 0,75 1 0,75 22,18 <0.001 0,37 
ARStr 0 1 0 0,08 0,78 0 
Method 54,14 13 4,16 123,71 <0.001 26,79 
Size*Complexity 2,07 4 0,52 15,38 <0.001 1,03 
Size*AROrder 1,55 2 0,78 23,09 <0.001 0,77 
Size*ARStr 0,66 2 0,33 9,86 <0.001 0,33 
Size*Method 3,98 26 0,15 4,55 <0.001 1,97 
Complexity*AROrder 0,76 2 0,38 11,36 <0.001 0,38 
Complexity*ARStr 0,52 2 0,26 7,75 <0.001 0,26 
Complexity*Method 17,36 26 0,67 19,83 <0.001 8,59 
AROrder*ARStr 0 1 0 0,14 0,71 0 
AROrder*Method 1,03 13 0,08 2,36 <0.001 0,51 
ARStr*Method 1,39 13 0,11 3,18 <0.001 0,69 
Size*Complexity*AROrder 2,07 4 0,52 15,37 <0.001 1,02 
Size*Complexity*ARStr 1,76 4 0,44 13,07 <0.001 0,87 
Size*Complexity*Method 8,68 52 0,17 4,96 <0.001 4,3 
Size*AROrder*ARStr 0,8 2 0,4 11,88 <0.001 0,4 
Size*AROrder*Method 0,9 26 0,03 1,03 0,42 0,45 
Size*ARStr*Method 0,97 26 0,04 1,11 0,32 0,48 
Complexity*AROrder*ARStr 0,91 2 0,45 13,47 <0.001 0,45 
Complexity*AROrder*Method 1,47 26 0,06 1,68 0,02 0,73 
Complexity*ARStr*Method 1,57 26 0,06 1,79 0,01 0,78 
AROrder*DynStr*Method 1,25 13 0,1 2,85 <0.001 0,62 
Error 41,07 1220 0,03   20,33 
Total 202,06 1511 0   100  

Fig. 4. Comparison of levels for all combination of the factors Method, Size, and Complexity. The dots represent group means while the error bars represent the 95% 
Least Significant Difference intervals. 
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these variables have very weak or no relationship to the Kappa number 
being analysed. Third, the methods with more meta-parameters to tune 
have worse performance in this semi-synthetic approach compared to 
the fully synthetic one, probably due to the more complex meta- 
parameter selection; in the synthetic example, each group of three 
variables share trends and distribution, while in this case, most variables 
are different. While it is possible to optimise the models at the heart of 
those methods better, it is time-consuming and very delicate. Methods 
with no impacting meta parameters are generally better performing; 
examples would be dCorr, with zero meta parameters, or MIC, whose 
meta parameter can be safely left at the standard value [96]. Lastly, we 
notice that most of the well-performing methods estimate a lag of 15 for 
the variable 3.blcm. This might suggest that there is a lag for this variable 
in the original data set, which was not corrected for prior to our 
analyses. 

5.3. Application of methods on industrial bioprocess dataset 

This procedure will refer to the variable delay estimation steps 
introduced in section §2. The aim is to estimate the lags between unit 
operations, as shown in Fig. 3, i.e., the values of L1, L2, L3 and L4, using 
the variables listed in Table 3. 

The inactivation step was chosen as the fixed zero point, t0, as the 
reaction stops there with no further chemical changes to the end-product 
qualities. Five minutes were chosen as the time step, following the 
process operators’ advice and manual data inspection, as the expected 
residence time of the mixing vessel is around 5 min. Since the product 
sampling point is right after the inactivation, this choice of time reso-
lution means that the lag between inactivation and product sampling is 
negligible. Furthermore, it would let us accommodate for some minor 
errors in the reported sampling time, which are expected as it has been 
done manually. The data were down-sampled using the median of 5-min 
periods. Also, periods when the process was not running in normal 
operation conditions were removed. 

The dataset comprises 390 observations of the end-product qualities 
and process variables described in Table 3. For methods capable of 
processing multivariate data, the full NIR spectrum from the inline NIR 
sensor is used (141 wavelengths), while the first component of a PCA 
model built on the NIR spectra, which describes ~77% of the total 
variability, is used for the other methods. 

