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ABSTRACT 

Emoji have been proposed as a way to get additional insights in how consumers perceive food 

products. Recent works have indicated that emoji are able to provide distinctive emotional 

associations with food products, regardless of whether one is using the check-all-that-apply (CATA) or 

the rate-all-that-apply (RATA) scaling approach. Typically, in examining emotional associations one can 

work with either a general list which can be used with all food products or a product-specific emotion 

list. To date, a comparison between the performance of a general and product-specific emoji list with 

adults is lacking. Moreover, it is unclear to which extent emotional data of emoji help to better predict 

the actual food choice of adult consumers. 

Using five samples of chocolates, this study compared the use of a general list of 39 emoji with a 

product-specific list of 20 emoji (based upon input of 32 consumers). In total, 138 consumers  assessed 

the samples using the general list while 136 consumers evaluated the samples with the product-

specific emoji list. Participants assessed the samples with the emoji-RATA approach and their actual 

food choice was registered as they received a snack portion of a chosen sample to take home. 

Results indicated that, considering the frequency of selection, 10 emoji discriminated between the 

samples for both the general and product-specific lists. Similar results were obtained when considering 

the rating intensities. Including emoji did not lead to a significant increase in the food choice prediction 

regardless the type of list used. However, emoji data obtained from the product-specific emoji list was 

able to predict the food choice as accurate as the liking data when using the RATA intensity scores. 

This study suggests that both general and product-specific emoji lists are able to generate 

distinguishing emotional profiles for chocolate samples. While further research is necessary with other 

food products and measurement methods (e.g. CATA), this study proposes that emoji measurements 

might be an alternative to liking data in order to be better understand of consumers’ food choice. 
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1. Introduction 

The high market failure rate of new food products indicates that merely acceptance measurements 

are insufficient to predict actual consumer behavior and food choice. This has led to a growing interest 

in going broader than acceptance by including other responses such as perceptions about the sensory 

attributes (Valentin, Chollet, Lelievre, & Abdi, 2012; Varela & Ares, 2012), emotional associations 

(Desmet & Schifferstein, 2008; King & Meiselman, 2010) and conceptualizations (Ng, Chaya, & Hort, 

2013b; Thomson & Crocker, 2014).  

Research about emotional associations has gained a lot of interest in the last decade. Several studies 

indicated that emotional measurements are able to discriminate between food products, even when 

the overall liking of the products is similar (King, Meiselman, & Carr, 2013; Ng, Chaya, & Hort, 2013a; 

Schouteten et al., 2015; Spinelli, Masi, Zoboli, Prescott, & Monteleone, 2015). Furthermore, Dalenberg 

et al. (2014) found that the inclusion of emotional associations helps to better predict the actual food 

choice of consumers. Hence, the inclusion of food-evoked emotional associations can help to improve 

the understanding of food choice and consumption behavior. 

Self-reported measurements are mainly applied to measure consumers’ emotional associations with 

food products (Lagast, Gellynck, Schouteten, De Herdt, & De Steur, 2017). Several self-reporting 

methods have been developed over the course of the years to measure emotional associations. During 

the task, consumers are typically asked what they feel when consuming a product or thinking about 

the consumption of the product (Jaeger, Cardello, & Schutz, 2013). Participants then need to select or 

rate all the applicable emotional associations which are mentioned in a list. The emotional list can be 

general (so applicable and used for all food products) e.g. the EsSense Profile™ (King & Meiselman, 

2010) or specific for a product based upon prior testing with consumers, known as a product-specific 

list (Ng et al., 2013a). Product-specific emotional lists using emotional words have been applied to a 

wide range of food products such as fruit salads (Manzocco, Rumignani, & Lagazio, 2013), chocolate 

(Schouteten, Gellynck, et al., 2017; Thomson, Crocker, & Marketo, 2010), beer (Chaya et al., 2015), 

orange juice (Thomson & Crocker, 2014), coffee (Bhumiratana, Adhikari, & Chambers Iv, 2014) and 

yogurt (Schouteten, De Steur, Sas, De Bourdeaudhuij, & Gellynck, 2017). Other approaches to measure 

self-reported emotional associations include the use of terms in a wheel-format, e.g. EmoSensory® 

Wheel (Schouteten et al., 2015; Schouteten, Gellynck, et al., 2017), working with sentences using a 

semiotic approach, e.g. EmoSemio (Pierguidi, Spinelli, Dinnella, Prescott, & Monteleone, 2019; Spinelli, 

Masi, Dinnella, Zoboli, & Monteleone, 2014) and using animated cartoon characters, e.g. PrEmo® 

(Desmet, 2003; Gutjar, de Graaf, et al., 2015). 

Despite the popularity of word-based approaches for examining emotional associations with tasted 

food products, concerns have raised about the ecological validity as consumers seldom use words to 

express their food-related emotions (Köster & Mojet, 2015). Jaeger et al. (2013) indicated that several 

consumers found it a rather weird task to perform and that participants can even struggle to connect 

food stimuli to emotional words listed in a questionnaire. Therefore, there is an emerging interest in 

examining the potential use of emoji instead of words in food research. Vidal, Ares, and Jaeger (2016) 

examined the use of emoji in food-related tweets. Further research showed that emoji were helpful to 

examine the emotional associations linked with food products in USA and China (Ares & Jaeger, 2017; 

Jaeger, Vidal, Kam, & Ares, 2017). Recent research confirmed that emoji can generate discriminating 

emotional profiles when consumers are tasting food products (Jaeger, Lee, et al., 2017), regardless if 

they are using a check-all-that-apply (CATA) or rate-all-that-apply (RATA) response format (Jaeger, Lee, 

et al., 2018). Given that emoji are nowadays used in lots of communication methods, their use also 

gathered interest for food research with children. Gallo, Swaney‐Stueve, and Chambers (2017b) 

examined children’s (8-11 years old) meaning of emoji using a focus group approach. In another study, 
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the same researchers found that emoji could be used with children to generate discriminative 

emotional profiles (Gallo, Swaney‐Stueve, & Chambers, 2017a). The potential of obtaining 

discriminating profiles when children tasted food samples was confirmed in Belgium (Schouteten, 

Verwaeren, Lagast, Gellynck, & De Steur, 2018). In another study, the performance of a product-

specific versus a general emoji list was compared using biscuit samples with a children population 

(Schouteten, Verwaeren, Gellynck, & Almli, 2019). That study concluded that the product-specific 

emoji list was better able to discriminate between the samples.  

So it is established that emotional measurements contain information that is relevant to discriminate 

between food products and even contain information that is partly complementary to the overall liking 

of a food product. As a result, information that is derived from RATA questionnaires based on emoji 

(either using a general or a product-specific list) could potentially be used to predict the actual food 

choice. In Schouteten, Verwaeren, et al. (2018), it was found that information derived from CATA 

questionnaires (using emoji) can indeed be used to predict the particular kind of snack that is chosen 

by young children. The paper concluded that information of the CATA questionnaires can (albeit rather 

marginally) improve prediction accuracy for food choice. But to date, no studies examined the 

potential contribution of emoji on the food choice prediction with adults. Furthermore, the following 

questions remain: (1) does rating improve food choice prediction as compared to simple applicability 

information as in CATA?; and (2) does a product-specific list lead to statistical models with higher 

predictive power as compared to statistical models based on a general list? 

