

Cristina de la Vega-Fernández¹, Joaquín Gómez-Estaca¹, Age Oterhals², Oscar Martínez-Alvarez^{1*}

1 Institute of Food Science, Technology and Nutrition (ICTAN, CSIC). C/ José Antonio Novais 10, 28040 Madrid (Spain) 2 NOFIMA Norwegian Institute of Food, Fisheries and Aquaculture Research, Bergen (Norway) *e-mail: oscar.martinez@ictan.csic.es

INTRODUCTION

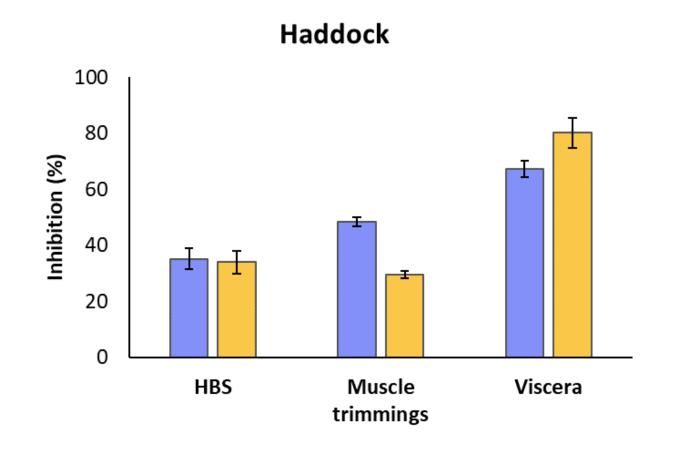
Whitefish factory vessels generate thousands of tons of raw material (head, backbone, skin, viscera and trimmings) which, despite their high nutritional value, are hardly utilized due to the lack of economic incentives and viable technology on board. The development of a by-product processing technology on board fishing vessels would make it possible to obtain, from this raw material, different fractions such as water-soluble proteins, non-soluble protein powder and lipids, which could be used as food ingredients, contributing to improving the sustainable use of the world's fishery resources. In addition, gastrointestinal digestion of the protein fractions could release peptides with a bioactive potential that deserve to be studied. Within this context, the aim of this work is to investigate the ACE-inhibitory activity of protein concentrates derived from the filleting of four whitefish species (haddock -Melanogrammus aeglefinus-, redfish -Sebastes norvegicus-, cod -Gadus morhua- and saithe -Pollachius virens-) and subjected to simulated gastrointestinal digestion, to determine their potential as antihypertensive ingredients.

RESULTS

Inhibition of ACE-1 activity

Molecular weight distribution

NON-SOLUBLE PROTEIN


SOLUBLE PROTEIN

RESULTS AND DISCUSSION

CONCLUSION

The non-soluble protein digests presented in almost

SEAFOOD CONFERENCE

HADDOCK		NON-SOL	UBLE PROTEIN	SOLUB	LE PROTEIN	
Sample	Dalton (Da)	Distribution (%)	Main molecular weight (Da)	Distribution (%)	Main molecular weight (Da)	
	>1000	59	1300	-	-	
HBS	1000-500	16	535	11	762	
	<500	26	313	89	208	
Muscle	>1000	30	-	-	-	
trimmings	1000-500	29	900	6	743	
triminings	<500	41	316	94	260	
	>1000	13	1230	-	-	
Viscera	1000-500	21	818	25	518	
	<500	65	435	75	279	
REDFISH		NON-SOL	UBLE PROTEIN	SOLUB	LE PROTEIN	
Sample	Dalton (Da)	Distribution	Main molecular	Distribution	Main molecular	
Sample	Daiton (Da)	(%)	weight (Da)	(%)	weight (Da)	
	>1000	51	1284	-	-	
HBS	1000-500	19	534	21	507	
	<500	30	311	79	263	
Muscle	>1000	38	1148	-	-	

22

40

42

20

37

Muscle

trimminas

Viscera

1000-500

<500

>1000

1000-500

<500

	100								
_	80							T	
on (%)	60	Ŧ	I		F				
Inhibition (%)	40	Ť				_			
-	20								
	0								
		HE	ß	1	Mu: trimn	scle nings	Visc	era	

Cod

100

80

60

oition (%)