The reported methods are Distance correlation, Maximal Information 
Coefficient, Kernel PLS and Random Forest regression. These methods 
are chosen as they are the two best performing for the measure of 
dependence (see §3.1) and variable importance in regression (see §3.2) 
types according to Table 4. The results for the estimation for all other 
methods are reported in the supplementary materials (Figures S6-S9). 
For Distance Correlation and Maximal Information Coefficient, the 
values shown are the average of 5000 estimations on subsamples of 100 
random observations taken without repetition. In the KPLS and Random 
Forests case, the shown values are the cross-validated loss in predictive 
power (as explained in §3.2.2 and §3.2.3) on models trained on all 390 
observations with 10-fold cross-validation. Even if autoregressive order 
proved to have a minor impact on the variable time delay estimation, the 
partial autocorrelation plot was inspected for all process variables in 
order to assess their autoregressive order; most variables present an 
order one autoregressive behaviour, while temperatures and F03 have a 
second order autoregressive behaviour, presumably due to the effect of 

Fig. 5. Average computational time for the variable time delay estimation 
using different methods. Different bar colours represent different sample sizes: 
blue is 100, orange is 1000, and yellow is 1000. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 6 
Variable time delay estimation results for the Kamyr dataset. The #Hits row shows how many times the correct lag (11) was identified for each method, and the 
Uncertain row lists how many times the corresponding had an uncertainty – measured by the interquartile range of the bootstrap variable time delay estimation – above 
a certain threshold. The = signifies the variable where the interquartile range was above 3.   

τ dCorr N-Norm PLS - Beta MI MIC ρ PLS - SR r RF GA-MI KPLS VTR - LS VTR - GMM 

2.chip4 11 11 11 11 11 11 11 11 11 11 11 18 18 =

3.blcm 15 15 15 10 15 15 15 15 15 = 15 9 9 =

4.blfw 9 = = = = = 9 = = = = 12 20 =

5.chip4 12 12 12 11 12 12 12 12 12 12 = 2 11 =

6. uxt2 = = 11 = 11 = = = = = = 4 12 =

7. lxt2 12 11 12 6 11 11 12 12 12 11 = 2 20 =

8. ucza3 11 11 11 11 11 11 11 11 11 11 = 11 0 =

9. wlfl4 11 11 11 11 11 11 11 11 11 11 11 20 17 =

11. aawd4 11 11 11 10 = = 10 10 10 = = 6 1 =

12. chmo4 12 12 12 13 12 12 12 12 12 14 12 11 12 =

13. bsfl4 11 11 11 11 11 11 11 11 11 11 11 21 20 =

14. lht3 5 6 = = 11 10 5 6 6 10 = 15 9 =

15. uht3 = = = 4 = = = 5 = = = 20 20 =

16. cmfr4 11 11 11 11 11 11 11 11 11 11 11 18 20 =

17. tfflw 11 = = 8 = = 12 = = = = 14 1 =

18. xflw2 7 7 8 = 13 = 7 8 8 = = 17 0 =

19. f18f0 = = = = = = = = = = = 1 20 =

20. stfl3 12 12 12 11 12 11 12 12 12 12 12 1 0 =

21. tct4 11 11 11 11 = 11 11 11 11 = = 2 18 =

#Hits 8 8 8 8 8 8 6 6 6 6 4 2 1 0 
Uncertain 3 5 5 5 6 7 3 4 5 9 12 0 0 19  
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the control system. 
Fig. 6 shows Variable time delay estimation performed on the in-

dustrial data with different. Methods, the black dotted line represents 
the point with the highest correlation/performance loss., while the 
green areas represent areas of uncertainty in the selection e.g., areas 
with the same dependence up to the second significant digit. In Fig. 6 it 
is shown that tested methods do not generally agree on determining the 
lags between the grinding and the end-product quality, estimating it 
between 45 and 55 min. By accounting for uncertainties – shown as light 
green areas – it is possible to see (Fig. 6a) that three of four are 
concordant. For L2 and L3, there is an agreement only if we consider the 
uncertainty of the estimation, e.g., the light green areas overlap for most 
methods, while it is not the case for the dark green area. On average, 
distance correlation seems to not be in accordance to the other, it might 
be because it incorporates the whole spectra information instead of the 
first principal component. In the case of measures of dependence, the 
uncertainty area is due to a high degree of overlap of the distributions of 
the measured strength of dependence in the subsampling procedure (see 
Fig. 7 for an example on L1). In the case of variable importance in 
regression methods, on the other hand, this uncertainty could be due to 
changes in the response that comes with the variation of meta- 
parameters around the optimal values – or the variation of random 
seed in the case of random forest regression. A further discussion point 
from Fig. 6 is that no methods accurately estimate L4. The last delay, 
shown as a red dotted line would be expected to be at the difference 
between L1 and L2; this could be used for “closing the loop” and vali-
dating the variable time delay estimation internally to the exercise. This 
misalignment is probably due to the fact that the selected period for the 
variable time delay estimation is small compared to the rate of change of 
the analysed variables, a problem of resolution. A change in raw mate-
rials quality (L1) or temperature (L2, L3) is observable in the 5-min 
window chosen for the estimation and has a rate of change similar to 

those in the variables used for the alignment. On the other hand, a 
change in flowrate (L4) is slow compared to the analysis period, and its 
rate of change is big compared to the rate of change of the pressures used 
for the alignment. The effects of the mixing vessel control system are 
added to this misalignment, which further complicates the estimation 
[97]. 

