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Abstract 10 

Freezing of fish is an important processing method that can extend the shelf life of the product but 11 

can also lead to significant damage to the tissue if performed incorrectly. In order to thoroughly 12 

evaluate different freezing protocols, a method to characterize the extent and distribution of damage 13 

from freezing is needed. Magnetic resonance imaging (MRI) was tested as a technique to map and 14 

quantify tissue damage from freezing in fish. Groups of packaged cod (Gadus morhua) loin were 15 

frozen to either -5, -20, or -40 °C, thawed and then imaged with a T2-weighted MRI sequence. Areas 16 

of damage appear as bright clusters in the muscle tissue. To provide repeatable, objective 17 

classification, image analysis using a convolutional neural network was then performed on the MRI 18 

data to identify regions of damaged tissue.  As expected, the colder the freezing procedure, the less 19 

damage the process generally produced. Results show non-uniform damage throughout the fillet, 20 

with tissue damage due to freezing concentrated in the center of the fillet. This suggests that surface 21 

limited methods, such as hyperspectral imaging, may not fully capture the extent of damage due to 22 

freezing and thawing. The percent of tissue classified as damaged by the neural network generally 23 

correlated well with liquid loss (cor = 0.83).   24 

Keywords: magnetic resonance imaging; fish; cod; freezing; image analysis; deep learning  25 
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1 INTRODUCTION 26 

Freezing of fish is commonly used to extend the shelf life of a product and ensure year-round 27 

availability of seasonable products (Johnston et al., 1994). However, the freezing procedure used may 28 

greatly impact the ultimate product quality. Research has shown that fish that has been frozen slowly 29 

is of lower quality upon thawing than fish that has been frozen quickly (Love 1956; Chen and Pan, 1997; 30 

Johnston et al., 1994). A low freezing rate may lead to more liquid loss upon thawing and subsequent 31 

cold storage and is often associated with undesirable sensory properties like dryness, toughness, and 32 

chewiness (MacCallums 1966; Hurling 1996). The reason for this is physical damage of the tissue from 33 

ice crystals, which tear the cellular structure. The low freezing-rate allows larger ice crystals to form, 34 

which in turn causes larger amounts of damage (Petzold and Aguilera 2009; van der Sman et al. 2013; 35 

Dalvi-Isfahan et al., 2019). While some producers use blast freezing to freeze their fish, many still rely 36 

on slow freezing where the fish is placed in still air. Despite its widespread use, recent studies indicate 37 

that this method of freezing may not be sufficient to avoid significant tissue damage from freezing 38 

(Washburn et al. 2017). Furthermore, advanced methods for freezing have been developed, such as 39 

ultrasound assisted freezing (Delgado and Sun, 2011) or brine freezing. While not technically a freezing 40 

method, superchilling causes a significant fraction of the water in the fish to be frozen (Duun and 41 

Rustad, 2007). The effect of these treatments on product quality has not been fully explored. As such, 42 

the ability to quantify damage to tissue would be a valuable research tool to better understand and 43 

improve the freezing process in order to produce the highest quality products. 44 

A variety of methods have been used to evaluate damage caused by freezing in fish. Measurement 45 

of liquid loss is one of the most commonly used techniques (Ofstad et al., 1996). Here, the percent of 46 

liquid lost by the sample is correlated with tissue damage. Texture measurements have also been used 47 

to evaluate freezing damage, as the cellular breakdown from the ice crystals results in a softer texture 48 

(Mørkøre and Lilleholt 2007; Saez et al. 2015; Nakazawa and Okazaki 2020). Other studies have used 49 

microscopy to investigate what happens on a cellular level (Sigurgisladottir et al., 2000). Shrinking of 50 
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the myofibrils and an increase in the extracellular space in the muscle structure is evident. However, 51 

all these methods have the drawback in that they lack spatial resolution. Tissue damage to the fish will 52 

not be uniform. Fillets will freeze unevenly, the surface freezing quickly while the center of the fish 53 

takes longer. Because the tissue damage is tied to freezing rate, it is expected that the amount of 54 

damage will vary throughout the sample. Therefore, a technique that can both map and quantify 55 

damage to tissue would be ideal. Hyperspectral imaging has been used to characterize damage from 56 

freezing (Washburn et al., 2017; Xu and Sun, 2017), but it is limited in that, at best, it can only measure 57 

the top centimeter of a sample.  58 

In this study, we used magnetic resonance imaging (MRI) as an alternative method to quantify 59 

damage to tissue. This technique has been used previously to image the effect of salting on cod 60 