Although the potential use of emoji in food research is gaining momentum, there has recently been a 

call by Jaeger, Vidal, and Ares (2021) to further examine the potential of emoji in food-related emotion 

research which also has been supported by Schouteten and Meiselman (2021). Prior food and 

beverage research using emoji to examine emotional associations with adults worked with general 

emoji lists, so it is unclear to which extent product-specific emoji lists have a similar performance (e.g. 

discriminative ability) as has been found when working with emotional words. Product-specific 

emotion questionnaires contain fewer items than general questionnaires as the latter encompass 

many items to ensure that no important items are lacking (Jaeger et al., 2013; Schouteten, Gellynck, 

et al., 2017; Spinelli et al., 2015). This can be beneficial when the size of the list needs to be reduced 

due to time usage (e.g. during mall tests) or to practical constraints, such as data collection on smaller 

screen sizes (e.g. smartphones). On the other hand, general questionnaires need less total project 

time, cost and effort as no step for the pre-selection of items is needed. Yet a longer questionnaire 

might induce boredom and fatigue of the participants (Jaeger et al., 2013) as well as display challenges 

on smaller screens.  

This study aims to compare the performance of a product-specific emoji list with a general emoji list 

using the RATA response format to assess the emotional associations of adults consumers with 

chocolate. Hereby lies the focus on discriminatory ability and prediction of food choice, examining for 

the latter to which extent rating data contains additional information compared to the frequency of 

selection data for the food choice prediction and compare the predictive power of statistical models.  
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2. Materials and methods 

 

2.1. Experimental design 

This study applied a between-subjects design to compare the emotional profiling of a food product 

using a product-specific and a general emoji list. One group of consumers evaluated the product 

samples using the general emoji list of Jaeger, Lee, et al. (2017), containing both facial (33) and non-

facial (6) emoji and which has been applied to several food products (Table 1). Another group of 

consumers evaluated the same product samples but used a product-specific emoji list of facial (15) and 

non-facial (5) emoji generated during a pretest (see part 2.4). In total, 32 consumers were recruited 

for this pretest (mean age = 22 years, 58% female) at the local university campus in Ghent (Belgium) 

through flyers, Belgium. They were only allowed to participate if they were chocolate consumers (at 

least once a month), used emoji when messaging/texting and had no food allergies. All emoji were in 

Apple iOS v.12. The study has been approved by the ethical committee of Ghent University Hospital 

and was conducted in accordance with the declaration of Helsinki. 

 

Table 1. General emoji list from Jaeger, Lee et al. (2017) (emoji names are derived from Emojipedia (2021)) 

 angry face  clapping hand sign  confounded face  confused face 

 crying face  disappointed face  expressionless 

face 

 face screaming in 

fear 

 face throwing kiss  face with cold 

sweat 

 face with stuck out 

tongue 

 face with stuck out 

tongue and tightly 

closing eyes 

 face with stuck out 

tongue and winking 

eye 

 face with tears of 

joy 

 flushed face  grimacing face 

 grinning face  grinning face with 

smiling eyes 

 loudly crying face  neutral face 

 OK hand sign  pensive face  persevering face  pouting face 

 red heart  relieved face  sleeping face  smiling face 

 smiling face with 

heart shaped eyes 

 smiling face with 

smiling eyes 

 smiling face with 

smiling eyes and open 

mouth 

 smiling face with 

sunglasses 

 smirking face  thumbs up sign  thumbs down sign  tired face 

 unamused face  weary face  winking face  
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2.2. Participants 

Participants were recruited through flyers on the local university campus in Ghent, Belgium. They were 

randomly assigned to either the group using a general emoji list or the group using a product-specific 

emoji list. Testing took place in the sensory facilities of Ghent University and participants were seated 

in individual booths to assess the samples. Eligibility criteria were (i) having no allergies towards nuts, 

gluten, milk or soy, (ii) consuming chocolate (at least once a month) and (iii) using emoji when 

messaging. Socio-demographic characteristics and information of internet usage, mobile devices 

owned and emoji usage of participants of both groups who fully completed the questionnaire can be 

found in Table 12. Statistical analyses showed no significant differences between the two groups for 

any socio-demographic or behavioral characteristic. 

Table 12. Characteristics of the consumer sample for the general emoji list (n=138) and product-specific emoji 

list groups (n=136) 

General emoji list (n = 138) Product-specific emoji list 
(n=136) 

Mean age, in years (S.D.) 21.2 (3.5) 21.5 (3.5) 
Gender (% females) 64.5% 62.5% 

Internet usage (% respondents) 
Less than every two weeks 0 0 
Once every two weeks 0 0 
Once a week 0 0 
Multiple times a week 0 1.5 
Daily 100 98.5 

Mobile devices owned (e.g. tablet/Ipad, smartphone, laptop, smartwatch) (% respondents) 
0 0 0 
1 device 0.7 0.7 
2 devices 59.4 59.6 
More than 2 devices 39.9 39.7 

Emoji usage in messaging communication (% respondents) 
Infrequently 5.1 6.6 
Sometimes 60.1 64.7 
(Almost) every time 34.8 28.7 

2.3. Product samples 

This study opted to work with chocolate samples. Previous research indicated that chocolate 

consumption can influence the mood and elicit emotions such as joy and happiness (Macht & Dettmer, 

2006). Furthermore, chocolate has already been used in several studies to examine consumers’ 

emotional associations (Gunaratne et al., 2019; Schouteten, De Pelsmaeker, et al., 2018; Spinelli, 

Monteleone, Ares, & Jaeger, 2019; Thomson et al., 2010). Five plain milk chocolate samples were 

selected for this study spanning the variety of milk chocolate samples on the Belgian market regarding 

sensory attributes and brands. These products were selected based upon prior research carried out at 

Ghent University with a wider variety of chocolate samples evaluated by a trained panel using generic 

descriptive analysis. All samples were from the same batch and bought at local supermarkets. 

Nutritional information of the selected samples can be found in supplementary material (S1). 
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Samples were presented in transparent plastic cups labelled with a random three-digit code. Chocolate 

samples were served at room temperature (21 °C ± 1 °C) and serving size allowed 2–3 bites of each 

sample (Jaeger, Lee, et al., 2017). Product samples were presented in monadic sequence with a design 

balanced for presentation order and carry-over effects (Williams’ design) (MacFie, Bratchell, 

Greenhoff, & Vallis, 1989). Participants were instructed to rinse their mouth using water between the 

assessment of different samples and non-salted crackers were also available for rinsing if a participant 

deemed it necessary. 

 

2.4. Product-specific emoji list 

The product-specific emoji list was developed during a pretest following the two-step procedure 

described in Schouteten et al. (2015). In short, a group of 32 consumers (whom did not participate in 

the main experiment) evaluated the applicability of a list of emoji when tasting the same chocolate 

samples as used in the main experiment. This candidate list was based upon prior food research with 

adult consumers using emoji for emotional profiling when tasting food products (Jaeger, Lee, et al., 

2017; Jaeger, Roigard, & Ares, 2018). Also, participants had the opportunity to add any missing emoji 

and provide written feedback. In a second step, the researchers made a final selection. The selection 

was based upon the consumers’ frequency usage of emoji (>10%), and the potential to discriminate 

between product samples (i.e. not same frequency for each product) (See supplementary material S2 

for the results of the pretest). This is in line with previous research selecting emotional terms or emoji 

for developing a consumer-defined list (De Pelsmaeker, Schouteten, & Gellynck, 2013; Ng et al., 2013a; 

Schouteten et al., 2019). The final product-specific emoji list contained 20 emotions of different 

valence (15 positive, 3 negative and 2 neutral), arousal (3 low, 12 mediocre and 5 high) with 

classification based on prior research for the facial emoji (Jaeger, Roigard, Jin, Vidal, & Ares, 2019) and 

researchers’ opinion for the non-facial emoji. Moreover, the product-specific emoji list did not only 

contain facial but also non-facial emoji. An overview of the product-specific emoji list can be found in 

Table 23. 