Of the measures of dependence-based methods, Distance Correlation 
seems to be able to identify the strength of the relationship between the 
multiple variables considered slightly better than MIC, especially in step 
L1. Fig. 7a shows the near overlap of the distributions of the estimated 
strength of dependence for L1 by MIC; the overlap is much smaller for 
Distance Correlation, as seen in Fig. 7b. The overlap is present in the 
other analysis steps but much less accentuated. 

This different behaviour in step L1 is due to the multivariate nature 
of the variable time delay estimation here. When complex data types – 
such as spectra – and multiple targets for the alignment are present, 
methods that can account for the multivariate nature of the data are 
better suited for the time delay estimation. As mentioned above, some 
methods give an uncertainty area in which it is difficult to assess the 
strength of the dependence; these areas of uncertainty can also be used 
to make an informed decision on a suitable averaging period for further 
analysis. For example, in this case, the uncertainty among methods, and 
also in the same method could suggest that perhaps a larger averaging 
window could be beneficial. Using an averaging horizon bigger than this 
area would most probably dampen the variation, masking the infor-
mation present at that time resolution, while using an appropriate 
period could help remove the need for dynamic models in the process, or 
at least simplify it, decreasing the order of the dynamic modelling. 

5.4. General discussion 

For the semi-synthetic data and the industry case, we applied 

Fig. 6. Variable time delay estimation performed on the industrial data with different methods. Different subplots show different steps of the estimation exercise. The 
black line represents the measure of dependence (in rows 1 and 2), or the loss in predictive performance when removing each lag from the predictors (in rows 3 and 
4), and the black dotted line represents the point with the highest correlation/performance loss. Furthermore, the green areas represent areas with “similar results”, e. 
g., areas with the same dependence up to the second significant digit, and the darker green area highlights the interval with the highest correlation/performance loss, 
The red line identifies the starting point for the alignment; in L1, L2 and L3, it is zero, while for L4, it is the lag selected for L2. The dotted red line in c) shows the 
expected delay based on the difference between L1 and L2. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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resampling techniques, either to assess the uncertainty of the lag esti-
mates or to have better estimate of the employed indices. This practice is 
usually advisable, especially in cases with many explanatory variables 
and when the relationships between explanatory variables and the 
target are not known. If the lag estimates are uncertain, a solution could 
be to include more than one lag for the same variable. An uncertain lag 
estimate might also indicate that the variable have little predictive 
power and can probably be omitted from a soft sensor model. Addi-
tionally, it is advisable to use a panel of different methods to compare 
different variable time delay estimation strategies and use domain 
knowledge to discriminate the results. 

If the sole goal of the analysis is to obtain a good prediction, it might 
be more efficient to directly use a machine learning method for time 
series forecasting on the augmented (i.e. lagged) matrix. These methods, 
such as long short-term memory (LSTM) cells [98], show state-of-the-art 
prediction performances. The variable time delay estimation described 
in this work is better suited in case the aim is different, e.g., knowledge 
discovery, a more efficient process control, a more precise fault under-
standing and support the development of digital twins of production 
processes. In most of these cases, the variable time delay estimation 
would be a preprocessing step and more in-depth analysis would be 
required afterwards. 

6. Conclusion 

In this paper, we have compared 14 different methods for variable 
time delay estimation. The methods are compared on synthetic datasets, 
on a semi-synthetic dataset, and on a bioprocess industry example. For 
the synthetic data, we explored a range of different scenarios with 
varying autoregressive behaviour, complexities of the relationship be-
tween variables, and sample sizes. 

Our results show that most methods perform well when the rela-
tionship between variables is not too complex, and sample size is high. 
Methods linked to variable importance in regression (i.e., based on PLS 
or random forest regression) perform very well even for small samples 
sizes if the relationship between variables is linear. In the more 
demanding scenarios, methods derived from information theory out-
performs the others. 

Our general recommendation is to apply Distance Correlation (dCorr), 
Maximal Information Coefficient (MIC), Mutual Information (MI), N-norm, 
or a combination of several of these, since they work well in most sce-
narios, and they are easy to implement with few parameters to tune. If 

the sample size is small, dCorr and MIC are preferred over the other 
methods. 
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