(Erikson et al. 2004; Gudjónsdóttir et al. 2015) and salmon (Aursand et al. 2009; Veliyulin et al. 2007). 61 

MRI uses a strong magnetic field, radio frequency pulses and magnetic gradients to create an image of 62 

a sample (Callaghan 1993). In most situations, MRI is used to measure the amount of hydrogen 63 

throughout the sample. In biological samples, as hydrogen is predominantly located in constituents 64 

like water and fat, MRI produces an image of the soft tissue. While MRI can be used to provide an 65 

absolute quantification of the hydrogen present, measurements can also be performed to produce 66 

contrast between different types of features in the image. One way to produce contrast in MRI images 67 

is transverse relaxation, or T2 relaxation. This property describes how quickly the MRI signal decays 68 

away. In general, the MRI signal associated with tightly bound hydrogen, such as hydrogen in proteins, 69 

relaxes very quickly. In contrast, hydrogen in free diffusing liquids has a longer transverse relaxation 70 

rate. T2-weighting is an MRI method that can be used to highlight the presence of damage in the muscle 71 

structure. Previous research on meat and fish has shown that freezing and thawing will damage tissue, 72 

such that the transverse relaxation time becomes longer (Lambelet et al. 1995; Jensen et al. 2002; 73 

Mortensen et al 2006; Bertram et al 2007; Sánchez-Alonso et al. 2012; Sánchez-Alonso et al. 2014, 74 

Duflot et al. 2019).  This is believed to be due to tissue damage causing less restriction of the water 75 

molecules. Therefore, by identifying regions of longer T2 relaxation, tissue damage can be identified. 76 
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During T2-weighted MRI imaging, the measurement is performed in a manner that causes regions of 77 

different T2 values to have different contrast in the image. The signal from regions with shorter T2 78 

relaxation will decay away more quickly, so they will appear darker in the image. Similarly, the signal 79 

regions with longer T2 relaxation times decay away more slowly and they will appear brighter in the 80 

image. In medical research, this approach has been used to identify a variety of different damages and 81 

disease in the brain (Welch et al. 1995; Shibata et al. 2000) and heart (Abdel-Aty et al. 2007). 82 

Although prior studies have used MRI to image frozen and thawed fish products (Howell et al. 83 

1996; Nott et al. 1999), improvements to MRI microimaging equipment in recent years allows much 84 

higher resolution images to be produced, making detailed image analysis possible. In this study, T2-85 

weighted MRI images were used to characterize cod tissue before and after different freezing 86 

protocols. While qualitative inspection of the MRI images for damage is useful, quantification of the 87 

amount and location of tissue damage would provide valuable information for researchers studying 88 

the effect of different types of processing protocols. A challenge, however, is accurate segmentation 89 

of tissue into damaged and non-damaged regions. In some situations, it is straight forward to identify 90 

areas of damaged and non-damaged tissue. Frequently though, the damage in tissue is often scattered 91 

throughout the sample and the precise change between damaged and not damaged areas is not 92 

obvious, making its identification manually both arduous and subjective. There is likely to be significant 93 

variation depending on who performs the classification. To overcome this problem, image analysis is 94 

then applied using a convolutional neural network to quantify and map the distribution of damage 95 

throughout the sample. This allows a rapid, repeatable way to classify the tissue in MRI images into 96 

damaged and non-damaged regions.   97 
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2 MATERIALS AND METHODS 98 

2.1 MRI PROCEDURES 99 

MRI images were taken using a 7 Tesla MR Solutions (United Kingdom) small animal imager using the 100 

large rat quadrature coil. Images were taken in the axial direction using the Fast Spin Echo T2-weighted 101 

sequence. Repetition time (TR) was 8 seconds, slice thickness was 1mm and the number of slices was 102 

54. Field of View was 60mm and each image was 256 x 256 pixels, giving a resolution of approximately 103 

240 microns. Images were stored in 12 bit grayscale values. 104 

2.2 NMR PROCEDURES 105 

Transverse relaxation measurements were made using a 43 Mhz Magritek SpinSolve (Aachen, 106 

Germany) system. Small samples of tissue were placed in 5mm tubes for measurement. Transverse 107 

relaxation was measured using the standard Carr-Purcell-Meiboom-Gill sequence (Carr and Purcell, 108 

1954; Meiboom and Gill, 1958). Pulse length was 12.5 µs, echo spacing was 80 µs and TR was 5 109 

seconds. Inversion of the data was performed using a Butler-Reed-Dawson algorithm (Butler et al. 110 