Table 23. Product-specific emoji list for chocolate samples (emoji names are derived from Emojipedia (2021)) 

 clapping hand sign  confounded face  confused face  face with stuck out 
tongue 

 face with stuck out 
tongue and winking 
eye 

 grimacing face  grinning face  neutral face 

 OK hand sign  red heart  relieved face  smiling face 

 smiling face with 
heart shaped eyes 

 smiling face with 
smiling eyes 

 smiling face with 
smiling eyes and open 
mouth 

 smiling face with 
sunglasses 

 smirking face  thumbs up sign  thumbs down sign  winking face 

 

 

2.5. Questionnaire 

The questionnaire was administered using EyeQuestion software (Logic8 BV, the Netherlands) v4.9.4. 

Participants were asked three questions related to internet and emoji usage (Jaeger, Vidal, et al., 

2017): (i) how many devices they owned (desktop computer, laptop computer, tablet/iPad and/or 
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smartphone), (ii) how often they used the Internet in general and (iii) how frequently they used emoji 

when sending / posting a message (Table 1).  

During the sensory evaluation, participants first mentioned their overall liking of a sample on a 9-point 

hedonic scale (1 –dislike extremely to 9 - like extremely). Next, participants assessed the samples using 

a list of emoji using the rate-all-that-apply (RATA) method (Ares et al., 2014). Emoji were listed in four 

columns. . Participants followed a two-step procedure: they were first asked first to select all applicable 

emoji in a similar manner to a CATA question(= CATA step). Then, and then in a second step, 

participants were asked to rate the intensity of those applicable emoji on a 3-point scale (1 = weak, 2 

= medium, 3 = strong), with the rating appearing below the four columns containing the emoji (= RATA 

step). The presentation order of the emoji was randomized between the participants and also between 

the different samples for each participant across samples between and within participants. After the 

participants evaluated all the samples, they were asked to indicate of which sample they would like to 

receive a snack portion (chocolate wrapped in unbranded aluminum foil) to take home so that the 

actual food choice could be established (Schouteten, Verwaeren, et al., 2018). Participants had the 

opportunity to retaste the samples if needed before they made their choice. 

In the last part, participants assessed the easiness (“It was easy to answer the questions about these 

samples using emoji”) and tediousness (“It was tedious to answer the questions about these samples 

using emoji”) of the task on a 7-point Likert scale (1 = ‘disagree extremely’; 7 = ‘agree extremely’) 

(Jaeger, Lee, et al., 2018). Lastly, participants recorded information regarding their gender and age. 

Drop-out numbers and time usage in the test were recorded to investigate eventual benefits of one 

approach over the other from these perspectives. 

 

2.6. Data analysis 

2.6.1. Overall liking 

Linear mixed modelling was applied to uncover significant differences in overall liking scores across the 

two treatments (general vs product-specific list). Treatment, sample and their interaction were 

specified as fixed effects, whereas consumer was specified as a random effect. Linear mixed modelling 

considering samples as a fixed effect and consumers as a random effect was also used to analyze the 

overall liking data for each treatment separately. Tukey’s test was used for post -hoc comparison of 

means. Internal preference mapping was carried out for the two treatments (general vs product-

specific emoji list) separately using XLSTAT v2020.4.1.1032 (Addinsoft, 2020) with Principal Component 

Analysis (PCA) applied to the individual hedonic rates on an array of products for the participants. 

 

2.6.2. Emotional associations 

Given that participants first needed to select applicable emoji and then rated the intensity on a 3-point 

scale, two options for analyzing these data are considered (Ares et al., 2014). First, we only considered 

the selection of the applicable emoji. This enables an analysis similar to CATA-questions, where a 

Cochran’s Q test is applied to evaluate significant differences among the samples (p≤0.05). If significant 

differences were found for a particular emoji, pairwise comparisons were carried out between the 

samples using the McNemar test. Second, we considered the intensity ratings and followed the 

procedure recommended by Meyners, Jaeger, and Ares (2016) for RATA questions. The average score 

for each emoji and each sample was calculated in a 0-3 range, considering a 0 when an emoji was 

deemed as not applicable by a participant. Significant differences among samples were established 
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using analysis of variance (ANOVA), followed by post hoc comparison of means (Tukey’s HSD), where 

p ≤ 0.05. 

Responses to task perception questions (easiness and tediousness) were analyzed using t-tests. 

2.6.3. Links between overall liking and emotional responses 

In the study design, the appreciation of a consumer towards a number of products is queried in two 

distinct manners. Indeed, the overall liking and the rating of the emoji can be considered as two 

sources of information on how the consumer perceives a specific product. It is probable that part of 

the information in the data is duplicated (present in both sources) to some extent and on the other 

hand, both sources might contain complementary information. A correlation analysis can be 

performed to explore this further, however, we observe that (1) a large number of emoji is used in this 

study and an emotional status can be represented by multiple emoji, suggesting some degree of 

collinearity in the responses; and (2) even though the number of respondents is above 100 and can be 

considered fairly large for this type of study, the statistical power of a comparison between liking and 

each individual emoji will be too low to be reliable. Therefore, we perform a dimensionality reduction 

step first that allows to reduce the dimensionality of 39, resp. 20 to a few dimensions, an approach 

that is similar to the one applied in prior research (Dalenberg et al., 2014; Gutjar, Dalenberg, et al., 

2015; Schouteten, Verwaeren, et al., 2018).  Principal Component Analysis (PCA) was used to reduce 

the dimensionality of data on the intensity scores, two analyseis were performed for the general and 

product-specific lists independently. Formally, intensity ratings are organized in a data matrix such that 

each respondent-product combination is represented by one row and each column represents one 

emoji (the number of rows in this data matrix equals the product of the number of respondents and 

the number of products) and data are centered at the participant level. PCA is applied on that matrix. 

When the intensity scores are reduced to a binary format (only distinguishing to selection versus no-

selection), PCA is not an optimal dimensionality reduction technique. As an alternative, Multiple 

Correspondence Analysis (MCA) was applied on the data. Formally, intensity data matrix is 

transformed to an indicator matrix (same dimensions as the original intensity matrix) and MCA is 

applied on that matrix as described in (Pagès, 2014). 

When considering the intensity scores, PCA is performed (independently for the general and product-

specific lists) and the scores for the two first principal components are retained as covariates. When 

only the frequency of selection is considered, an MCA is used and the first two principal axes are 

retained. The principal components/axes are computed on the full dataset and scores were computed 

for each consumer/product combination. Biplots/factor graphs were produced to derive an 

interpretation for each component. 

A Pearson correlation analysis was performed on both compressed versions of the dataset. 

 

2.6.4. Food choice prediction 

With the goal to predict food choice, we consider four settings that differ in the type of data that are 

used: CATA versus RATA and a general versus a product-specific list, resulting in four combinations. 

Note that CATA data here is obtained by binarization of the RATA data, where emoji with a rating of 

zero are considered irrelevant and emoji with non-zero ratings are considered relevant. For each of 

these settings, we build multinomial logit models in which we model the probability that a respondent 

will choose a particular product, using covariates based on the liking scores and the ratings (for RATA) 

or checks (for CATA) for each product-emoji combination. The goal of this modeling is to study how 
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much food choice prediction can be improved by including emoji data. To prevent over-

parameterization of these models due to the large number of emoji in the questionnaires, both 

compressed versions of the emoji data were used as mentioned in 2.6.3.  