Redfish

COD		NON-SOL	UBLE PROTEIN	SOLUB	LE PROTEIN
Sample	Dalton (Da)	Distribution (%)	Main molecular weight (Da)	Distribution (%)	Main molecular weight (Da)
	>1000	61	1316	-	-
HBS	1000-500	15	537	11	501
	<500	24	313	89	209
Muscle	>1000	47	1217	-	-
	1000-500	20	545	5	791
trimmings	<500	32	300	95	261
	>1000	42	1019	-	-
Viscera	1000-500	22	537	23	514
	<500	37	314	77	206
SAITHE	<500		314 UBLE PROTEIN		206 ELE PROTEIN
<i>SAITHE</i> Sample	<500 Dalton (Da)				LE PROTEIN
		<i>NON-SOL</i> Distribution	<i>UBLE PROTEIN</i> Main molecular	<i>SOLUB</i> Distribution	<u>LE PROTEIN</u> Main molecular
	Dalton (Da)	<i>NON-SOL</i> Distribution (%)	<i>UBLE PROTEIN</i> Main molecular weight (Da)	<i>SOLUB</i> Distribution	<u>LE PROTEIN</u> Main molecular
Sample	Dalton (Da) >1000	NON-SOL Distribution (%) 58	UBLE PROTEIN Main molecular weight (Da) 1282	<i>SOLUB</i> Distribution (%) -	<u>ELE PROTEIN</u> Main molecular weight (Da) -
Sample HBS	Dalton (Da) >1000 1000-500	NON-SOL Distribution (%) 58 16	UBLE PROTEIN Main molecular weight (Da) 1282 538	SOLUB Distribution (%) - 14	ELE PROTEIN Main molecular weight (Da) - 796
Sample HBS Muscle	Dalton (Da) >1000 1000-500 <500	NON-SOL Distribution (%) 58 16 26	UBLE PROTEIN Main molecular weight (Da) 1282 538 314	SOLUB Distribution (%) - 14	ELE PROTEIN Main molecular weight (Da) - 796
Sample HBS	Dalton (Da) >1000 1000-500 <500 >1000	NON-SOL Distribution (%) 58 16 26 47	UBLE PROTEIN Main molecular weight (Da) 1282 538 314 1282	SOLUB Distribution (%) - 14 86 -	SLE PROTEIN Main molecular weight (Da) - 796 206 -
Sample HBS Muscle	Dalton (Da) >1000 1000-500 <500 >1000 1000-500	<i>NON-SOL</i> Distribution (%) 58 16 26 47 20	UBLE PROTEIN Main molecular weight (Da) 1282 538 314 1282 544	SOLUB Distribution (%) - 14 86 - 4	ELE PROTEIN Main molecular weight (Da) - 796 206 - 774

309

37

< 500

76

534

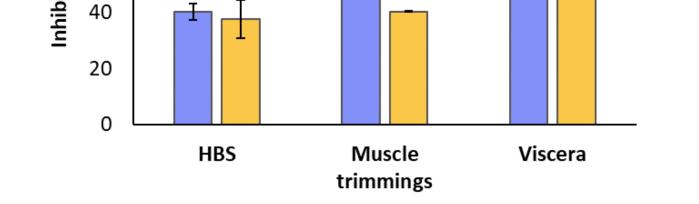
310

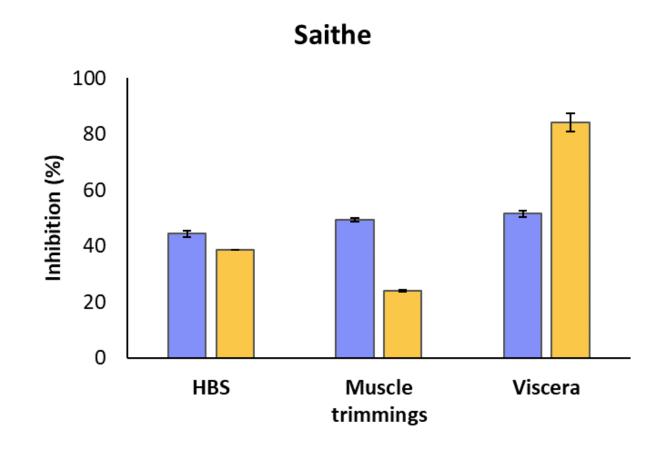
1159

536

313

5


95


17

83

all cases a predominant fraction of peptides with MW around 1-1.3 kDa, and to a lesser extent peptides with MW around 535 and 310 Da. The highest MW fraction was absent in the soluble protein digests, which were rich in small peptides, presumably dipeptides.

All digests showed ACE inhibitory capacity at very low concentrations (100 μ g/ml). The highest ACE inhibitory capacity was observed in the viscera digests. Despite the differences observed in the molecular profile, the ACE-inhibitory capacity of soluble and non-soluble protein digests was very similar, suggesting that certain residues present at specific positions in the peptide chain would be responsible for the inhibition.

Viscera derived from the filleting of high-value fish species on board fishing vessels could be used as a source of soluble and non-soluble protein of interest as a food ingredient with antihypertensive potential. Protein fractions derived from other processing byproducts such as muscle trimmings or heads, bones and skins are also of great interest for their bioactive potential, although their digests show a lower capacity to inhibit ACE.

This work has been performed under project Unlocking novel product possibilities and barriers for commercial utilization of whitefish residual raw materials onboard factory trawler (WHITEFISH) financed by The Research Council of Norway.

271

705

193

508

260