1981) built into the spectrometer operating software.    111 

2.3 SAMPLES 112 

Sixteen Atlantic cod fish (Gadus morhua) were provided by Tromsø Aquaculture Research Station, 113 

Norway. The fish were killed by a blow to the head and immediately gutted. They were bled for 30 114 

mins, iced and transported to Nofima, where they were kept on ice for 4 days to ensure that the fish 115 

were out of rigor prior to filleting. The fillets were then sliced into loin pieces (n=32, 146g ± 19g) and 116 

vacuum packed (99%) in plastic pouches (20 μm polyamide inside layer and 70 μm polyethylene 117 

outside layer, O2 permeability: 45 cm3/(m2 d bar)-1). In order to create consistent samples, sections 118 

were taken from the same location in the loin of all the fillets. Packed samples were stored on ice until 119 

imaging in the MRI scanner. After imaging, the samples were then split into groups of three. Group 1 120 
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(n=11) was frozen to -5 °C. It is well established that freezing at this high of temperature will produce 121 

a highly damaged sample (Mørkøre and Lilleholt, 2007).  At -5 °C, large ice crystals can form and a 122 

significant fraction of water will remain in an unfrozen state (Powrie 1984).  This leads to melting and 123 

recrystallisation in the tissue, increasing cellular damage (Braslavsky 2015). This freezing protocol was 124 

used to provide an end point of what extremely damaged tissue looks like. Realistically, it is not 125 

expected this situation would occur often, perhaps arising if there were some fault with the freezing 126 

equipment or if fillets are bulk stacked before freezing (Johnston 1994). Group 2 (n=11) was frozen in 127 

still air to -20 °C. This is most similar to the typical freezing procedure present in industrial settings. 128 

Group 3 (n=10) was blast frozen to -40 °C (3 ms-1), which previous studies has shown causes less 129 

damage to fish tissue (Mørkøre and Lilleholt, 2007; Anderssen et al. 2020). All samples were frozen, 130 

stored for 5 days, then thawed rapidly in a 4 °C circulating water bath for two hours. Samples were 131 

kept in the vacuum bags to avoid direct contact between the water and fillets. After thawing, samples 132 

were stored on ice until imaging in the MRI scanner and subsequent liquid loss measurements were 133 

performed following imaging.  134 

2.4 LIQUID LOSS 135 
 136 

Liquid loss was collected directly from the vacuum packages. The vacuum-packed samples containing 137 

fish muscle and expelled liquid were opened after MRI imaging before and after freezing and frozen 138 

storage. Liquid loss (LL, %) was determined according to the formula:  139 

LL= !!"!"
!!

× 100	% 140 

where m0 is the initial weight of the loin, and mL is the weight of the loin after packaging, MRI imaging, 141 

frozen storage and final MRI imaging. 142 

 143 
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2.5 IMAGE ANALYSIS 144 

2.5.1 PREPROCESSING 145 
 146 

MRI images were read from the DICOM (.dcm) file format with the python library pydicom (v1.4.2) and 147 

stored in hierarchical data format 5 (HDF5) for further analyses. Image artifacts due to the plastic 148 

wrapping surrounding the cod loins were removed by segmenting each image slice into 2 distinct 149 

classes, the background and the foreground (i.e., the cod loin). To do this, images were converted to 8 150 

bits, and a max filter, erosion, and Gaussian blur were applied. These steps increased the distinction 151 

between the background and foreground. Next, the k-means clustering algorithm was applied to 152 

segment the image into two distinct classes. A mask of the background class was then used to set each 153 

background pixel to the value zero.  154 

 155 

To enable a supervised machine learning process of tissue classification, tissue was manually 156 

annotated into regions of: (i) damaged tissue, (ii) non-damaged tissue, (iii) damaged connective tissue 157 

(i.e., myocommata), and (iv) non-damaged connective tissue. Annotations were created using the tool 158 

ITK-SNAP (Yushkevich et al., 2006). Afterwards, regions of annotated tissue were converted into 8 x 8 159 

pixels features by employing a sliding window approach over the regions with a step size of 1, and the 160 

class labels representing one of the four regions. A total of 545,882 damaged, 2,415,618 non-damaged, 161 

15,315 damaged connective tissue, and 53,956 non-damaged connective tissue features were created.  162 