When PCA or MCA are used to reduce the dimensionality, the full multinomial regression model 

becomes: 

ln (
𝑃(𝐶ℎ𝑜𝑖𝑐𝑒𝑖=𝑗)

𝑃(𝐶ℎ𝑜𝑖𝑐𝑒𝑖=𝐾)
) =  𝛼𝑗 + 𝛽 Liki,j + 𝛾1 PC𝑖,𝑗

1 + 𝛾2 PC𝑖,𝑗
2  (Eq. 2) 

Where PC𝑖,𝑗
1  is the score for the first principal component (in case of RATA data) or the first principal 

axis (in case of CATA data) obtained for the ith user and the jth product. PC𝑖,𝑗
2  represents the second 

principal component or axis. The multinomial logit models are fit using maximum likelihood estimation 

(using the R-package mlogit (Croissant, 2019)) and hypothesis testing was based on likelihood ratio 

testing. 

We use a predictive modeling approach to compare both, the influence of using RATA instead of CATA 

data and the use of a product-specific list instead of a general list. More precisely, we compute the 

predictive accuracy, using leave-one-out cross-validation (LOOCV), for the models in each of the four 

settings. To guarantee complete independence of training and test data, principal components or 

principal axes are recomputed in each LOOCV. Moreover, to assess the added value of PC1 and PC2 on 

the predictive performance, the results obtained using the full model will be compared with results 

obtained with reduced models in which the  𝛾  coefficients  are equal to zero. Accuracies were 

compared using the chi-square test for equality of proportions (available in the R stats package (R Core 

Team, 2021)). 

 

A note on consumer segments. The modeling approach described above models the preference of all 

consumers in the same manner. However, when two or more consumer segments are present, a 

uniform treatment of all consumers could lead to suboptimal results. To identify potential consumer 

segments, hierarchical agglomerative clustering was applied on the Liking data to cluster respondents 

into groups with similar liking profiles. Visual inspection of the clustering tree indicated a mild 

clustering for both datasets, suggesting the presence of a mild degree of segmentation. To test the 

influence of this segmentation on the preference model, Eq. (2) was extended to incorporate the effect 

of clustering. However, from the obtained results we could conclude that the segmentation had no 

influence on the choice model. For more details on this analysis, we refer to supplementary material 

(S2S3). 
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3. Results 

 

3.1. Overall liking 

Table 4 presents the mean overall liking scores for the five samples, separately for both treatments. 

Linear mixed modelling reveals that while differences between sample means were established, there 

was no evidence that the type of list affected the hedonic mean scores. The interaction effect for 

experimental treatment x sample was non-significant (p = 0.942). This also shows that the two 

subgroups of consumers involved in the between-subjects design are on average comparable in terms 

of liking of the chocolate product samples. . Internal preference mapping based upon the liking data 

for each separate list showed results in line with Table 4, with few likers of S1 and S2 and many likers 

of samples S3, S4 and especially S5. For the interested reader the maps can be found in supplementary 

material (S2S4). 

Table 4. Mean overall liking (9-point, 1 = dislike extremely 9 =  like extremely) of the samples from the general 

list (n = 138) and product-specific list (n = 136) experiment. Different superscripts indicate significant differences 

in mean overall liking scores within a treatment (general / product-specific list). 

Sample General list Product-specific list 

S1 5.2c 5.1c 
S2 5.1c 5.1c 
S3 6.0b 6.0b 
S4 5.9b 5.9b 
S5 6.6a 6.7a 

abc different superscripts indicate significant differences between the samples of the general emoji list / product-

specific emoji list based upon mixed ANOVA (samples as fixed effect & consumer as random effect). Tukey’s test 

was used for post-hoc comparison of means. 

 

3.2. Emotional associations 

3.2.1. Frequency of emoji selection 

For the general emoji list, participants used on average 2.0 emoji (5.1%) to describe how they felt after 

consuming a chocolate sample. When working with a product-specific emoji list, 1.7 (8.5%) emoji were 

used on average for a chocolate sample. On aggregate level, considering all chocolate samples, usage 

frequencies varied for a specific emoji from 0.3% ( ) to 20.9% ( ) for the general emoji list while 

the usage frequencies varied between 1.6% ( ) and 20.1% ( ) for the product-specific emoji list. 

When comparing the usage frequencies across the samples, it appears that the number of emoji used 

did not differ a lot between the samples of the general list considering that the usage frequencies 

varied between 1.8 emoji for S4 and 2.0 emoji for S5. For the product-specific emoji list, participants 

used on average least emoji for the least liked sample S2 (1.5 emoji) and most for the most liked sample 

S5 (1.9 emoji). 

For both the general and product-specific emoji lists, 10 emoji were able to discriminate between the 

samples (Table 5). Among these, seven emoji ( , , , , ,  & ) are common for both 

lists, while six additional (general list: , , ; product-specific emoji list: , , ) emoji were 

only able to discriminate between samples in one of the lists. It should be noted that two discriminating 

emoji of the general list (  , ) were not included in the product-specific emoji list. 
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Table 5. Emoji usage frequencies (in %) for the different samples of the general (n=138) and product-specific 

(n=136) emoji lists. Only values of emoji with significant different usage frequencies between the samples are 

included in this table. 

 S1 S2 S3 S4 S5 

General list (discriminative emoji out of 39 original alternatives) 

 17b 16b 29a 22ab 20ab 

 1b 7b 14a 9ab 14a 

 13a 16a 10ab 12ab 5b 

 7ab 11b 5ab 7ab 3a 

 8c 14bc 14bc 17ab 23a 

 4b 7ab 9ab 4b 13a 

 10a 7ab 1c 3bc 1c 

 6ab 2b 6b 6b 13a 

 12a 7abc 2bc 8ab 2c 

 8a 6a 5a 10a 0b 

Product-specific list (discriminative emoji out of 20 original alternatives) 

 15c 13c 24ab 18bc 29a 

 10b 10b 10b 13b 24a 

 22a 26a 13b 11bc 5c 

 12a 11a 9a 5ab 2b 

 15bc 7c 21ab 17ab 25a 

 7b 6b 7b 12ab 15a 

 13a 10a 3b 7ab 2b 

 6c 8bc 20a 17a 14ab 

 5b 6b 11ab 15a 13a 

 26a 26a 21a 20a 8b 
abc different superscripts indicate significant differences between the usage frequencies (in % respondents) of a 

certain emoji across a row based upon the McNemar test (p≤0.05) 

 

MCA was applied to individual responses to each emoji and product configuration resulting in a MCA 

plot (Fig. 1a,1b) explaining 62.6% of adjusted inertia for the general emoji list and 78.4% of adjusted 

inertia for the product-specific emoji list. The first dimension is related to the valence of the emoji, 

with negatively valenced emoji situated on the left side of the plots while positively valenced emoji 

were located on the right side of the plots. The positioning of the emoji on the second dimension of 

the MCA is more difficult to interpret, but seems to be based on arousal / activation especially for the 

general emoji list.  

Insert figure 1a,b around here 

 

3.2.2. Emoji intensity scores 

When considering the intensity scores, the product-specific list was slightly better in delivering 

discriminating emotional profiles as the product specific emoji list had 10 discriminating emoji (out of 

20) while only 9 discriminating emoji (out of 39 emoji) were obtained when using a general list.. It 

should be mentioned that 6 emoji ( , , , ,  & ) were significant for both lists. In 

addition, three more emoji were discriminating between the product samples for the general list 
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bringing the total of discriminating emoji to 9 out of 39 original alternatives. One emoji ( ) included 

in both the general and product-specific emoji list was only discriminating in the general list and not in 

the product-specific list (Table 6).   

Table 6. Average scores of the emoji for the different samples of the general (n=138) and product-specific (n=136) 

emoji lists. Only values of emoji with significant different average scores between the samples are included in 

this table. 

 S1  S2 S3 S4 S5 

General list (discriminative emoji out of 39 original alternatives) 

 0.17ab 0.12b 0.33ab 0.23ab 0.36a 

 0.34ab 0.38a 0.20ab 0.32ab 0.11b 

 0.16ab 0.28a 0.12ab 0.02b 0.07b 

 0.20b 0.33b 0.35ab 0.43ab 0.60a 

 0.08b 0.17ab 0.20ab 0.11b 0.34a 

 0.27a 0.20ab 0.01c 0.07bc 0.02c 

 0.14b 0.05b 0.14b 0.15b 0.36a 

 0.33a 0.18ab 0.04b 0.19ab 0.06b 

 0.17ab 0.13ab 0.12ab 0.23a 0.00b 

Product-specific list (discriminative emoji out of 20 original alternatives) 

 0.23b 0.21b 0.24b 0.30b 0.59a 

 0.52ab 0.57a 0.29bc 0.24c 0.13c 

 0.30a 0.25ab 0.17ab 0.14ab 0.04b 

 0.37bc 0.17c 0.45ab 0.40abc 0.65a 

 0.19ab 0.12b 0.18ab 0.28ab 0.39a 

 0.32a 0.23ab 0.06b 0.15ab 0.04b 

 0.33bc 0.27c 0.60ab 0.43bc 0.74a 

 0.12b 0.13b 0.27ab 0.38a 0.35a 

 0.13b 0.19ab 0.42a 0.38a 0.30ab 

 0.57a 0.60a 0.43ab 0.46ab 0.18b 
abc different superscripts indicate significant differences between the intensity scores (ranging from 0 = not 

present  3 = strong) of a certain emoji across a row. Significant differences among samples were established 

using analysis of variance (ANOVA), followed by post hoc comparison of means (Tukey’s HSD), where p ≤ 0.05. 

 

PCA for emotional responses considering the intensity scores resulted in two principal components 

that explained 13.7% of the variance for the general emoji list and 21.1% for the product-specific emoji 

list (Figure 2a,2b. The first dimension of the PCA plots was associated with the valence of the emoji, 

with negative emoji on the left side of the plot while positively valenced emoji were situated on the 

right side. The second dimension of the PCA plot containing data of the general emoji list was more 

associated with arousal, with a positive association with emoji linked with higher emotional arousal 

and negative correlation with emoji associated with low emotional arousal. The second dimension of 

the PCA plot based upon the emoji data of the product-specific list is less clear, it seems partly related 

to arousal but also other factors might play a role (e.g. dominance). 

Insert Figure 2a,b around here 

 

3.2.3. Task perception, dropouts and time usage 
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No significant effect of type of list was found regarding the task perception (easiness: p = 0.643; 

tediousness: p = 0.592). On average, participants slightly agreed that the task was easy to perform 

(mean for general emoji list = 4.44 (S.D. = 1.77); mean for product-specific emoji list = 4.35 (S.D. = 1.67) 

). On average, participants disagreed slightly that the task was tedious, regardless of which list was 

used, with an average score of 3.45 (S.D. = 1.49) for the general list and 3.55 (S.D. = 1.56) for the 

product-specific list. Only three dropouts were recorded for the product-specific emoji list and two for 

the general emoji list. Time usage was also similar for the two tests, in line with a similar number of 

selected emoji observed across approaches (product-specific list: 12 min. 51 s. on average (S.D. = 4 

min. 19 s.), general list: 12 min. 44 s. (S.D. = 3 min. 45 s.). 

3.3. Links between overall liking and emotional associations. 

Table 7 shows the Pearson correlations between the overall liking scores and the compressed emoji 

data. When considering the data from the PC obtained by using PCA (frequency of selection) or MCA 

(intensity scores), the first PC is mainly correlated with the overall liking data.  

 

Table 7. Pearson correlations between the compressed emoji data (PC1, PC2) and the overall liking 

scores. Significant (p < 0.05) correlations are in bold. 

 Frequency of selection Intensity scores 
 General Product-specific General Product-specific 

PC1 0.626 0.562 -0.442 0.590 

PC2 -0.139 -0.444 -0.018 0.198 

 

3.4. Food choice prediction 

Figures 3a and 3b show the frequency distributions of the products that were finally chosen by the 

respondents for the experiments using the general and product-specific lists, respectively. For the 

general list, product S2 was only chosen 14 times, for a relative choice frequency of 10.1%, while S5 

was chosen 64 times for a relative frequency of 46.4%. For the product-specific emoji list, product S2 

was only chosen 11 times, for a relative choice frequency of 8.1%, while S5 was chosen 43 times for a 

relative frequency of 39.0%. Therefore, it can be concluded that product S5 was the most frequently 

chosen product in both experiments while product S2 was the least chosen. Moreover, when products 

are ordered according to these relative frequencies, the same ordering is obtained in both 

experiments. 

Insert Figure 3a,b around here 

3.4.1. Prediction from frequency of emoji selection (CATA) 
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Figure 4 (green bars) shows the LOOCV accuracy that is obtained in predicting consumers’ product 

choice using the CATA data (i.e. selection frequencies). Table 9 8 shows the p-values obtained when 

comparing the different models in a pairwise manner. As a baseline, we consider the multinomial logit 

model that only uses an intercept and liking scores as covariates. In the first consumer subgroup 

(general list group), the obtained LOOCV accuracy is 0.67 [0.59, 0.75] when only considering the liking 

score (CATA liking), where the LOOCV accuracy is defined as the ratio of the number of consumers for 

which the food choice is predicted correctly to the number of consumers in the study (Table 98). The 

model does not improve by adding the first principal axis of the emoji CATA data as a second covariate 

to the predictive model (CATA liking + PC1) as the accuracy remains at 0.66 [0.58, 0.74]. The CATA data 

is moderately informative for predicting food choice as the sole inclusion of the principal axis 

computed on the CATA data (CATA PC1) leads to an observed accuracy of 0.54 [0.46, 0.63], which is a 

significant drop (p = 0.026) compared to the predictive model only containing liking data (accuracy of 

0.66 – CATA liking).  

Insert Figure 4 around here 

In the second consumer subgroup (product-specific list group), food choice prediction accuracy based 

on liking alone is 0.61 [0.53, 0.69] (Figure 4). A slight increase of the accuracy is observed when PC1 of 

the CATA data is added to the model from 0.61 to 0.63 [0.55, 0.71]. However, this increase is small 

compared to the size of the confidence intervals. In this case as well, the accuracy drops to 0.54 [0.46, 

0.63] when liking is omitted as a predictor. However, in this case, the drop was not statistically 

significant (p = 0.112) (Table 89). 
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Table 8. Comparison of accuracies obtained for the different multinomial logit models (using LOOCV) for the general emoji list. The proportion of correctly predicted 1 
consumer preferences (identical to the accuracies shown in Figure 4) by the methods in the row/column headers are compared. The table shows p-values for testing 2 
equality of the accuracies using a z-score test for comparing proportions. p-values below the significance level are in bold. A p-value that is highlighted in bold indicates that 3 
the accuracies of the compared methods (in the row/column header) differ significantly. 4 
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CATA Liking 1.000 1.000 1.000 0.047 0.026 1.000 1.000 0.898 0.005 0.005 