Features from the minority classes were randomly oversampled so as to create a class balanced 163 

dataset. 164 

 165 

2.5.2 CONVOLUTIONAL NEURAL NETWORK 166 
 167 

A convolutional neural network (CNN) was trained to classify the features into the four classes. The 168 

proposed CNN architecture was inspired by the VGG16 architecture (Simonyan and Zisserman, 2015), 169 
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which was one of the winning entries of 2014 edition of the ImageNet Large Scale Visual Recognition 170 

Challenge (Russakovsky et al., 2015). Details about the architecture can be found in Table S1 in the 171 

supplementary material. The proposed architecture contained a total of 8 million trainable 172 

parameters.  173 

 174 

Training was performed on 80% of the feature data, with 10% data for validation and 10% for testing 175 

the CNN model on new unseen data. The model was trained for a total of 100 epochs with stochastic 176 

gradient descent, a learning rate of 0.05, and a batch size of 32 images. Two types of regularization 177 

techniques were used to prevent the CNN model from overfitting to the training data. Firstly, early 178 

stopping was implemented, essentially terminating training if the validation loss did not increase for 179 

20 epochs. When early stopping terminated the learning process, the model with the best weights with 180 

respect to the validation loss was restored. Secondly, the CNN model used several dropout layers 181 

(Srivastava et al., 2014), which has shown to significantly improve the performance of the neural 182 

network in several domains. The proposed CNN model achieved an accuracy of 0.976 on the training 183 

set, 0.952 on the validation set, and 0.952 on the test set after early stopping terminated the learning 184 

process at 50 epochs. Training results per epoch can be found in Figure S1 in the supplementary 185 

material. Furthermore, the CNN model was constructed using the Python library TensorFlow 2.1.0 186 

(Abadi et al., 2016) and trained on two Nvidia RTX-2080Ti and one Nvidia Titan RTX graphical 187 

processing units.  188 

 189 

2.5.3 POST-PROCESSING 190 
 191 

Each image (i.e., a single MRI slice) was then classified into regions of damage, non-damage, damaged 192 

connective tissue, and non-damaged connective tissue. A sliding window approach (Harzallah et al., 193 

2009; Szegedy et al., 2013) with a stride of 4 pixels was utilized to classify regions of 8 x 8 pixels with 194 

the trained CNN classification model, focusing only on the tissue and ignoring the background. Regions 195 
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of connective tissue were additionally ignored and only regions of damaged and non-damaged were 196 

considered in the analysis. Select images are shown in this paper and the complete set of images with 197 

classified regions are available upon reasonable request.  198 

3 RESULTS 199 

3.1 LIQUID LOSS 200 

The liquid loss results are in line with previous research, showing that lower freezing temperatures 201 

were correlated with lower liquid loss, Figure 1. 202 

 203 

 204 

Figure 1: Liquid loss results for the three different groups of freezing procedures. The error bars show the standard error of 205 
the mean.     206 

The average liquid loss for Group 1 was 6.0% with a standard deviation of 1.2%. Group 2 had a liquid 207 

loss of 3.9% with a standard deviation of 0.7% and Group 3 had a liquid loss of 1.7% with a standard 208 
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deviation of 0.5%. ANOVA analysis of the data shows statistically significant differences between the 209 

groups (F(2,30)=68.82, p = 9.74e-12). 210 

3.2 THE EFFECT OF FREEZING PROCEDURE ON T2 DISTRIBUTION 211 

Figure 2 shows an example of the changes in the T2 times of a frozen and thawed cod sample depending 212 

on freezing procedure used.  213 

 214 

Figure 2: T2 distributions of fresh cod tissue and tissue that has been frozen at -5, -20 and -40 °C and subsequently thawed       215 

There are 4 peaks in the T2 distribution of cod muscle. The shortest peak around 0.1 ms is associated 216 

with hydrogen in the tissue itself. The peak at 2-3 ms is hydrogen in water tightly associated with 217 

macromolecules. The main peak (approx. 50 ms) arises from water within the myofibrillar matrix. The 218 

longest relaxing peak (approx. 300 ms) is water in extra-myofibrillar spaces (Bertram et al. 2001). When 219 

tissue is damaged, water is lost from the myofibrillar matrix and is able to leak into the extra-220 
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myofibrillar regions, leading to a decrease in the main peak and an increase in longer T2 values 221 

(Mortensen et al. 2007). The sample frozen to -40°C shows a very similar distribution of T2 times as the 222 

fresh state, with only some minor broadening of the main peak and extra-myofibrillar peak. The sample 223 

frozen to -20 °C shows a shift to longer T2 times. The sample frozen to -5 °C shows a significant shift. 224 

These data agree with results found by previous researchers. Therefore, when MRI imaging is 225 

performed with T2-weighting, as regions with tissue damage have longer T2 values, they will appear 226 

brighter in the image.  227 

3.3 IMAGE CLASSIFICATION  228 

Figure 3 shows an example of an axial image of a fillet from Group 1 before and after freezing to -5 °C 229 

and the respective classification of tissue performed by the image analysis.  230 
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 231 

Figure 3: Example of a) Original MRI image of a sample in the fresh state b) image of sample in the fresh state with damaged 232 
tissue identified c) Original MRI image of a sample that has been frozen to -5°C and thawed d) Image of sample that has been 233 
frozen to -5°C and thawed with damaged tissue identified                   234 

While the original fillets were overall in good condition, a small amount of tissue is classified as 235 

damaged in the fresh state for Group 1 (mean= 11.5%, std=5.1%). This is to be expected, as some tissue 236 

damage will occur due to handling and the filleting process. However, after freezing and thawing, 237 

nearly all the tissue in the sample is classified damaged (mean= 81.2%, std=14.3%). Note, due to minor 238 

differences in sample orientation and changes in the tissue during freezing, there will not be perfect 239 

alignment between the images of the samples in the fresh and thawed state. While there seems to be 240 

slightly less damage on the edges of the samples, overall the extent of the tissue damage is so great 241 

that almost the entirety of the sample can be considered damaged. The bright edges surrounding the 242 

sample are liquid loss trapped in the vacuum pack.  243 
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Figure 4 shows an example axial image from Group 2 before and after freezing to -20 °C and the 244 

respective classification of tissue performed by the image analysis.  245 

 246 

Figure 4: Example of a) Original MRI image of a sample in the fresh state b) image of sample in the fresh state with damaged 247 
tissue identified c) Original MRI image of a sample that has been frozen to -20°C and thawed d) Image of sample that has 248 
been frozen to -20°C and thawed with damaged tissue identified                   249 

   250 

As with Group 1, Group 2 showed minor damage in the fresh state (mean=8.3%, std=2.8%). After 251 

freezing, there was a noticeable increase in tissue classified as damaged (mean=57.4%, std=13.3%). 252 

Although damage could be found throughout the fillet, frequently the damage was localized towards 253 

the center of the fillet. This is in line with freezing theory, where the surface of the sample will freeze 254 

more quickly while the center takes longer and is therefore more prone to damage. As with samples 255 

in Group 1, prominent liquid loss surrounding the samples could often be seen in Group 2.   256 
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Figure 5 shows an example axial image from Group 3 before and after freezing to -40 °C and the 257 

respective classification of tissue performed by the image analysis.  258 

 259 

 260 

Figure 5: Example of a) Original MRI image of a sample in the fresh state b) image of sample in the fresh state with damaged 261 
tissue identified c) Original MRI image of a sample that has been frozen to -40°C and thawed d) Image of sample that has 262 
been frozen to -40°C and thawed with damaged tissue identified                   263 

Minor tissue damage was observed in the fresh state (mean= 8.9%, std=3.5%). Only a minor increase 264 

in was observed in the thawed state (mean = 15.9%, std=5.4%). No particular localization of tissue 265 

damage was noted in the -40°C samples. Only minor liquid loss was observed around the samples. 266 
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3.4 STATISTICAL ANALYSIS OF RESULTS 267 

In order to aid comparison of results, a histogram of the damaged tissue for the different groups is 268 

shown in Figure 6.  The histogram shows the distribution for each group of the percentage of tissue 269 

classified as damaged for each of the axial slices for all the samples.  270 

 271 

Figure 6: Histograms of the percent of tissue classified as damaged for each MRI image in both the fresh and then thawed 272 

state for the three different freezing protocols 273 

All the groups showed minor damage in the fresh state. ANOVA analysis of the classified tissue in the 274 

fresh state did not show statistically significant differences in amounts of damaged tissue between the 275 

groups (F(2,30)=2.11, p=0.14). In contrast, ANOVA analysis of the classified tissue in the thawed state 276 

showed large statistically significant difference in the amount of damaged tissue between the groups 277 

(F(2,30)=80.14, p=1.53e-12). The percent damaged tissue versus liquid loss is plotted in Figure 7.  278 
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 279 