CATA Liking + PC1   1.000 1.000 0.063 0.036 1.000 1.000 1.000 0.007 0.007 

CATA Liking + PC1 + PC2     1.000 0.047 0.026 1.000 1.000 0.898 0.005 0.005 

CATA PC1       1.000 0.903 0.047 0.063 0.083 0.467 0.467 

CATA PC1 + PC2         1.000 0.026 0.036 0.048 0.628 0.628 

RATA Liking           1.000 1.000 0.898 0.005 0.005 

RATA Liking + PC1             1.000 1.000 0.007 0.007 

RATA Liking + PC1 + PC2               1.000 0.010 0.010 

RATA PC1                 1.000 1.000 

RATA PC1 + PC2                   1.000 
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Table 109. Comparison of accuracies obtained for the different multinomial logit models (using LOOCV) for the product-specific emoji list. The proportion of correctly 7 
predicted consumer preferences (identical to the accuracies shown in Figure 4) by the methods in the row/column headers are compared. The table shows p-values for 8 
testing equality of the accuracies using a z-score test for comparing proportions. p-values below the significance level are in bold. A p-value that is highlighted in bold 9 
indicates that the accuracies of the compared methods (in the row/column header) differ significantly. 10 
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CATA Liking + PC1 + PC2     1.000 0.139 0.037 0.707 0.899 1.000 0.617 0.802 

CATA PC1       1.000 0.627 0.326 0.083 0.108 0.391 0.269 

CATA PC1 + PC2         1.000 0.112 0.020 0.027 0.143 0.087 

RATA Liking           1.000 0.530 0.616 1.000 1.000 

RATA Liking + PC1             1.000 1.000 0.451 0.614 

RATA Liking + PC1 + PC2               1.000 0.531 0.706 

RATA PC1                 1.000 0.901 

RATA PC1 + PC2                   1.000 
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3.4.2. Prediction from emoji intensity scores (RATA) 

When considering the RATA data in the test using the general list, the observed prediction accuracies 

are highly similar to the accuracies obtained using the CATA data (Table 98). Differences in prediction 

accuracy are never significantly different when adding emoji data to the food choice prediction based 

upon liking data. Moreover, a drop in accuracy for the food choice prediction is observed when the 

liking scores are omitted when considering the RATA emoji data for the general list . For the product-

specific list (listed in Table 109), the RATA data can improve the baseline accuracy 0.61 [0.53, 0.69 ] 

obtained using only liking scores to reach when adding the data of PC 1 0.65 [0.57, 0.73]. These results 

suggests that using smaller and product-specific lists is beneficial for the RATA approach. Nevertheless, 

it should be mentioned that the effect size is rather small and non-significant. It can also be observed 

that the models that only rely on RATA scores achieve accuracies that are close to the accuracies 

obtained when only liking is used as a covariate (0.60 [0.52, 0.69] for PC1 and 0.63 [0.54, 0.70] for 

PC1+PC2). This suggests that RATA data is more informative than CATA data for the product-specific 

list. However, here as well the accuracies do not differ significantly. 
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4. Discussion 

The overall aim of this study was to compare the performance of a general emoji list with a product-

specific emoji list using adults. Participants found it rather an easy task to perform and not tedious 

regardless of the used emoji list in line with prior research (Jaeger, Lee, et al., 2018). The number of 

emoji which were discriminating was similar for both emoji lists. Including the data of the consumer-

defined emoji list in addition to the overall liking data slightly improved the food choice prediction 

while no such effect was found for the general emoji list. 

The overall liking score was similar for both emoji lists (interaction effect for experimental treatment 

x sample was non-significant (p = 0.942)) suggesting that the type of list does not impact a concurrent 

overall liking assessment. Although more research is recommended to confirm this finding, prior 

research with children found that the overall liking of a biscuit significantly differed between a product-

specific and a general emoji list (Schouteten et al., 2019). However, it should be noted that overall the 

clustering of the samples according to liking was not influenced by the type of emoji list in the study 

of Schouteten et al. (2019), so it could be that the effect only reflected individual variations as may 

occur with a between-subjects design. For each sample, overall liking was assessed before the 

emotional assessment as suggested by King et al. (2013) to limit the potential effect of the emotional 

assessment on the overall liking. To date, it is still unclear if combining emotional measurements with 

overall liking could impact the overall liking scores but research with emotion words (King et al., 2013; 

Schouteten, Gellynck, et al., 2017) found little evidence that this would be the case. Nevertheless, 

future research should explore the potential effect of the concurrent assessment of emoji on overall 

liking scores and might examine if also the type of list (product-specific or general) plays a role. 

Participants used slightly more emoji when working with the general list (2.0 emoji compared to 1.7) 

which might be influenced by the fact that the general list contained 39 emoji compared to the 20 

emoji of the product-specific emoji list. The average usage frequency was higher for the product-

specific emoji list (8.6%) compared to the general emoji list (5%) as the latter contained almost twice 

as many emoji. These numbers are low compared to prior research reporting usage frequencies 

between 14% and 29% when using RATA and having participants tasting food products (Ares & Jaeger, 

2017; Jaeger, Lee, et al., 2018). It could be that the method of the response format used in this study, 

so that is to say first checking an applicable emoji (CATA step) and then rating the intensity in a second 

step (RATA step), led to a lower usage frequency. Also the fact that only food products of a single food 

category were used in this study could have played a role as more diverse foods might result to larger 

emotion differences expressed by more emotions. Further, the use of RATA asks a higher cognitive 

involvement and prolongs the task, so it could be that some participants applied a satisfying answer 

strategy. It might be interesting to delve deeper in the impact of the response format and for instance 

uses eye tracking to gain additional insights in how participants checks & rates applicable emoji. In line 

with the answers provided about the easiness and tediousness of the tasks, the low frequency of use 

could also be caused by some participants who found it hard to assess / indicate their emotions. Prior 

CATA research with children in Belgium comparing a general with a product-specific emoji list also 

reported higher usage frequencies (15.2% for the product-specific emoji list and 7.5% for the general 

emoji list) (Schouteten et al., 2019).  

In line with prior research, this research found that emoji are able to discriminate between food 

products when using the RATA response format (Ares & Jaeger, 2017; Jaeger, Lee, et al., 2018). The 

present study adds that emoji are even able to discriminate between products of the same food 

category with similar flavour, as this study only used plain milk chocolate samples. Prior research of 

Jaeger, Lee, et al. (2018) on the other hand, used different types of foods (soft cheese, cucumber, 
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cereal bar and cake) or products of distinctive flavour characteristics (muesli bars with apricot, apple 

and raspberry, apple crumble and apple flavour).  

For both emoji lists, about 10 emoji were able to discriminate between the food product samples. In 

the case of the general list there was a slight effect of the CATA versus RATA analysis method, where 

10 emoji allowed sample discrimination when only the emoji applicability was considered (CATA style) 

while only nine emoji were discriminative based on intensity scores (RATA approach) (  was no 

longer discriminative). Further, it is interesting to mention that the discriminating emoji were largely 

the same for both lists but there were still some differences as , ,  were able to discriminate 

only for the general list and , ,  were only discriminating when the product-specific emoji list 

was used. Moreover, none of the discriminating emoji was were able to discriminate between equally-

liked samples. This contrasts with the results of Schouteten et al. (2019) who found that emoji from 

the product-specific emoji list were better able to discriminate between equally-liked samples 

compared to a general emoji list when children evaluated biscuits. It could be that equally-liked 

products in this study had rather similar sensory properties. It has been suggested that a product’s 

emotional profile relies on its specific sensory properties (Spinelli & Jaeger, 2019) so if the equally -

liked samples had similar sensory properties, this might explain the inability of the emoji to 

discriminate between those equally-liked samples. Also, the fact that the product-specific emoji list 

contained predominantly positive emoji might have impaired the ability to discriminate between 

lesser-liked samples, although it should be noted that the general emoji list (containing a larger 

number of negative emoji) only had one more discriminating negative emoji than the product-specific 

emoji list. Nevertheless, fFuture research could opt to consider the balance of 

positive/negative/neutral valence as a selection criterion when selecting emoji for a product-specific 

emoji list. Furthermore, attention should be paid that also non-facial emoji are able to discriminate 

between the chocolate samples when using the RATA response format, for analyzing it as frequency 

of use and as intensity data. Jaeger, Lee, et al. (2017) previously reported that such emoji are able to 

discriminate, but their research was carried out using the CATA response format. However, it is 

recommended that further research examine the meanings of non-facial emoji. 

Prior research by Schouteten, Verwaeren, et al. (2018) examining emotional associations using emoji 

with biscuits consumption of children found that the 5 food samples were mainly sorted based on the 

emotional valence in an MCA plot. In the present study, the first CA dimension was predominantly 

valence-driven and accounted for about 50% (general emoji list) to 67% (product-specific list) of the 

variance. The second dimension was mainly based on the arousal /activation associated with the emoji 

and only explained about 11% of the total inertia, which was similar for both emoji lists. The higher 

explained variance by the product-specific emoji list is interesting to note, which might be due to fact 

that the product-specific emoji list contained less emoji. However, prior research of Schouteten, 

Verwaeren, et al. (2018) resulted in about 83% of the variance explained in the first dimension but 

worked with 33 emoji. The two first dimensions of the PCA plots based upon the data of the intensity 

scores only explained 13.7% (general emoji list) and 21.1% (product-specific emoji list) of the variance. 

This is rather low compared to prior research finding that the first two principal components explained 

over 80% of the total variance for the emotional associations based upon a RATA-response format with 

41 emoji for four kefir beverages (Pinto et al., 2020). It could be that the lower usage frequency played 

a role, as the study of Pinto et al. (2020) reported an average use of 5.7 emoji out of 51 emoji while on 

average about 1.7 to 2.0 emoji were used in this study. Future research could opt to work with another 

response format, e.g. mandatory check of an emoji is applicable with yes/no followed by rating as this 

might result in higher emoji usage frequencies (Ares & Jaeger, 2017). 
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The multinomial logit choice models confirm that perceived liking remains the most important 
predictor for food choice. The information extracted from the general emoji list did not lead to a 
significant increase of the choice model for the chocolate. However, when the information of the 
product-specific emoji list complements the overall liking information, a significant increase was found 
especially when using the intensity scores. This resulted then in a model with an accuracy of 65%. Prior 
research already found that including information of emoji improved the choice prediction for 
speculoos biscuits (accuracy of 66.4%) when working with a children’s population compared to the 
prediction based on solely the liking scores (accuracy of 62.4%) (Schouteten, Verwaeren, et al., 2018). 
Research from Dalenberg et al. (2014) reported that the best model (based upon liking data and PC1 
from Premo) had an accuracy of 54.4%. while research from Gutjar, Dalenberg, et al. (2015) established 
an accuracy of 44.7% for the best fitting model containing the liking and valence data (based upon 
EsSense Profile®).  

This study is the first which also shows that emoji evaluated by adults can help to better predict food 
choice. This study worked with the RATA response format, so it is recommended that more research 
is carried out with other products and also with the CATA response formats to confirm these findings. 
Furthermore, it seems that the added value in food choice prediction is only present when working 
with a product-specific emoji list. It should be examined if that is due to the fact that the list is product-
specific or if the lower number of emoji played a role (or a combination of both). Moreover, the fact 
that none of the discriminating emoji was able to discriminate between equally-liked samples had 
potentially an impact on the relatively small effects of emoji data on choice prediction. Furthermore, 
it should be noted that the food choice prediction using only the intensity scores of the emoji is similar 
to the food choice prediction of the liking scores for the product-specific emoji list. Although further 
research is recommended, it shows that the emoji data might be in some cases as meaningful as liking 
data to predict food choice.  

When interpreting the results of the food choice prediction, one should consider that the limited 
additional value could be due to several reasons. First of all, the predictive performance using the 
models that only rely on liking data was quite high compared to prior research examining the added 
value of emotional data using an adult population (Dalenberg et al., 2014; Gutjar, Dalenberg, et al., 
2015) which makes it harder for emoji data to improve the food choice prediction. Further, the number 
of samples and also the fact that these samples were from a single food-product category could have 
played a role. Also the emoji list and the selection might have had an impact, with more research 
recommended to discover emoji which are able to discriminate between equally liked products. Lastly, 
also the response format might have play a role as prior research showed that the response format 
could have an impact on the emoji usage frequencies by participants (Ares & Jaeger, 2017). 

This study worked with five milk chocolate samples, selected to span the market regarding sensory 

attributes and brands. Although this number is in line with prior research studying the potential of 

emotional measurements to predict food choice (Dalenberg et al., 2014; Gutjar, Dalenberg, et al., 

2015; Schouteten, Verwaeren, et al., 2018), future research could examine the impact of a larger 

number of samples when comparing the performance of the two emoji-list approaches. Nevertheless, 

as emotions are expected to be elicited from the products’ sensory properties and/or possibly product 

recognition/familiarity (Ng et al., 2013b; Schouteten, De Steur, et al., 2017; Spinelli et al., 2015; Spinelli 

et al., 2019), little new information would be expected from a larger number of samples since these 

were already selected to span the range of variations on the market. Furthermore, one need to 

consider the tediousness of the task and also bear the sensory satiety in mind when the experiment is 

carried out in a single session as that is a prerequisite for determining the food choice when products 

need to be tasted by the participants. 

A between-subjects design was used for this study, in line with other studies examining the 

performance of two methods to measure consumers’ emotional associations of food products (Ng et 

al., 2013a; Schouteten et al., 2019; Spinelli et al., 2014). Therefore, within-subject factors which may 
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play a role when consumers assess samples under different conditions were eliminated (e.g. carry-

over effects due to a first assessment). Future research might opt to apply a within-subject design 

although it should be mentioned that both consumer panels used in this study were highly similar 

regarding their socio-demographics, emoji use, and product preferences. 

This study worked with a convenience sample, mainly consisting of younger people. Future research 

might opt to work with a more representative sample of the general population. Nonetheless, it should 

be noted that prior research found that younger and older people don’t largely differ in the adoption 

(Evans, 2017) nor use of emoji (Gallud, Fardoun, Andres, & Safa, 2018). Also, Jaeger, Xia, et al. (2018) 

found that the interpretation of emoji and their usage for describing food-related emotional 

associations doesdo not seem to be largely influenced by age, gender, or the frequency of use of emoji 

in digital communications. 

RATA data were analyzed in this study using both the frequency of use and intensity scores (Ares et 

al., 2014). Both analysis methods were used in order to provide a clearer picture of the data. It should 

be noted that future research might opt to set up a study with on one hand data collected using a CATA 

format and on the other hand the RATA format for intensity scores, when the goal is to compare the 

performance of both response formats. One needs to bear in mind that participants in this study first 

needed to check all the applicable emoji and in a second step rate the intensities, which might 

advocates the use of both analysis methods used in this study.  