Figure 7: Plot of the relationship between the average amount of tissue classified as damaged in the MRI image and the 280 

sample liquid loss 281 

There is a generally linear relationship between the two, with an r2 of 0.69. The Pearson’s correlation 282 

coefficient between liquid loss and damaged tissue is 0.83. 283 

4 DISCUSSION  284 

The results indicate that MRI is a promising method to identify tissue damage in fish, from both freezing 285 

and thawing and other sources. Classification of the images using a convolutional neural network 286 

appears to be an efficient approach to perform objective, repeatable identification of tissue damage 287 

in the MRI images. Although training the neural network is a slow process, once trained, it can classify 288 

future images in a matter of seconds. This makes it particularly valuable when numerous samples will 289 

be used. For the T2-weighted images, tissue damage appears as clusters of bright spots in the image. 290 

This indicates that when tissue is damaged, liquid leaks from the myofibrillar structure and creates 291 

small pools in between the muscle fibers.  We noted that in many cases, the connective tissue 292 
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appeared bright white in the images. Typically, the connective tissue appears darker than the 293 

surrounding muscle. This is due to a shorter T2 value caused by the more rigid structure of the 294 

connective tissue and potentially the accumulation of fat.  The images suggest that water collects in 295 

the connective tissue between the myomeres and that it serves as a conduit for liquid loss out of the 296 

sample. For the thawed samples in Groups 1 and 2, the overall intensity of the muscle tissue tended 297 

to decrease compared to the fresh state. We attribute this to liquid escaping from the myofibrillar 298 

matrix into pools between the muscle fibers, into the connective tissue and into the vacuum bag 299 

outside the sample.      300 

Samples frozen to -20 °C incurred significantly more damage than samples frozen to -40 °C, suggesting 301 

the quality of frozen fish available to the consumer could be improved by increasing the freezing rate. 302 

For the -20°C samples, damage frequently concentrated towards the center of the loins. This agrees 303 

with freezing theory, as the center of the sample will freeze more slowly than the surface and, as such, 304 

would be expected to experience more damage.  These results have several implications. First, surface 305 

techniques like near-infrared or hyperspectral imaging may not penetrate deep enough into the 306 

sample to adequately assess the full extent of damage to a sample. Secondly, it suggests that for 307 

analyses that use a small subsection of the sample, multiple subsections are necessary in order to avoid 308 

drawing a conclusion about the entire sample that may only be correct for a localized portion of it. 309 

While the results are very promising for using MRI and image analysis to automatically classify 310 

damaged tissue in fish, the current study had several limitations. A challenge with the T2-weighted 311 

images is that the brightness in the image is a function of both the water content and the local T2 312 

relaxation time. Future work aims to overcome this limitation by a performing a complete T2 mapping 313 

of the sample. This will enable quantification of both the fluid content and T2 time for each pixel, 314 

allowing an even more detailed description of tissue changes. The obstacle with this approach is that 315 

measurement time for each sample will be significantly longer, introducing concerns of sample stability 316 

during the course of the measurement program.  317 
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Another drawback of the study is that it performs a very black and white classification of the tissue, 318 

lumping all damaged tissue into one category. In reality, there is a range of severity of tissue damage. 319 

This is reflected in the relationship between the percent of tissue classified as damaged and liquid loss. 320 

While the current correlation is good, it is expected that a full T2 mapping of the sample would improve 321 

the correlation between liquid loss and identified tissue damage. Another limitation with the chosen 322 

analysis method is that it relies on human input for training the classification of damaged and non-323 

damaged tissue. While some signs of damage to the tissue are easy to spot visually, it is likely that 324 

there may be other indications of tissue damage that are less obvious. Further study is underway 325 

testing unsupervised classification to better identify all the features that are indicative of damage to 326 

tissue.  Testing is planned to measure additional physical and chemical properties as well as measuring 327 

attributes such as sensory properties in order to attempt to relate them to MRI images. 328 

5 CONCLUSIONS 329 

Magnetic resonance imaging is a promising method for mapping and quantifying damage in fish 330 

products.  Image analysis of the data using a trained neural network enables rapid classification of the 331 

tissue in the MRI images into damaged and non-damaged regions in an objective, repeatable manner. 332 

Classified tissue results correlated well with traditional liquid loss measurements. Results of the study 333 

indicate that blast freezing to -40 °C produces much less damage to the tissue than the industry 334 

standard of -18°C, emphasizing the need to change industry protocols if quality is to be improved. The 335 

damage in some of the fresh state samples highlights the need for thorough characterization of 336 

samples before undertaking a study to avoid unrelated effects from influencing results. The non-337 

uniform damage indicates that surface methods like hyperspectral imaging may underestimate 338 

damage from freezing. 339 
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