Dropout rates and time usage on the task were similar across approaches despite the difference in 

number of terms. Previous research using eye-tracking measures reported greater sustained visual 

attention to the task in the case of a longer CATA list, but shorter attention per term (Ares, Antúnez, 

Giménez, & Jaeger, 2015). The equal time usage is also in line with the observed equal frequency 

selections of emoji. As the selected emoji had to be rated, it is possible that participants adopted a 

satisficing strategy to limit their effort, thus limiting time usage also for the longer list (Ares et al., 2014; 

Jaeger, Lee, et al., 2018). Our data provide therefore no evidence of a time or engagement 

advantage/disadvantage in favor of one list or the other. It is however a fact that a shorter list will save 

screen space and thus better fit smaller screen formats such as smartphones, which are more and 

more often used for data collection in consumer studies nowadays (York & Poynter, 2018). Further, 

one need to consider that the product-specific emoji list is shorter than the standardized list which is 

quite common as standardized emoji (or emotion) lists contain many items to ensure that no important 

items are lacking (Jaeger et al., 2013; Schouteten, Gellynck, et al., 2017; Spinelli et al., 2015). 

In conclusion, this study aimed to compare the performance of a general and a product-specific emoji 

list with milk chocolate samples using the RATA response format both considering the frequency of 

selection and the intensity scores. It showed that a product-specific emoji list is valid and slightly better 

in discrimination performance compared to a general list when considering the intensity scores. It also 

showed that non-facial emoji can be discriminating between tasted food samples of rather similar 

composition. Overall liking remains the best predictor of food product choices. However, emoji data 

considering the intensities obtained from a food-product specific emoji list was as accurate as the liking 

data to predict food choice. Future research may further examine the potential benefits of a product-

specific list in the case of testing products within a single food category. Future research may also 

investigate if emotional profiles help improve product choice prediction after product exposure over 

time, rather than in a single test, as liking may become relatively less important for choice predictions 

than emotions after a longer product experience. 
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S1. Overview of the nutritional composition of the product samples 
 

 S1 S2 S3 S4 S5 

Calories (kcal) 545 551 530 570 520 

Fat (g) 34.3 34.2 29 37 28 

   Saturated fat (g) 33.1 21.7 18 23 18 

Carbohydrate (g) 54.3 50.9 59 50 58 

   Sugars (g) 53.7 49.9 58 50 57 

Fibers (g) 2.1 2.2 1.8 2.5 2.8 

Protein (g) 3.5 8.3 6.3 7.5 7 

Salt (g) 0.30 0.26 0.37 0.20 0.29 
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S2. Usage frequencies of the emoji during the pretest for each sample(n=32) 
 

 S1  S2  S3  S4  S5  

 6 7 10 9 12 

 8 8 9 5 9 

 6 7 7 8 8 

 2 3 6 7 6 

 5 4 7 10 8 

 10 3 6 7 5 

 3 2 6 2 4 

 3 4 5 2 3 

 3 3 4 6 6 

 2 1 4 2 3 

 2 5 4 3 4 

 3 3 3 3 3 

 2 5 5 2 3 

 1 0 0 0 3 

 3 3 4 3 4 

 2 2 2 1 1 

 4 4 4 4 3 

 2 1 2 0 2 

 3 1 1 0 0 

 1 1 1 4 2 

 0 2 0 0 2 

 8 2 2 3 3 

 3 5 4 2 2 

 0 2 1 1 0 

 0 1 0 1 1 

 0 2 1 1 0 

 2 4 1 0 1 

 0 1 0 0 0 

 0 0 1 0 1 

 0 1 1 0 0 

 0 1 0 1 1 

 0 0 0 0 0 

 0 0 0 0 0 

 1 2 6 5 6 

 3 4 5 1 3 

 7 11 9 10 10 

 2 3 6 3 2 

 6 7 6 10 5 

 1 1 0 0 0 

None 0 0 0 9 0 
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S3. Food choice prediction considering consumer segments 
To identify potential user segments, a hierarchical agglomerative clustering was applied on the Liking 

data to cluster respondents into groups with similar liking profiles (using average linking based on the 

Euclidean distances between the Liking vectors of the respondents). Visual inspection of the clustering 

tree indicated that at most two clusters can be identified in the dataset on the general emoji-list. Based 

on this observation, k-means clustering was used using two cluster centers to obtain a final clustering. 

The cluster centers (average Liking vectors for each cluster) are given in table below. The results in 

table indicate that the liking scores in the first cluster are consistently lower than those in the second 

cluster.  

  Average Liking cluster center – General emoji list 

Cluster S1 S2 S3 S4 S5 

1 (n = 107) 5,701 5,701 6,542 6,140 6,794 

2 (n = 30) 3,500 2,633 4,333 5,000 6,100 

 

To test if the user segments influence the user preferences, or more precisely, the link between the 

liking data and the selected responses at one hand and the revealed preferences on the other hand, 

the cluster was incorporated as a dichotomous variable in the multinomial regression model and 

interaction terms with the remaining covariates were added. This leads to the model. 

ln (
𝑃(𝐶ℎ𝑜𝑖𝑐𝑒𝑖 = 𝑗)

𝑃(𝐶ℎ𝑜𝑖𝑐𝑒𝑖 = 𝐾)
) =  𝛼𝑗 + 𝛽 Liki,j + 𝛾1 PC𝑖,𝑗

1 + (𝛽𝐼 Lik𝑖,𝑗 + 𝛾1,𝐼 PC𝑖,𝑗 
1 ) 𝐼𝑖 

Where 𝐼𝑖 is an indicator variable (which equals 0 if the ith respondent belongs to the first cluster and 

equals 1 if the respondent belongs to the second cluster). A likelihood ratio-test indicated that there 

was insufficient evidence in the data to prove that 𝛽𝐼 and 𝛾1,𝐼 differed significantly form zero (chi² = 

0.609, df = (6, 8), p = 0.738) when computing PC1 on the CATA data using the generic Emoji list.  

The same procedure was applied on the Liking data collected in the experiment with the product-

specific emoji-list. In this case, a clustering was less apparent, but one could still roughly distinguish 

two clusters. 

  Average Liking cluster center – Product-specific emoji list 

Cluster S1 S2 S3 S4 S5 

1 (n = 78) 
6,295 5,962 6,718 6,359 6,769 

2 (n = 58) 
3,517 4,000 4,966 5,241 6,586 

 

Here as well, likelihood ratio testing indicated that no effect of the segmentation could be observed 

(chi² = 1.370, df = (6, 8), p = 0.504) 

As there is no apparent effect of the clustering, we did not explore this path any further. 
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S4. Internal preference map for the participants using the general emoji list and the participants using the product-specific emoji list 
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Figure 1a. Multiple Correspondence Analysis (MCA) for the liking (supplementary variable) and 

emotional associations of the five samples for the general emoji list  

 

Figure 1b. Multiple Correspondence Analysis (MCA) for the liking (supplementary variable) and 

emotional associations of the five samples for the product-specific emoji list 
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Figure 2a. Principal Component Analysis (PCA) biplot for the liking (supplementary variable) and 

emotional associations of the five samples for the general emoji list 
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Figure 2b. Principal Component Analysis (PCA) biplot for the liking (supplementary variable) and 

emotional associations of the five samples for product-specific emoji list.  



 
Fig 3a.  Frequency distribution of food choice for the 

experiment using the general list. 

 
Fig 3b : Frequency distribution of food choice for the 

experiment using the product-specific list. 
abc different superscripts indicate significant differences in the chosen food product between the samples within the same 

list (general / product-specific) based upon the chi² test considering p≤0.05 
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Figure 4. Barplot showing the influence of the list that is used and the questionnaire type on the leave-one-out cross-

validation (LOOCV) accuracy for five multinomial logit models. LOOCV allows for an unbiased prediction estimate, because 

the choice of every single individual is predicted independently from all other individuals. The error bars show 95% 

confidence intervals for the accuracies. 
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